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Introduction

Tourist on Fifty-Seventh Street,
Manhattan: “Pardon me—could you tell
me how to get to Carnegie Hall?”

Native New Yorker: “Practice, practice!”

There’s a scene in the movie The Matrix in which Neo is strapped in a chair and Morpheus
inserts into a machine what looks like a seventies-era videotape cartridge. As the tape plays,
knowledge of how to fight streams into Neo’s brain. After a very short time, he has become an
expert.

I would be delighted if I could strap my students into chairs and quickly stream knowledge
of linear algebra into their brain, but brains don’t learn that way. The input device is rarely the
bottleneck. Students need lots of practice—but what kind of practice?

No doubt students need to practice the basic numerical calculations, such as matrix-matrix
multiplication, that underlie elementary linear algebra and that seem to fill all their time in
traditional cookbook-style courses on linear algebra. No doubt students need to find proofs and
counterexamples to exercise their understanding of the abstract concepts of which linear algebra
is constructed.

However, they also need practice in using linear algebra to think about problems in other
domains, and in actually using linear-algebra computations to address these problems. These
are the skills they most need from a linear-algebra class when they go on to study other topics
such as graphics and machine learning. This book is aimed at students of computer science; such
students are best served by seeing applications from their field because these are the applications
that will be most meaningful for them.

Moreover, a linear-algebra instructor whose pupils are students of computer science has a
special advantage: her students are computationally sophisticated. They have a learning modal-
ity that most students don’t—they can learn through reading, writing, debugging, and using
computer programs.

For example, there are several ways of writing a program for matrix-vector or matrix-matrix
multiplication, each providing its own kernel of insight into the meaning of the operation—and
the experience of writing such programs is more effective in conveying this meaning and cementing
the relationships between the operations than spending the equivalent time carrying out hand
calculations.

Computational sophistication also helps students in the more abstract, mathematical aspects

xiv
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of linear algebra. Acquaintance with object-oriented programming helps a student grasp the
notion of a field—a set of values together with operations on them. Acquaintance with subtyping
prepares a student to understand that some vector spaces are inner product spaces. Familiarity
with loops or recursion helps a student understand procedural proofs, e.g. of the existence of a
basis or an orthogonal basis.

Computational thinking is the term suggested by Jeannette Wing, former head of the National
Science Foundation’s directorate on Computer and Information Science and Engineering, to refer
to the skills and concepts that a student of computer science can bring to bear. For this book,
computational thinking is the road to mastering elementary linear algebra.

Companion website

The companion website is at codingthematrix.com. There you will find, in digital form, the
data, examples, and support code you need to solve the problems given in the book.

Intended audience

This book is accessible to a student who is an experienced programmer. Most students who take
my course have had at least two semesters of introductory computer science, or have previously
learned programming on their own. In addition, it is desirable that the student has has some
exposure (in prior semesters or concurrently) in proof techniques such as are studied in a Discrete
Math course.

The student’s prior programming experience can be in pretty much any programming lan-
guage; this book uses Python, and the first two labs are devoted to bringing the student up to
speed in Python programming. Moreover, the programs we write in this book are not particularly
sophisticated. For example, we provide stencil code that obviates the need for the student to
have studied object-oriented programming.

Some sections of the text, marked with *, provide supplementary mathematical material but
are not crucial for the reader’s understanding.

Labs

An important part of the book is the labs. For each chapter, there is a lab assignment in which
the student is expected to write small programs and use some modules we provide, generally
to carry out a task or series of tasks related to an application of the concepts recently covered
or about to be covered. Doing the labs “keeps it real”, grounding the student’s study of linear
algebra in getting something done, something meaningful in its own right but also illustrative of
the concepts.

In my course, there is a lab section each week, a two-hour period in which the students carry
out the lab assignment. Course staff are available during this period, not to supervise but to assist
when necessary. The goal is to help the students move through the lab assignment efficiently, and
to get them unstuck when they encounter obstacles. The students are expected to have prepared
by reviewing the previous week’s course material and reading through the lab assignment.

Most students experience the labs as the most fun part of the course—it is where they
discover the power of the knowledge they are acquiring to help them accomplish something that
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has meaning in the world of computer science.

Programming language

The book uses Python, not a programming language with built-in support for vectors and matri-
ces. This gives students the opportunity to build vectors and matrices out of the data structures
that Python does provide. Using their own implementations of vector and matrix provides trans-
parency. Python does provide complex numbers, sets, lists (sequences), and dictionaries (which
we use for representing functions). In addition, Python provides comprehensions, expressions
that create sets, lists, or dictionaries using a simple and powerful syntax that resembles the
mathematical notation for defining sets. Using this syntax, many of the procedures we write
require only a single line of code.

Students are not expected to know Python at the beginning; the first two labs form an
introduction to Python, and the examples throughout the text reinforce the ideas.

Vector and Matrix representations

The traditional concrete representation for a vector is as a sequence of field elements. This book
uses that representation but also uses another, especially in Python programs: a vector as a
function mapping a finite set D to a field. Similarly, the traditional representation for a matrix
is as a two-dimensional array or grid of field elements. We use this representation but also use
another: a matrix as a function from the Cartesian product R × C of two finite sets to a field.

These more general representations allow the vectors and matrices to be more directly con-
nected to the application. For example, it is traditional in information retrieval to represent a
document as a vector in which, for each word, the vector specifies the number of occurences of
the word in the document. In this book, we define such a vector as a function from the domain
D of English words to the set of real numbers. Another example: when representing, say, a
1024×768 black-and-white image as a vector, we define the vector as a function from the domain
D = {1, . . . , 1024} × {1, .., 768} to the real numbers. The function specifies, for each pixel (i, j),
the image intensity of that pixel.

From the programmer’s perspective, it is certainly more convenient to directly index vectors
by strings (in the case of words) or tuples (in the case of pixels). However, a more important
advantage is this: having to choose a domain D for vectors gets us thinking about the application
from the vector perspective.

Another advantage is analogous to that of type-checking in programs or unit-checking in
physical calculations. For an R×C matrix A, the matrix-vector product Ax is only legal if x is
a C-vector; the matrix-matrix product AB is only legal if C is the set of row-labels of B. These
constraints further reinforce the meanings of the operations.

Finally, allowing arbitrary finite sets (not just sequences of consecutive integers) to label the
elements helps make it clear that the order of elements in a vector or matrix is not always (or
even often) significant.
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Fundamental Questions

The book is driven not just by applications but also by fundamental questions and computational
problems that arise in studying these applications. Here are some of the fundamental questions:

• How can we tell whether a solution to a linear system is unique?

• How can we find the number of solutions to a linear system over GF (2)?

• How can we tell if a set V of vectors is equal to the span of vectors v1, . . . ,vn?

• For a system of linear equations, what other linear equations are implied?

• How can we tell if a matrix is invertible?

• Can every vector space be represented as the solution set of a homogeneous linear system?

Fundamental Computational Problems

There are a few computational problems that are central to linear algebra. In the book, these
arise in a variety of forms as we examine various applications, and we explore the connections
between them. Here are examples:

• Find the solution to a matrix equation Mx = b.

• Find the vector x minimizing the distance between Mx and b.

• Given vector b, find the closest vector to b whose representation in a given basis is k-sparse.

• Find the solution to a matrix inequality Mx ≤ b.

• Given a matrix M , find the closest matrix to M whose rank is at most k.

Multiple representations

The most important theme of this book is the idea of multiple different representations for the
same object. This theme should be familiar to computer scientists. In linear algebra, it arises
again and again:

• Representing a vector space by generators or by homogeneous linear equations.

• Different bases for the same vector space.

• Different data structures used to represent a vector or a matrix.

• Different decompositions of a matrix.
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Multiple fields

In order to illustrate the generality of the ideas of linear algebra and in order to address a broader
range of applications, the book deals with three different fields: the real numbers, the complex
numbers, and the finite field GF (2). Most examples are over the real numbers because they are
most familiar to the reader. The complex numbers serve as a warm-up for vectors since they
can be used to represent points in the plane and transformations on these points. The complex
numbers also come up in the discussion of the finite Fourier transform and in eigenvalues. The
finite field GF (2) comes up in many applications involving information, such as encryption,
authentication, checksums, network coding, secret-sharing, and error-correcting codes.

The multiple codes help to illustrate the idea of an inner-product space. There is a very simple
inner product for vectors over the reals; there is a slightly more complicated inner product for
vectors over the complex numbers; and there is no inner-product for vectors over a finite field.
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Chapter 0

The Function (and other
mathematical and computational
preliminaries)

Later generations will regard
Mengenlehre [set theory] as a disease
from which one has recovered.

attributed to Poincáre

The basic mathematical concepts that inform our study of vectors and matrices are sets,
sequences (lists), functions, and probability theory.

This chapter also includes an introduction to Python, the programming language we use to (i)
model the mathematical objects of interest, (ii) write computational procedures, and (iii) carry
out data analyses.

0.1 Set terminology and notation

The reader is likely to be familiar with the idea of a set, a collection of mathematical objects in
which each object is considered to occur at most once. The objects belonging to a set are its
elements. We use curly braces to indicate a set specified by explicitly enumerating its elements.
For example, {♥,♠,♣,♦} is the set of suits in a traditional deck of cards. The order in which
elements are listed is not significant; a set imposes no order among its elements.

The symbol ∈ is used to indicate that an object belongs to a set (equivalently, that the set
contains the object). For example, ♥ ∈ {♥,♠,♣,♦}.

One set S1 is contained in another set S2 (written S1 ⊆ S2) if every element of S1 belongs
to S2. Two sets are equal if they contain exactly the same elements. A convenient way to prove
that two sets are equal consists of two steps: (1) prove the first set is contained in the second,
and (2) prove the second is contained in the first.

1
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A set can be infinite. In Chapter 1, we discuss the set R, which consists of all real numbers,
and the set C, which consists of all complex numbers.

If a set S is not infinite, we use |S| to denote its cardinality, the number of elements it contains.
For example, the set of suits has cardinality 4.

0.2 Cartesian product

One from column A, one from column B.

The Cartesian product of two sets A and B is the set of all pairs (a, b) where a ∈ A and b ∈ B.

Example 0.2.1: For the sets A = {1, 2, 3} and B = {♥,♠,♣,♦}, the Cartesian product is

{(1,♥), (2,♥), (3,♥), (1,♠), (2,♠), (3,♠), (1,♣), (2,♣), (3,♣), (1,♦), (2,♦), (3,♦)}

Quiz 0.2.2: What is the cardinality of A × B in Example 0.2.1 (Page 2)?

Answer

|A × B| = 12.

Proposition 0.2.3: For finite sets A and B, |A × B| = |A| · |B|.

Quiz 0.2.4: What is the cardinality of {1, 2, 3, . . . , 10, J, Q, K} × {♥,♠,♣,♦}?

Answer

We use Proposition 0.2.3. The cardinality of the first set is 13, and the cardinality of the
second set is 4, so the cardinality of the Cartesian product is 13 · 4, which is 52.

The Cartesian product is named for René Descartes, whom we shall discuss in Chapter 6.

0.3 The function

Mathematicians never die—they just lose function.

Loosely speaking, a function is a rule that, for each element in some set D of possible inputs,
assigns a possible output. The output is said to be the image of the input under the function
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and the input is a pre-image of the output. The set D of possible inputs is called the domain of
the function.

Formally, a function is a (possibly infinite) set of pairs (a, b) no two of which share the same
first entry.

Example 0.3.1: The doubling function with domain {1, 2, 3, . . .} is

{(1, 2), (2, 4), (3, 6), (4, 8), . . .}

The domain can itself consist of pairs of numbers.

Example 0.3.2: The multiplication function with domain {1, 2, 3, . . .} × {1, 2, 3, . . .} looks
something like this:

{((1, 1), 1), ((1, 2), 2), . . . , ((2, 1), 2), ((2, 2), 4), ((2, 3), 6), . . .}

For a function named f , the image of q under f is denoted by f(q). If r = f(q), we say that
q maps to r under f . The notation for “q maps to r” is q )→ r. (This notation omits specifying
the function; it is useful when there is no ambiguity about which function is intended.)

It is convenient when specifying a function to specify a co-domain for the function. The
co-domain is a set from which the function’s output values are chosen. Note that one has some
leeway in choosing the co-domain since not all of its members need be outputs.

The notation
f : D −→ F

means that f is a function whose domain is the set D and whose co-domain (the set of possible
outputs) is the set F . (More briefly: “a function from D to F”, or “a function that maps D to
F .”)

Example 0.3.3: Caesar was said to have used a cryptosystem in which each letter was replaced
with the one three steps forward in the alphabet (wrapping around for X,Y, and Z).a Thus the
plaintext MATRIX would be encrypted as the cyphertext PDWULA. The function that maps
each plaintext letter to its cyphertext replacement could be written as

A )→ D, B )→ E, C )→ F, D )→ G, W )→ Z, X )→ A, Y )→ B, Z )→ C

This function’s domain and co-domain are both the alphabet {A, B, . . . , Z}.
aSome imaginary historians have conjectured that Caesar’s assasination can be attributed to his use of

such a weak cryptosystem.

Example 0.3.4: The cosine function, cos, maps from the set of real numbers (indicated by R)
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to the set of real numbers. We would therefore write

cos : R −→ R

Of course, the outputs of the cos function do not include all real numbers, only those between -1
and 1.

The image of a function f is the set of images of all domain elements. That is, the image of
f is the set of elements of the co-domain that actually occur as outputs. For example, the image
of Caesar’s encryption function is the entire alphabet, and the image of the cosine function is the
set of numbers between -1 and 1.

Example 0.3.5: Consider the function prod that takes as input a pair of integers greater than
1 and outputs their product. The domain (set of inputs) is the set of pairs of integers greater
than 1. We choose to define the co-domain to be the set of all integers greater than 1. The
image of the function, however, is the set of composite integers since no domain element maps
to a prime number.

0.3.1 Functions versus procedures, versus computational problems

There are two other concepts that are closely related to functions and that enter into our story,
and we must take some care to distinguish them.

• A procedure is a precise description of a computation; it accepts inputs (called arguments)
and produces an output (called the return value).

Example 0.3.6: This example illustrates the Python syntax for defining procedures:

def mul(p,q): return p*q

In the hope of avoiding confusion, we diverge from the common practice of referring to
procedures as “functions”.

• A computational problem is an input-output specification that a procedure might be re-
quired to satisfy.

Example 0.3.7: – input: a pair (p, q) of integers greater than 1

– output: the product pq

Example 0.3.8:

– input: an integer m greater than 1

– output: a pair (p, q) of integers whose product is m
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How do these concepts differ from one another?

• Unlike a procedure, a function or computational problem does not give us any idea how
to compute the output from the input. There are often many different procedures that
satisfy the same input-output specification or that implement the same function. For
integer multiplication, there is ordinary long multiplication (you learned this in elementary
school), the Karatsuba algorithm (used by Python for long-integer multiplication), the
faster Schönhage-Strassen algorithm (which uses the Fast Fourier Transform, discussed in
Chapter 10), and the even faster Fürer algorithm, which was discovered in 2007.

• Sometimes the same procedure can be used for different functions. For example, the Python
procedure mul can be used for multiplying negative integers and numbers that are not
integers.

• Unlike a function, a computational problem need not specify a unique output for every
input; for Example 0.3.8 (Page 4), if the input is 12, the output could be (2, 6) or (3, 4) or
(4, 3) or (6, 2).

0.3.2 The two computational problems related to a function

All the king’s horses and all the king’s men
Couldn’t put Humpty together again.

Although function and computational problem are defined differently, they are clearly related.
For each function f , there is a corresponding computational problem:

The forward problem: Given an element a of f ’s domain, compute f(a), the image of a under f .

Example 0.3.7 (Page 4) is the computational problem that corresponds in this sense to the
function defined in Example 0.3.2 (Page 3).

However, there is another computational problem associated with a function:

The backward problem: Given an element r of the co-domain of the function, compute any
pre-image (or report that none exists).

How very different are these two computational problems? Suppose there is a procedure
P (x) for computing the image under f of any element of the domain. An obvious procedure for
computing the pre-image of r is to iterate through each of the domain elements q, and, one by
one, apply the procedure P (x) on q to see if the output matches r.

This approach seems ridiculously profligate—even if the domain is finite, it might be so large
that the time required for solving the pre-image problem would be much more than that for
P (x)—and yet there is no better approach that works for all functions.

Indeed, consider Example 0.3.7 (Page 4) (integer multiplication) and Example 0.3.8 (Page
4) (integer factoring). The fact that integer multiplication is computationally easy while integer
factoring is computationally difficult is in fact the basis for the security of the RSA cryptosystem,
which is at the heart of secure commerce over the world-wide web.

And yet, as we will see in this book, finding pre-images can be quite useful. What is one to
do?

In this context, the generality of the concept of function is also a weakness. To misquote
Spiderman,
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With great generality comes great computational difficulty.

This principle suggests that we consider the pre-image problem not for arbitrary functions but
for specific families of functions. Yet here too there is a risk. If the family of functions is
too restrictive, the existence of fast procedures for solving the pre-image problem will have
no relevance to real-world problems. We must navigate between the Scylla of computational
intractability and the Charybdis of inapplicability.

In linear algebra, we will discover a sweet spot. The family of linear functions, which are
introduced in Chapter 4, manage to model enough of the world to be immensely useful. At the
same time, the pre-image problem can be solved for such functions.

0.3.3 Notation for the set of functions with given domain and co-
domain

For sets D and F , we use the notation FD to denote all functions from D to F . For example,
the set of functions from the set W of words to the set R of real numbers is denoted RW .

This notation derives from a mathematical “pun”:

Fact 0.3.9: For any finite sets D and F , |DF | = |D||F |.

0.3.4 Identity function

For any domain D, there is a function idD : D −→ D called the identity function for D, defined
by

idD(d) = d

for every d ∈ D.

0.3.5 Composition of functions

The operation functional composition combines two functions to get a new function. We will later
define matrix multiplication in terms of functional composition. Given two functions f : A −→ B
and g : B −→ C, the function g◦f , called the composition of g and f , is a function whose domain
is A and its co-domain is C. It is defined by the rule

(g ◦ f)(x) = g(f(x))

for every x ∈ A.
If the image of f is not contained in the domain of g then g ◦ f is not a legal expression.

Example 0.3.10: Say the domain and co-domains of f and g are R, and f(x) = x + 1 and
g(y) = y2. Then g ◦ f(x) = (x + 1)2.
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Figure 1: This figure represents the composition of the functions f, g, h. Each function is repre-
sented by arrows from circles representing its domain to circles representing its co-domain. The
composition of the three functions is represented by following three arrows.

Example 0.3.11: Define the function

f : {A, B, C, . . . , Z} −→ {0, 1, 2, . . . , 25}

by
A )→ 0, B )→ 1, C )→ 2, · · · , Z )→ 25

Define the function g as follows. The domain and co-domain of g are both the set {0, 1, 2, . . . , 25},
and g(x) = (x + 3) mod 26. For a third function h, the domain is {0, ...25} and the co-domain
is {A, ..., Z}, and 0 )→ A, 1 )→ B, etc. Then h◦ (g ◦f) is a function that implements the Caesar
cypher as described in Example 0.3.3 (Page 3).

For building intuition, we can use a diagram to represent composition of functions with finite
domains and co-domains. Figure 1 depicts the three functions of Example 0.3.11 (Page 7) being
composed.

0.3.6 Associativity of function composition

Next we show that composition of functions is associative:

Proposition 0.3.12 (Associativity of composition): For functions f, g, h,

h ◦ (g ◦ f) = (h ◦ g) ◦ f

if the compositions are legal.

Proof
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Let x be any member of the domain of f .

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) by definition of h ◦ (g ◦ f))

= h(g(f(x)) by definition of g ◦ f

= (h ◦ g)(f(x)) by definition of h ◦ g

= ((h ◦ g) ◦ f)(x) by definition of (h ◦ g) ◦ f

!

Associativity means that parentheses are unnecessary in composition expression: since h ◦
(g ◦ f) is the same as (h ◦ g) ◦ f , we can write either of them as simply h ◦ g ◦ f .

0.3.7 Functional inverse

Let us take the perspective of a lieutenant of Caesar who has received a cyphertext: PDWULA.
To obtain the plaintext, the lieutenant must find for each letter in the cyphertext the letter that
maps to it under the encryption function (the function of Example 0.3.3 (Page 3)). That is, he
must find the letter that maps to P (namely M), the letter that maps to D (namely A), and
so on. In doing so, he can be seen to be applying another function to each of the letters of
the cyphertext, specifically the function that reverses the effect of the encryption function. This
function is said to be the functional inverse of the encryption function.

For another example, consider the functions f and h in Example 0.3.11 (Page 7): f is a
function from {A, . . . , Z} to {0, . . . , 25} and h is a function from {0, . . . , 25} to {A, . . . , Z}. Each
one reverses the effect of the other. That is, h ◦ f is the identity function on {A, . . . , Z}, and
f ◦ h is the identity function on {0, . . . , 25}. We say that h is the functional inverse of f . There
is no reason for privileging f , however; f is the functional inverse of h as well.

In general,

Definition 0.3.13: We say that functions f and g are functional inverses of each other if

• f ◦ g is defined and is the identity function on the domain of g, and

• g ◦ f is defined and is the identity function on the domain of f .

Not every function has an inverse. A function that has an inverse is said to be invertible.
Examples of noninvertible functions are shown in Figures 2 and 3

Definition 0.3.14: Consider a function f : D −→ F . We say that f is one-to-one if for every
x, y ∈ D, f(x) = f(y) implies x = y. We say that f is onto if, for every z ∈ F , there exists
x ∈ D such that f(x) = z.

Example 0.3.15: Consider the function prod defined in Example 0.3.5 (Page 4). Since a prime
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U V

Figure 2: A function f : U → V is depicted that is not onto, because the fourth element of the
co-domain is not the image under f of any element

U V

Figure 3: A function f : U → V is depicted that is not one-to-one, because the third element of
the co-domain is the image under f of more than one element.

number has no pre-image, this function is not onto. Since there are multiple pairs of integers,
e.g. (2, 3) and (3, 2), that map to the same integer, the function is also not one-to-one.

Lemma 0.3.16: An invertible function is one-to-one.

Proof

Suppose f is not one-to-one, and let x1 and x2 be distinct elements of the domain such
that f(x1) = f(x2). Let y = f(x1). Assume for a contradiction that f is invertible. The
definition of inverse implies that f−1(y) = x1 and also f−1(y) = x2, but both cannot be
true. !

Lemma 0.3.17: An invertible function is onto.

Proof

Suppose f is not onto, and let ŷ be an element of the co-domain such that ŷ is not the
image of any domain element. Assume for a contradiction that f is invertible. Then ŷ has
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an image x̂ under f−1. The definition of inverse implies that f(x̂) = ŷ, a contradiction. !

Theorem 0.3.18 (Function Invertibility Theorem): A function is invertible iff it is one-
to-one and onto.

Proof

Lemmas 0.3.16 and 0.3.17 show that an invertible function is one-to-one and onto. Suppose
conversely that f is a function that is one-to-one and onto. We define a function g whose
domain is the co-domain of f as follows:

For each element ŷ of the co-domain of f , since f is onto, f ’s domain contains
some element x̂ for which f(x̂) = ŷ; we define g(ŷ) = x̂.

We claim that g ◦ f is the identity function on f ’s domain. Let x̂ be any element of f ’s
domain, and let ŷ = f(x̂). Because f is one-to-one, x̂ is the only element of f ’s domain
whose image under f is ŷ, so g(ŷ) = x̂. This shows g ◦ f is the identity function.

We also claim that f ◦ g is the identity function on g’s domain. Let ŷ be any element of
g’s domain. By the definition of g, f(g(ŷ)) = ŷ. !

Lemma 0.3.19: Every function has at most one functional inverse.

Proof

Let f : U → V be an invertible function. Suppose that g1 and g2 are inverses of f . We show
that, for every element v ∈ V , g1(v) = g2(v), so g1 and g2 are the same function.

Let v ∈ V be any element of the co-domain of f . Since f is onto (by Lemma 0.3.17),
there is some element u ∈ U such that v = f(u). By definition of inverse, g1(v) = u and
g2(v) = u. Thus g1(v) = g2(v). !

0.3.8 Invertibility of the composition of invertible functions

In Example 0.3.11 (Page 7), we saw that the composition of three functions is a function that
implements the Caesar cypher. The three functions being composed are all invertible, and the
result of composition is also invertible. This is not a coincidence:

Lemma 0.3.20: If f and g are invertible functions and f ◦ g exists then f ◦ g is invertible and
(f ◦ g)−1 = g−1 ◦ f−1.
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Figure 4: The top part of this figure shows two invertible functions f and g, and their composition
f ◦ g. Note that the composition f ◦ g is invertible. This illustrates Lemma 0.3.20. The bottom
part of this figure shows g−1, f−1 and (f ◦g)−1. Note that (f ◦g)−1 = g−1 ◦f−1. This illustrates
Lemma 0.3.20.

Problem 0.3.21: Prove Lemma 0.3.20.

Problem 0.3.22: Use diagrams like those of Figures 1, 2, and 3 to specify functions g and f
that are a counterexample to the following:

False Assertion 0.3.23: Suppose that f and g are functions and f ◦ g is invertible. Then f
and g are invertible.

!
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0.4 Probability

Random Number (http://xkcd.com/221/)

One important use of vectors and matrices arises in probability. For example, this is how they
arise in Google’s PageRank method. We will therefore study very rudimentary probability theory
in this course.

In probability theory, nothing ever happens—probability theory is just about what could
happen, and how likely it is to happen. Probability theory is a calculus of probabilities. It is
used to make predictions about a hypothetical experiment. (Once something actually happens,
you use statistics to figure out what it means.)

0.4.1 Probability distributions

A function Pr(·) from a finite domain Ω to the set R+ of nonnegative reals is a (discrete) probability
distribution if

∑

ω∈Ω Pr(ω) = 1. We refer to the elements of the domain as outcomes. The image
of an outcome under Pr(·) is called the probability of the outcome. The probabilities are supposed
to be proportional to the relative likelihoods of outcomes. Here I use the term likelihood to mean
the common-sense notion, and probability to mean the mathematical abstraction of it.
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Psychic, http://xkcd.com/628/

Uniform distributions

For the simplest examples, all the outcomes are equally likely, so they are all assigned the same
probabilities. In such a case, we say that the probability distribution is uniform.

Example 0.4.1: To model the flipping of a single coin, Ω = {heads, tails}. We assume that the
two outcomes are equally likely, so we assign them the same probability: Pr(heads) = Pr(tails).
Since we require the sum to be 1, Pr(heads) = 1/2 and Pr(tails) = 1/2. In Python, we would
write the probability distribution as

>>> Pr = {'heads':1/2, 'tails':1/2}

Example 0.4.2: To model the roll of a single die, Ω = {1, 2, 3, 4, 5, 6}, and Pr(1) = Pr(2) =
· · · = Pr(6). Since the probabilities of the six outcomes must sum to 1, each of these probabilities
must be 1/6. In Python,

>>> Pr = {1:1/6, 2:1/6, 3:1/6, 4:1/6, 5:1/6, 6:1/6}

Example 0.4.3: To model the flipping of two coins, a penny and a nickel,
Ω = {HH, HT, TH, TT}, and each of the outcomes has the same probability, 1/4. In Python,

>>> Pr = {('H', 'H'):1/4, ('H', 'T'):1/4, ('T','H'):1/4, ('T','T'):1/4}

Nonuniform distributions

In more complicated situations, different outcomes have different probabilities.

Example 0.4.4: Let Ω = {A, B, C, . . . , Z}, and let’s assign probabilities according to how
likely you are to draw each letter at the beginning of a Scrabble game. Here is the number of
tiles with each letter in Scrabble:

A 9 B 2 C 2 D 4
E 12 F 2 G 3 H 2
I 9 J 1 K 1 L 1
M 2 N 6 O 8 P 2
Q 1 R 6 S 4 T 6
U 4 V 2 W 2 X 1
Y 2 Z 1

The likelihood of drawing an R is twice that of drawing a G, thrice that of drawing a C, and
six times that of drawing a Z. We need to assign probabilities that are proportional to these
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likelihoods. We must have some number c such that, for each letter, the probability of drawing
that letter should be c times the number of copies of that letter.

Pr[drawing letter X] = c · number of copies of letter X

Summing over all letters, we get

1 = c · total number of tiles

Since the total number of tiles is 95, we define c = 1/95. The probability of drawing an E is
therefore 12/95, which is about .126. The probability of drawing an A is 9/95, and so on. In
Python, the probability distribution is

{'A':9/95, 'B':2/95, 'C':2/95, 'D':4/95, 'E':12/95, 'F':2/95,
'G':3/95, 'H':2/95, 'I':9/95, 'J':1/95, 'K':1/95, 'L':1/95,
'M':2/95, 'N':6/95, 'O':8/95, 'P':2/95, 'Q':1/95, 'R':6/95,
'S':4/95, 'T':6/95, 'U':4/95, 'V':2/95, 'W':2/95, 'X':1/95,
'Y':2/95, 'Z':1/95}

0.4.2 Events, and adding probabilities

In Example 0.4.4 (Page 13), what is the probability of drawing a vowel from the bag?
A set of outcomes is called an event. For example, the event of drawing a vowel is represented

by the set {A, E, I, O, U}.

Principle 0.4.5 (Fundamental Principle of Probability Theory): The probability of
an event is the sum of probabilities of the outcomes making up the event.

According to this principle, the probability of a vowel is

9/95 + 12/95 + 9/95 + 8/95 + 4/95

which is 42/95.

0.4.3 Applying a function to a random input

Now we think about applying a function to a random input. Since the input to the function is
random, the output should also be considered random. Given the probability distribution of the
input and a specification of the function, we can use probability theory to derive the probability
distribution of the output.

Example 0.4.6: Define the function f : {1, 2, 3, 4, 5, 6} −→ {0, 1} by

f(x) =

{

0 if x is even
1 if x is odd
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Consider the experiment in which we roll a single die (as in Example 0.4.2 (Page 13)), yielding
one of the numbers in {1, 2, 3, 4, 5, 6}, and then we apply f(·) to that number, yielding either
a 0 or a 1. What is the probability function for the outcome of this experiment?

The outcome of the experiment is 0 if the rolled die shows 2, 4, or 6. As discussed in
Example 0.4.2 (Page 13), each of these possibilies has probability 1/6. By the Fundamental
Principle of Probability Theory, therefore, the output of the function is 0 with probability 1/6 +
1/6 + 1/6, which is 1/2. Similarly, the output of the function is 1 with probability 1/2. Thus
the probability distribution of the output of the function is {0: 1/2., 1:1/2.}.

Quiz 0.4.7: Consider the flipping of a penny and a nickel, described in Example 0.4.3 (Page
13). The outcome is a pair (x, y) where each of x and y is 'H' or 'T' (heads or tails). Define
the function

f : {(’H’, ’H’) (’H’, ’T’), (’T’,’H’), (’T’,’T’)}

by
f((x, y)) = the number of H’s represented

Give the probability distribution for the output of the function.

Answer

{0: 1/4., 1:1/2., 2:1/4.}

Example 0.4.8 (Caesar plays Scrabble): Recall that the function f defined in Exam-
ple 0.3.11 (Page 7) maps A to 0, B to 1, and so on. Consider the experiment in which f
is applied to a letter selected randomly according to the probability distribution described in
Example 0.4.4 (Page 13). What is the probability distribution of the output?

Because f is an invertible function, there is one and only one input for which the output is 0,
namely A. Thus the probability of the output being 0 is exactly the same as the probability of
the input being A, namely 9/95.. Similarly, for each of the integers 0 through 25 comprising the
co-domain of f , there is exactly one letter that maps to that integer, so the probability of that
integer equals the probability of that letter. The probability distribution is thus

{0:9/95., 1:2/95., 2:2/95., 3:4/95., 4:12/95., 5:2/95.,
6:3/95., 7:2/95., 8:9/95., 9:1/95., 10:1/95., 11:1/95.,
12:2/95., 13:6/95., 14:8/95., 15:2/95., 16:1/95., 17:6/95.,
18:4/95., 19:6/95., 20:4/95., 21:2/95., 22:2/95., 23:1/95.,
24:2/95., 25:1/95.}

The previous example illustrates that, if the function is invertible, the probabilities are pre-
served: the probabilities of the various outputs match the probabilities of the inputs. It follows
that, if the input is chosen according to a uniform distribution, the distribution of the output is
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also uniform.

Example 0.4.9: In Caesar’s Cyphersystem, one encrypts a letter by advancing it three posi-
tions. Of course, the number k of positions by which to advance need not be three; it can
be any integer from 0 to 25. We refer to k as the key. Suppose we select the key k ac-
cording to the uniform distribution on {0, 1, . . . , 25}, and use it to encrypt the letter P. Let
w : {0, 1, . . . , 25} −→ {A, B, . . . , Z} be the the function mapping the key to the cyphertext:

w(k) = h(f(P ) + k mod 26)

= h(15 + k mod 26)

The function w(·) is invertible. The input is chosen according to the uniform distribution, so the
distribution of the output is also uniform. Thus when the key is chosen randomly, the cyphertext
is equally likely to be any of the twenty-six letters.

0.4.4 Perfect secrecy

Cryptography (http://xkcd.com/153/)

We apply the idea of Example 0.4.9 (Page 16) to some even simpler cryptosystems. A cryp-
tosystem must satisfy two obvious requirements:

• the intended recipient of an encrypted message must be able to decrypt it, and

• someone for whom the message was not intended should not be able to decrypt it.

The first requirement is straightforward. As for the second, we must dispense with a miscon-
ception about security of cryptosystems. The idea that one can keep information secure by
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not revealing the method by which it was secured is often called, disparagingly, security through
obscurity. This approach was critiqued in 1881 by a professor of German, Jean-Guillame-Hubert-
Victor-François-Alexandre-August Kerckhoffs von Niewenhof, known as August Kerckhoffs. The
Kerckhoffs Doctrine is that the security of a cryptosystem should depend only on the secrecy of
the key used, not on the secrecy of the system itself.

There is an encryption method that meets Kerchoffs’ stringent requirement. It is utterly
unbreakable if used correctly.1 Suppose Alice and Bob work for the British military. Bob is the
commander of some troops stationed in Boston harbor. Alice is the admiral, stationed several
miles away. At a certain moment, Alice must convey a one-bit message p (the plaintext) to Bob:
whether to attack by land or by sea (0=land, 1=sea). Their plan, agreed upon in advance, is
that Alice will encrypt the message, obtaining a one-bit cyphertext c, and send the cyphertext c
to Bob by hanging one or two lanterns (say, one lantern = 0, two lanterns = 1). They are aware
that the fate of a colony might depend on the secrecy of their communication. (As it happens,
a rebel, Eve, knows of the plan and will be observing.)

Let’s go back in time. Alice and Bob are consulting with their cryptography expert, who
suggests the following scheme:

Bad Scheme: Alice and Bob randomly choose k from {♣,♥,♠} according to the uniform
probability function (pr(♣) = 1/3, pr(♥) = 1/3, pr(♠) = 1/3). Alice and Bob must both
know k but must keep it secret. It is the key.
When it is time for Alice to use the key to encrypt her plaintext message p, obtaining the
cyphertext c, she refers to the following table:

p k c
0 ♣ 0
0 ♥ 1
0 ♠ 1
1 ♣ 1
1 ♥ 0
1 ♠ 0

The good news is that this cryptosystem satisfies the first requirement of cryptosystems: it will
enable Bob, who knows the key k and receives the cyphertext c, to determine the plaintext p.
No two rows of the table have the same k-value and c-value.

The bad news is that this scheme leaks information to Eve. Suppose the message turns out
to be 0. In this case, c = 0 if k = ♣ (which happens with probability 1/3), and c = 1 if k = ♥
or k = ♠ (which, by the Fundamental Principle of Probability Theory, happens with probability
2/3). Thus in this case c = 1 is twice as likely as c = 0. Now suppose the message turns out to
be 1. In this case, a similar analysis shows that c = 0 is twice as likely as c = 1.

Therefore, when Eve sees the cyphertext c, she learns something about the plaintext p. Learn-
ing c doesn’t allow Eve to determine the value of p with certainty, but she can revise her estimate
of the chance that p = 0. For example, suppose that, before seeing c, Eve believed p = 0 and
p = 1 were equally likely. If she sees c = 1 then she can infer that p = 0 is twice as likely as
p = 1. The exact calculation depends on Bayes’ Rule, which is beyond the scope of this analysis

1For an historically significant occurence of the former Soviet Union failing to use it correctly, look up VENONA.
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but is quite simple.
Confronted with this argument, the cryptographer changes the scheme simply by removing

♠ as a possible value for p.

Good Scheme: Alice and Bob randomly choose k from {♣,♥} according to the uniform
probability function (pr(♣) = 1/2, pr(♥) = 1/2)
When it is time for Alice to encrypt her plaintext message p, obtaining the cyphertext c,
she uses the following table:

p k c
0 ♣ 0
0 ♥ 1
1 ♣ 1
1 ♥ 0

0.4.5 Perfect secrecy and invertible functions

Consider the functions
f0 : {♣,♥} −→ {0, 1}

and
f1 : {♣,♥} −→ {0, 1}

defined by
f0(x) = encryption of 0 when the key is x

f1(x) = encryption of 1 when the key is x

Each of these functions is invertible. Consequently, for each function, if the input x is chosen
uniformly at random, the output will also be distributed according to the uniform distribution.
This in turn means that the probability distribution of the output does not depend on whether 0
or 1 is being encrypted, so knowing the output gives Eve no information about which is being
encrypted. We say the scheme achieves perfect secrecy.
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0.5 Lab: Introduction to Python—sets, lists, dictionaries, and

comprehensions

Python http://xkcd.com/353/

We will be writing all our code in Python (Version 3.x). In writing Python code, we empha-
size the use of comprehensions, which allow one to express computations over the elements
of a set, list, or dictionary without a traditional for-loop. Use of comprehensions leads to
more compact and more readable code, code that more clearly expresses the mathematical
idea behind the computation being expressed. Comprehensions might be new to even some
readers who are familiar with Python, and we encourage those readers to at least skim the
material on this topic.
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To start Python, simply open a console (also called a shell or a terminal or, under
Windows, a “Command Prompt” or “MS-DOS Prompt”), and type python3 (or perhaps
just python) to the console (or shell or terminal or Command Prompt) and hit the Enter
key. After a few lines telling you what version you are using (e.g., Python 3.4.1), you should
see >>> followed by a space. This is the prompt; it indicates that Python is waiting for you
to type something. When you type an expression and hit the Enter key, Python evaluates
the expression and prints the result, and then prints another prompt. To get out of this
environment, type quit() and Enter, or Control-D. To interrupt Python when it is running
too long, type Control-C.

This environment is sometimes called a REPL, an acronym for “read-eval-print loop.” It
reads what you type, evaluates it, and prints the result if any. In this assignment, you will
interact with Python primarily through the REPL. In each task, you are asked to come up
with an expression of a certain form.

There are two other ways to run Python code. You can import a module from within the
REPL, and you can run a Python script from the command line (outside the REPL). We
will discuss modules and importing in the next lab assignment. This will be an important
part of your interaction with Python.

0.5.1 Simple expressions

Arithmetic and numbers

You can use Python as a calculator for carrying out arithmetic computations. The binary
operators +, *, -, / work as you would expect. To take the negative of a number, use -
as a unary operator (as in -9). Exponentiation is represented by the binary operator **,
and truncating integer division is //. Finding the remainder when one integer is divided by
another (modulo) is done using the % operator. As usual, ** has precedence over * and /
and //, which have precedence over + and -, and parentheses can be used for grouping.

To get Python to carry out a calculation, type the expression and press the Enter/Return
key:

>>> 44+11*4-6/11.
87.454545454545454
>>>

Python prints the answer and then prints the prompt again.

Task 0.5.1: Use Python to find the number of minutes in a week.

Task 0.5.2: Use Python to find the remainder of 2304811 divided by 47 without using the
modulo operator %. (Hint: Use //.)

Python uses a traditional programming notation for scientific notation. The notation
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6.022e23 denotes the value 6.02×1023, and 6.626e-34 denotes the value 6.626×10−34. As
we will discover, since Python uses limited-precision arithmetic, there are round-off errors:

>>> 1e16 + 1
1e16

Strings

A string is a series of characters that starts and ends with a single-quote mark. Enter a
string, and Python will repeat it back to you:

>>> 'This sentence is false.'
'This sentence is false.'

You can also use double-quote marks; this is useful if your string itself contains a single-quote
mark:

>>> "So's this one."
"So's this one."

Python is doing what it usually does: it evaluates (finds the value of) the expression it is
given and prints the value. The value of a string is just the string itself.

Comparisons and conditions and Booleans

You can compare values (strings and numbers, for example) using the operators ==, < , >,
<=, >=, and !=. (The operator != is inequality.)

>>> 5 == 4
False
>>> 4 == 4
True

The value of such a comparison is a Boolean value (True or False). An expression whose
value is a boolean is called a Boolean expression.

Boolean operators such as and and or and not can be used to form more complicated
Boolean expressions.

>> True and False
False
>>> True and not (5 == 4)
True

Task 0.5.3: Enter a Boolean expression to test whether the sum of 673 and 909 is divisible
by 3.
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0.5.2 Assignment statements

The following is a statement, not an expression. Python executes it but produces neither an
error message nor a value.

>>> mynum = 4+1

The result is that henceforth the variable mynum is bound to the value 5. Consequently, when
Python evaluates the expression consisting solely of mynum, the resulting value is 5. We say
therefore that the value of mynum is 5.

A bit of terminology: the variable being assigned to is called the left-hand side of an
assignment, and the expression whose value is assigned is called the right-hand side.

A variable name must start with a letter and must exclude certain special symbols such
as the dot (period). The underscore is allowed in a variable name. A variable can be bound
to a value of any type. You can rebind mynum to a string:

>>> mynum = 'Brown'

This binding lasts until you assign some other value to mynum or until you end your Python
session. It is called a top-level binding. We will encounter cases of binding variables to values
where the bindings are temporary.

It is important to remember (and second nature to most experienced programmers) that
an assignment statement binds a variable to the value of an expression, not to the expression
itself. Python first evaluates the right-hand side and only then assigns the resulting value
to the left-hand side. This is the behavior of most programming languages.

Consider the following assignments.

>>> x = 5+4
>>> y = 2 * x
>>> y
18
>>> x = 12
>>> y
18

In the second assignment, y is assigned the value of the expression 2 * x. The value of that
expression is 9, so y is bound to 18. In the third assignment, x is bound to 12. This does
not change the fact that y is bound to 18.

0.5.3 Conditional expressions

There is a syntax for conditional expressions:

⟨expression⟩ if ⟨condition⟩ else ⟨expression⟩
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The condition should be a Boolean expression. Python evaluates the condition; depending
on whether it is True or False, Python then evaluates either the first or second expression,
and uses the result as the result of the entire conditional expression.

For example, the value of the expression x if x>0 else -x is the absolute value of x.

Task 0.5.4: Assign the value -9 to x and 1/2 to y. Predict the value of the following
expression, then enter it to check your prediction:

2**(y+1/2) if x+10<0 else 2**(y-1/2)

0.5.4 Sets

Python provides some simple data structures for grouping together multiple values, and
integrates them with the rest of the language. These data structures are called collections.
We start with sets.

A set is an unordered collection in which each value occurs at most once. You can use
curly braces to give an expression whose value is a set. Python prints sets using curly braces.

>>> {1+2, 3, "a"}
{'a', 3}
>>> {2, 1, 3}
{1, 2, 3}

Note that duplicates are eliminated and that the order in which the elements of the output
are printed does not necessarily match the order of the input elements.

The cardinality of a set S is the number of elements in the set. In Mathese we write
|S| for the cardinality of set S. In Python, the cardinality of a set is obtained using the
procedure len(·).

>>> len({'a', 'b', 'c', 'a', 'a'})
3

Summing

The sum of elements of collection of values is obtained using the procedure sum(·).

>>> sum({1,2,3})
6

If for some reason (we’ll see one later) you want to start the sum not at zero but at some
other value, supply that value as a second argument to sum(·):

>>> sum({1,2,3}, 10)
16
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Testing set membership

Membership in a set can be tested using the in operator and the not in operator. If S is a
set, x in S is a Boolean expression that evaluates to True if the value of x is a member of
the set S, and False otherwise. The value of a not in expression is just the opposite
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>>> S={1,2,3}
>>> 2 in S
True
>>> 4 in S
False
>>> 4 not in S
True

Set union and intersection

The union of two sets S and T is a new set that contains every value that is a member of S
or a member of T (or both). Python uses the vertical bar | as the union operator:

>>> {1,2,3} | {2,3,4}
{1, 2, 3, 4}

The intersection of S and T is a new set that contains every value that is a member of both
S and T . Python uses the ampersand & as the intersection operator:

>>> {1,2,3} & {2,3,4}
{2, 3}

Mutating a set

A value that can be altered is a mutable value. Sets are mutable; elements can be added
and removed using the add and remove methods:

>>> S={1,2,3}
>>> S.add(4)
>>> S.remove(2)
>>> S
{1, 3, 4}

The syntax using the dot should be familiar to students of object-oriented programming
languages such as Java and C++. The operations add(·) and remove(·) are methods.
You can think of a method as a procedure that takes an extra argument, the value of the
expression to the left of the dot.

Python provides a method update(...) to add to a set all the elements of another
collection (e.g. a set or a list):

>>> S.update({4, 5, 6})
>>> S
{1, 3, 4, 5, 6}

Similarly, one can intersect a set with another collection, removing from the set all elements
not in the other collection:
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>>> S.intersection_update({5,6,7,8,9})
>>> S
{5, 6}

Suppose two variables are bound to the same value. A mutation to the value made
through one variable is seen by the other variable.

>>> T=S
>>> T.remove(5)
>>> S
{6}

This behavior reflects the fact that Python stores only one copy of the underlying data
structure. After Python executes the assignment statement T=S, both T and S point to the
same data structure. This aspect of Python will be important to us: many different variables
can point to the same huge set without causing a blow-up of storage requirements.

Python provides a method for copying a collection such as a set:

>>> U=S.copy()
>>> U.add(5)
>>> S
{6}

The assignment statement binds U not to the value of S but to a copy of that value, so
mutations to the value of U don’t affect the value of S.

Set comprehensions

Python provides for expressions called comprehensions that let you build collections out
of other collections. We will be using comprehensions a lot because they are useful in con-
structing an expression whose value is a collection, and they mimic traditional mathematical
notation. Here’s an example:

>>> {2*x for x in {1,2,3} }
{2, 4, 6}

This is said to be a set comprehension over the set {1,2,3}. It is called a set comprehension
because its value is a set. The notation is similar to the traditional mathematical notation
for expressing sets in terms of other sets, in this case {2x : x ∈ {1, 2, 3}}. To compute the
value, Python iterates over the elements of the set {1,2,3}, temporarily binding the control
variable x to each element in turn and evaluating the expression 2*x in the context of that
binding. Each of the values obtained is an element of the final set. (The bindings of x during
the evaluation of the comprehension do not persist after the evaluation completes.)
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Task 0.5.5: Write a comprehension over {1, 2, 3, 4, 5} whose value is the set consisting of
the squares of the first five positive integers.

Task 0.5.6: Write a comprehension over {0, 1, 2, 3, 4} whose value is the set consisting of
the first five powers of two, starting with 20.

Using the union operator | or the intersection operator &, you can write set expressions
for the union or intersection of two sets, and use such expressions in a comprehension:

>>> {x*x for x in S | {5, 7}}
{1, 25, 49, 9}

By adding the phrase if ⟨condition⟩ at the end of the comprehension (before the closing
brace “}”), you can skip some of the values in the set being iterated over:

>>> {x*x for x in S | {5, 7} if x > 2}
{9, 49, 25}

I call the conditional clause a filter.
You can write a comprehension that iterates over the Cartesian product of two sets:

>>>{x*y for x in {1,2,3} for y in {2,3,4}}
{2, 3, 4, 6, 8, 9, 12}

This comprehension constructs the set of the products of every combination of x and y. I
call this a double comprehension.

Task 0.5.7: The value of the previous comprehension,
{x*y for x in {1,2,3} for y in {2,3,4}}

is a seven-element set. Replace {1,2,3} and {2,3,4} with two other three-element sets
so that the value becomes a nine-element set.

Here is an example of a double comprehension with a filter:

>>> {x*y for x in {1,2,3} for y in {2,3,4} if x != y}
{2, 3, 4, 6, 8, 12}

Task 0.5.8: Replace {1,2,3} and {2,3,4} in the previous comprehension with two dis-
joint (i.e. non-overlapping) three-element sets so that the value becomes a five-element
set.
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Task 0.5.9: Assume that S and T are assigned sets. Without using the intersection oper-
ator &, write a comprehension over S whose value is the intersection of S and T. Hint: Use
a membership test in a filter at the end of the comprehension.

Try out your comprehension with S = {1,2,3,4} and T = {3,4,5,6}.

Remarks

The empty set is represented by set(). You would think that {} would work but, as we will
see, that notation is used for something else.

You cannot make a set that has a set as element. This has nothing to do with Cantor’s
Paradox—Python imposes the restriction that the elements of a set must not be mutable,
and sets are mutable. The reason for this restriction will be clear to a student of data
structures from the error message in the following example:

>>> {{1,2},3}
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'set'

There is a nonmutable version of set called frozenset. Frozensets can be elements of sets.
However, we won’t be using them.

0.5.5 Lists

Python represents sequences of values using lists. In a list, order is significant and repeated
elements are allowed. The notation for lists uses square brackets instead of curly braces.
The empy list is represented by [].

>>> [1,1+1,3,2,3]
[1, 2, 3, 2, 3]

There are no restrictions on the elements of lists. A list can contain a set or another list.

>>> [[1,1+1,4-1],{2*2,5,6}, "yo"]
[[1, 2, 3], {4, 5, 6}, 'yo']

However, a set cannot contain a list since lists are mutable.
The length of a list, obtained using the procedure len(·), is the number of elements in

the list, even though some of those elements may themselves be lists, and even though some
elements might have the same value:

>>> len([[1,1+1,4-1],{2*2,5,6}, "yo", "yo"])
4

As we saw in the section on sets, the sum of elements of a collection can be computed using
sum(·)
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>>> sum([1,1,0,1,0,1,0])
4
>>> sum([1,1,0,1,0,1,0], -9)
-5

In the second example, the second argument to sum(·) is the value to start with.

Task 0.5.10: Write an expression whose value is the average of the elements of the list
[20, 10, 15, 75].

List concatenation

You can combine the elements in one list with the elements in another list to form a new
list (without changing the original lists) using the + operator.

>>> [1,2,3]+["my", "word"]
[1, 2, 3, 'my', 'word']
>>> mylist = [4,8,12]
>>> mylist + ["my", "word"]
[4, 8, 12, 'my', 'word']
>>> mylist
[4, 8, 12]

You can use sum(·) on a collection of lists, obtaining the concatenation of all the lists, by
providing [] as the second argument.

>>> sum([ [1,2,3], [4,5,6], [7,8,9] ])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'list'
>>> sum([ [1,2,3], [4,5,6], [7,8,9] ], [])
[1, 2, 3, 4, 5, 6, 7, 8, 9]

List comprehensions

Next we discuss how to write a list comprehension (a comprehension whose value is a list).
In the following example, a list is constructed by iterating over the elements in a set.

>>> [2*x for x in {2,1,3,4,5} ]
[2, 4, 6, 8, 10]

Note that the order of elements in the resulting list might not correspond to the order of
elements in the set since the latter order is not significant.

You can also use a comprehension that constructs a list by iterating over the elements
in a list:
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>>> [ 2*x for x in [2,1,3,4,5] ]
[4, 2, 6, 8, 10]

Note that the list [2,1,3,4,5] specifies the order among its elements. In evaluating the
comprehension Python iterates through them in that order. Therefore the order of elements
in the resulting list corresponds to the order in the list iterated over.

You can also write list comprehensions that iterate over multiple collections using two
control variables. As I mentioned in the context of sets, I call these “double comprehensions”.
Here is an example of a list comprehension over two lists.

>>> [ x*y for x in [1,2,3] for y in [10,20,30] ]
[10, 20, 30, 20, 40, 60, 30, 60, 90]

The resulting list has an element for every combination of an element of [1,2,3] with an
element of [10,20,30].

We can use a comprehension over two sets to form the Cartesian product.

Task 0.5.11: Write a double list comprehension over the lists ['A','B','C'] and [1,2,3]
whose value is the list of all possible two-element lists [letter, number]. That is, the value is

[['A', 1], ['A', 2], ['A', 3], ['B', 1], ['B', 2],['B', 3],
['C', 1], ['C', 2], ['C', 3]]

Task 0.5.12: Suppose LofL has been assigned a list whose elements are themselves lists
of numbers. Write an expression that evaluates to the sum of all the numbers in all the
lists. The expression has the form

sum([sum(...
and includes one comprehension. Test your expression after assigning [[.25, .75, .1],
[-1, 0], [4, 4, 4, 4]] to LofL. Note that your expression should work for a list of any
length.
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Obtaining elements of a list by indexing

Donald Knuth http://xkcd.com/163/

There are two ways to obtain an individual element of a list. The first is by indexing. As in
some other languages (Java and C++, for example) indexing is done using square brackets
around the index. Here is an example. Note that the first element of the list has index 0.

>>> mylist[0]
4
>>> ['in','the','CIT'][1]
'the'

Slices: A slice of a list is a new list consisting of a consecutive subsequence of elements
of the old list, namely those indexed by a range of integers. The range is specified by a
colon-separated pair i : j consisting of the index i as the first element and j as one past the
index of the last element. Thus mylist[1:3] is the list consisting of elements 1 and 2 of
mylist.

Prefixes: If the first element i of the pair is 0, it can be omitted, so mylist[:2] consists
of the first 2 elements of mylist. This notation is useful for obtaining a prefix of a list.

Suffixes: If the second element j of the pair is the length of the list, it can be omitted, so
mylist[1:] consists of all elements of mylist except element 0.

>>> L = [0,10,20,30,40,50,60,70,80,90]
>>> L[:5]
[0, 10, 20, 30, 40]
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>>> L[5:]
[50, 60, 70, 80, 90]

Slices that skip You can use a colon-separated triple a:b:c if you want the slice to include
every cth element. For example, here is how you can extract from L the list consisting of
even-indexed elements and the list consisting of odd-indexed elements:

>>> L[::2]
[0, 20, 40, 60, 80]
>>> L[1::2]
[10, 30, 50, 70, 90]

Obtaining elements of a list by unpacking

The second way to obtain individual elements is by unpacking. Instead of assigning a list to
a single variable as in mylist =[4,8,12], one can assign to a list of variables:

>>> [x,y,z] = [4*1, 4*2, 4*3]
>>> x
4
>>> y
8

I called the left-hand side of the assignment a “list of variables,” but beware: this is a
notational fiction. Python does not allow you to create a value that is a list of variables.
The assignment is simply a convenient way to assign to each of the variables appearing in
the left-hand side.

Task 0.5.13: Find out what happens if the length of the left-hand side list does not match
the length of the right-hand side list.

Unpacking can similarly be used in comprehensions:

>>> listoflists = [[1,1],[2,4],[3, 9]]
>>> [y for [x,y] in listoflists]
[1, 4, 9]

Here the two-element list [x,y] iterates over all elements of listoflists. This would result
in an error message if some element of listoflists were not a two-element list.

Mutating a list: indexing on the left-hand side of =

You can mutate a list, replacing its ith element, using indexing on the left-hand side of the
=, analogous to an assignment statement:
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>>> mylist = [30, 20, 10]
>>> mylist[1] = 0
>>> mylist
[30, 0, 10]

Slices can also be used on the left-hand side but we will not use this.

0.5.6 Tuples

Like a list, a tuple is an ordered sequence of elements. However, tuples are immutable so
they can be elements of sets. The notation for tuples is the same as that for lists except
that ordinary parentheses are used instead of square brackets.

>>> (1,1+1,3)
(1, 2, 3)
>>> {0, (1,2)} | {(3,4,5)}
{(1, 2), 0, (3, 4, 5)}

Obtaining elements of a tuple by indexing and unpacking

You can use indexing to obtain an element of a tuple.

>>> mytuple = ("all", "my", "books")
>>> mytuple[1]
'my'
>>> (1, {"A", "B"}, 3.14)[2]
3.14

You can also use unpacking with tuples. Here is an example of top-level variable assignment:

>>> (a,b) = (1,5-3)
>>> a
1

In some contexts, you can get away without the parentheses, e.g.

>>> a,b = (1,5-3)

or even

>>> a,b = 1,5-3

You can use unpacking in a comprehension:

>>> [y for (x,y) in [(1,'A'),(2,'B'),(3,'C')] ]
['A', 'B', 'C']
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Task 0.5.14: Suppose S is a set of integers, e.g. {−4,−2, 1, 2, 5, 0}. Write a triple
comprehension whose value is a list of all three-element tuples (i, j, k) such that i, j, k are
elements of S whose sum is zero.

Task 0.5.15: Modify the comprehension of the previous task so that the resulting list does
not include (0, 0, 0). Hint: add a filter.

Task 0.5.16: Further modify the expression so that its value is not the list of all such
tuples but is the first such tuple.

The previous task provided a way to compute three elements i, j, k of S whose sum is
zero—if there exist three such elements. Suppose you wanted to determine if there were a
hundred elements of S whose sum is zero. What would go wrong if you used the approach
used in the previous task? Can you think of a clever way to quickly and reliably solve the
problem, even if the integers making up S are very large? (If so, see me immediately to
collect your Ph.D.)

Obtaining a list or set from another collection

Python can compute a set from another collection (e.g. a list) using the constructor set(·).
Similarly, the constructor list(·) computes a list, and the constructor tuple(·) computes
a tuple

>>> set([0,1,2,3,4,5,6,7,8,9])
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
>>> set([1,2,3])
{1, 2, 3}
>>> list({1,2,3})
[1, 2, 3]
>>> set((1,2,3))
{1, 2, 3}

Task 0.5.17: Find an example of a list L such that len(L) and len(list(set(L))) are
different.

0.5.7 Other things to iterate over

Tuple comprehensions—not! Generators

One would expect to be able to create a tuple using the usual comprehension syntax, e.g.
(i for i in [1,2,3]) but the value of this expression is not a tuple. It is a generator.
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Generators are a very powerful feature of Python but we don’t study them here. Note,
however, that one can write a comprehension over a generator instead of over a list or set
or tuple. Alternatively, one can use set(·) or list(·) or tuple(·) to transform a generator
into a set or list or tuple.

Ranges

A range plays the role of a list consisting of the elements of an arithmetic progression. For
any integer n, range(n) represents the sequence of integers from 0 through n−1. For exam-
ple, range(10) represents the integers from 0 through 9. Therefore, the value of the following
comprehension is the sum of the squares of these integers: sum({i*i for i in range(10)}).

Even though a range represents a sequence, it is not a list. Generally we will either
iterate through the elements of the range or use set(·) or list(·) to turn the range into a
set or list.

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Task 0.5.18: Write a comprehension over a range of the form range(n) such that the
value of the comprehension is the set of odd numbers from 1 to 99.

You can form a range with one, two, or three arguments. The expression range(a,b)
represents the sequence of integers a, a + 1, a + 2, . . . , b − 1. The expression range(a,b,c)
represents a, a + c, a + 2c, . . . (stopping just before b).

Zip

Another collection that can be iterated over is a zip. A zip is constructed from other
collections all of the same length. Each element of the zip is a tuple consisting of one
element from each of the input collections.

>>> list(zip([1,3,5],[2,4,6]))
[(1, 2), (3, 4), (5, 6)]
>>> characters = ['Neo', 'Morpheus', 'Trinity']
>>> actors = ['Keanu', 'Laurence', 'Carrie-Anne']
>>> set(zip(characters, actors))
{('Trinity', 'Carrie-Anne'), ('Neo', 'Keanu'), ('Morpheus', 'Laurence')}
>>> [character+' is played by '+actor
... for (character,actor) in zip(characters,actors)]
['Neo is played by Keanu', 'Morpheus is played by Laurence',
'Trinity is played by Carrie-Anne']



CHAPTER 0. THE FUNCTION 36

Task 0.5.19: Assign to L the list consisting of the first five letters ['A','B','C','D','E'].
Next, use L in an expression whose value is

[(0, ’A’), (1, ’B’), (2, ’C’), (3, ’D’), (4, ’E’)]
Your expression should use a range and a zip, but should not use a comprehension.

Task 0.5.20: Starting from the lists [10, 25, 40] and [1, 15, 20], write a compre-
hension whose value is the three-element list in which the first element is the sum of 10
and 1, the second is the sum of 25 and 15, and the third is the sum of 40 and 20. Your
expression should use zip but not list.

reversed

To iterate through the elements of a list L in reverse order, use reversed(L), which does
not change the list L:

>>> [x*x for x in reversed([4, 5, 10])]
[100, 25, 16]

0.5.8 Dictionaries

We will often have occasion to use functions with finite domains. Python provides collec-
tions, called dictionaries, that are suitable for representing such functions. Conceptually,
a dictionary is a set of key-value pairs. The syntax for specifying a dictionary in terms of
its key-value pairs therefore resembles the syntax for sets—it uses curly braces—except that
instead of listing the elements of the set, one lists the key-value pairs. In this syntax, each
key-value pair is written using colon notation: an expression for the key, followed by the
colon, followed by an expression for the value:

key : value

The function f that maps each letter in the alphabet to its rank in the alphabet could be
written as

{'A':0, 'B':1, 'C':2, 'D':3, 'E':4, 'F':5, 'G':6, 'H':7, 'I':8,
'J':9, 'K':10, 'L':11, 'M':12, 'N':13, 'O':14, 'P':15, 'Q':16,
'R':17, 'S':18, 'T':19, 'U':20, 'V':21, 'W':22, 'X':23, 'Y':24,
'Z':25}

As in sets, the order of the key-value pairs is irrelevant, and the keys must be immutable
(no sets or lists or dictionaries). For us, the keys will mostly be integers, strings, or tuples
of integers and strings.

The keys and values can be specified with expressions.
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>>> {2+1:'thr'+'ee', 2*2:'fo'+'ur'}
{3: 'three', 4: 'four'}

To each key in a dictionary there corresponds only one value. If a dictionary is given multiple
values for the same key, only one value will be associated with that key.

>>> {0:'zero', 0:'nothing'}
{0: 'nothing'}

Indexing into a dictionary

Obtaining the value corresponding to a particular key uses the same syntax as indexing a
list or tuple: right after the dictionary expression, use square brackets around the key:

>>> {4:"four", 3:'three'}[4]
'four'
>>> mydict = {'Neo':'Keanu', 'Morpheus':'Laurence',
'Trinity':'Carrie-Anne'}
>>> mydict['Neo']
'Keanu'

If the key is not represented in the dictionary, Python considers it an error:

>>> mydict['Oracle']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 'Oracle'

Testing dictionary membership

You can check whether a key is in a dictionary using the in operator we earlier used for
testing membership in a set:

>>> 'Oracle' in mydict
False
>>> mydict['Oracle'] if 'Oracle' in mydict else 'NOT PRESENT'
'NOT PRESENT'
>>> mydict['Neo'] if 'Neo' in mydict else 'NOT PRESENT'
'Keanu'

Lists of dictionaries
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Task 0.5.21: Suppose dlist is a list of dictionaries and k is a key that appears in all the
dictionaries in dlist. Write a comprehension that evaluates to the list whose ith element
is the value corresponding to key k in the ith dictionary in dlist.

Test your comprehension with some data. Here are some example data.

dlist = [{'James':'Sean', 'director':'Terence'}, {'James':'Roger',
'director':'Lewis'}, {'James':'Pierce', 'director':'Roger'}]
k = 'James'

Task 0.5.22: Modify the comprehension in Task 0.5.21 to handle the case in which k
might not appear in all the dictionaries. The comprehension evaluates to the list whose ith

element is the value corresponding to key k in the ith dictionary in dlist if that dictionary
contains that key, and 'NOT PRESENT' otherwise.

Test your comprehension with k = 'Bilbo' and k = 'Frodo' and with the following
list of dictionaries:

dlist = [{'Bilbo':'Ian','Frodo':'Elijah'},
{'Bilbo':'Martin','Thorin':'Richard'}]

Mutating a dictionary: indexing on the left-hand side of =

You can mutate a dictionary, mapping a (new or old) key to a given value, using the syntax
used for assigning a list element, namely using the index syntax on the left-hand side of an
assignment:

>>> mydict['Agent Smith'] = 'Hugo'
>>> mydict['Neo'] = 'Philip'
>>> mydict
{'Neo': 'Philip', 'Agent Smith': 'Hugo', 'Trinity': 'Carrie-Anne',
'Morpheus': 'Laurence'}

Dictionary comprehensions

You can construct a dictionary using a comprehension.

>>> { k:v for (k,v) in [(3,2),(4,0),(100,1)] }
{3: 2, 4: 0, 100: 1}
>>> { (x,y):x*y for x in [1,2,3] for y in [1,2,3] }
{(1, 2): 2, (3, 2): 6, (1, 3): 3, (3, 3): 9, (3, 1): 3,
(2, 1): 2, (2, 3): 6, (2, 2): 4, (1, 1): 1}
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Task 0.5.23: Using range, write a comprehension whose value is a dictionary. The keys
should be the integers from 0 to 99 and the value corresponding to a key should be the
square of the key.

The identity function on a set D is the function with the following spec:

• input: an element x of D

• output: x

That is, the identity function simply outputs its input.

Task 0.5.24: Assign some set to the variable D, e.g. D ={'red','white','blue'}.
Now write a comprehension that evaluates to a dictionary that represents the identity func-
tion on D.

Task 0.5.25: Using the variables base=10 and digits=set(range(base)), write a dic-
tionary comprehension that maps each integer between zero and nine hundred ninety nine
to the list of three digits that represents that integer in base 10. That is, the value should be

{0: [0, 0, 0], 1: [0, 0, 1], 2: [0, 0, 2], 3: [0, 0, 3], ...,
10: [0, 1, 0], 11: [0, 1, 1], 12: [0, 1, 2], ...,
999: [9, 9, 9]}

Your expression should work for any base. For example, if you instead assign 2 to base and
assign {0,1} to digits, the value should be

{0: [0, 0, 0], 1: [0, 0, 1], 2: [0, 1, 0], 3: [0, 1, 1],
..., 7: [1, 1, 1]}

Comprehensions that iterate over dictionaries

You can write list comprehensions that iterate over the keys or the values of a dictionary,
using keys() or values():

>>> [2*x for x in {4:'a',3:'b'}.keys() ]
[6, 8]
>>> [x for x in {4:'a', 3:'b'}.values()]
['b', 'a']

Given two dictionaries A and B, you can write comprehensions that iterate over the union
or intersection of the keys, using the union operator | and intersection operator & we learned
about in Section 0.5.4.
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>>> [k for k in {'a':1, 'b':2}.keys() | {'b':3, 'c':4}.keys()]
['a', 'c', 'b']
>>> [k for k in {'a':1, 'b':2}.keys() & {'b':3, 'c':4}.keys()]
['b']

Often you’ll want a comprehension that iterates over the (key, value) pairs of a dictionary,
using items(). Each pair is a tuple.

>>> [myitem for myitem in mydict.items()]
[('Neo', 'Philip'), ('Morpheus', 'Laurence'),
('Trinity', 'Carrie-Anne'), ('Agent Smith', 'Hugo')]

Since the items are tuples, you can access the key and value separately using unpacking:

>>> [k + " is played by " + v for (k,v) in mydict.items()]
['Neo is played by Philip, 'Agent Smith is played by Hugo',
'Trinity is played by Carrie-Anne', 'Morpheus is played by Laurence']
>>> [2*k+v for (k,v) in {4:0,3:2, 100:1}.items() ]
[8, 8, 201]

Task 0.5.26: Suppose d is a dictionary that maps some employee IDs (a subset of the
integers from 0 to n − 1) to salaries. Suppose L is an n-element list whose ith element is
the name of employee number i. Your goal is to write a comprehension whose value is a
dictionary mapping employee names to salaries. You can assume that employee names are
distinct.

Test your comprehension with the following data:

id2salary = {0:1000.0, 3:990, 1:1200.50}
names = ['Larry', 'Curly', '', 'Moe']

0.5.9 Defining one-line procedures

The procedure twice : R −→ R that returns twice its input can be written in Python as
follows:

def twice(z): return 2*z

The word def introduces a procedure definition. The name of the function being defined is
twice. The variable z is called the formal argument to the procedure. Once this procedure
is defined, you can invoke it using the usual notation: the name of the procedure followed
by an expression in parenthesis, e.g. twice(1+2)

The value 3 of the expression 1+2 is the actual argument to the procedure. When the
procedure is invoked, the formal argument (the variable) is temporarily bound to the actual
argument, and the body of the procedure is executed. At the end, the binding of the actual
argument is removed. (The binding was temporary.)
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Task 0.5.27: Try entering the definition of twice(z). After you enter the definition, you
will see the ellipsis. Just press enter. Next, try invoking the procedure on some actual
arguments. Just for fun, try strings or lists. Finally, verify that the variable z is now not
bound to any value by asking Python to evaluate the expression consisting of z.

Task 0.5.28: Define a one-line procedure nextInts(L) specified as follows:

• input: list L of integers

• output: list of integers whose ith element is one more than the ith element of L

• example: input [1, 5, 7], output [2, 6, 8].

Task 0.5.29: Define a one-line procedure cubes(L) specified as follows:

• input: list L of numbers

• output: list of numbers whose ith element is the cube of the ith element of L

• example: input [1, 2, 3], output [1, 8, 27].

Task 0.5.30: Define a one-line procedure dict2list(dct,keylist) with this spec:

• input: dictionary dct, list keylist consisting of the keys of dct

• output: list L such that L[i] = dct[keylist[i]] for i = 0, 1, 2, . . . , len(keylist) − 1

• example: input dct={'a':'A', 'b':'B', 'c':'C'} and keylist=['b','c','a'],
output ['B', 'C', 'A']

Task 0.5.31: Define a one-line procedure list2dict(L, keylist) specified as follows:

• input: list L, list keylist of immutable items

• output: dictionary that maps keylist[i] to L[i] for i = 0, 1, 2, . . . , len(L) − 1

• example: input L=[’A’,’B’,’C’] and keylist=[’a’,’b’,’c’],
output {'a':'A', 'b':'B', 'c':'C'}

Hint: Use a comprehension that iterates over a zip or a range.
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Task 0.5.32: Write a procedure all 3 digit numbers(base, digits) with the follow-
ing spec:

• input: a positive integer base and the set digits which should be {0, 1, 2, . . . , base−1}.

• output: the set of all three-digit numbers where the base is base

For example,

>>> all_3_digit_numbers(2, {0,1})
{0, 1, 2, 3, 4, 5, 6, 7}
>>> all_3_digit_numbers(3, {0,1,2})
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26}
>>> all_3_digit_numbers(10, {0,1,2,3,4,5,6,7,8,9})
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

...
985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999}

0.6 Lab: Python—modules and control structures—and inverse

index

In this lab, you will create a simple search engine. One procedure will be responsible for
reading in a large collection of documents and indexing them to facilitate quick responses to
subsequent search queries. Other procedures will use the index to answer the search queries.

The main purpose of this lab is to give you more Python programming practice.

0.6.1 Using existing modules

Python comes with an extensive library, consisting of components called modules. In order
to use the definitions defined in a module, you must either import the module itself or import
the specific definitions you want to use from the module. If you import the module, you
must refer to a procedure or variable defined therein by using its qualified name, i.e. the
name of the module followed by a dot followed by the short name.

For example, the library math includes many mathematical procedures such as square-
root, cosine, and natural logarithm, and mathematical constants such as π and e.
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Task 0.6.1: Import the math module using the command

>>> import math

Call the built-in procedure help(modulename) on the module you have just imported:

>>> help(math)

This will cause the console to show documentation on the module. You can move forward
by typing f and backward by typing b, and you can quit looking at the documentation by
typing q.

Use procedures defined by the math module to compute the square root of 3, and raise
it to the power of 2. The result might not be what you expect. Keep in mind that Python
represents nonintegral real numbers with limited precision, so the answers it gives are only
approximate.

Next compute the square root of -1, the cosine of π, and the natural logarithm of e.
The short name of the square-root function is sqrt so its qualified name is math.sqrt.

The short names of the cosine and the natural logarithm are cos and log, and the short
names of π and e are pi and e.

The second way to bring a procedure or variable from a module into your Python envi-
ronment is to specifically import the item itself from the module, using the syntax

from ⟨module name⟩ import ⟨short name⟩

after which you can refer to it using its short name.

Task 0.6.2: The module random defines a procedure randint(a,b) that returns an inte-
ger chosen uniformly at random from among {a, a + 1, . . . , b}. Import this procedure using
the command

>>> from random import randint

Try calling randint a few times. Then write a one-line procedure movie review(name)
that takes as argument a string naming a movie, and returns a string review selected uni-
formly at random from among two or more alternatives (Suggestions: “See it!”, “A gem!”,
“Ideological claptrap!”)

0.6.2 Creating your own modules

You can create your own modules simply by entering the text of your procedure definitions
and variable assignments in a file whose name consists of the module name you choose,
followed by .py. Use a text editor such as Kate or Vim or, my personal favorite, Emacs.

The file can itself contain import statements, enabling the code in the file to make use
of definitions from other modules.
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If the file is in the current working directory when you start up Python, you can import
the module.a

Task 0.6.3: In Tasks 0.5.30 and 0.5.31 of Lab 0.5, you wrote procedures dict2list(dct,
keylist) and list2dict(L, keylist). Download the file dictutil.py from the
resource page for Coding the Matrix. Edit the file, replacing each occurence of pass with
the appropriate statement. Import this module, and test the procedures. We might have
occasion to use this module in the future.

aThere is an environment variable, PYTHONPATH, that governs the sequence of directories in which Python
searches for modules.

Reloading

You will probably find it useful when debugging your own module to be able to edit it and
load the edited version into your current Python session. Python provides the procedure
reload(module) in the module imp. To import this procedure, use the command

>>> from imp import reload

Note that if you import a specific definition using the from ... import ... syntax
then you cannot reload it.

Task 0.6.4: Edit dictutil.py. Define a procedure listrange2dict(L) with this spec:

• input: a list L

• output: a dictionary that, for i = 0, 1, 2, . . . , len(L) − 1, maps i to L[i]

You can write this procedure from scratch or write it in terms of list2dict(L, keylist).
Use the statement

>>> reload(dictutil)

to reload your module, and then test listrange2dict on the list ['A','B','C'].

0.6.3 Loops and conditional statements

Comprehensions are not the only way to loop over elements of a set, list, dictionary, tuple,
range, or zip. For the traditionalist programmer, there are for-loops: for x in {1,2,3}: print(x).
In this statement, the variable x is bound to each of the elements of the set in turn, and the
statement print(x) is executed in the context of that binding.

There are also while-loops: while v[i] == 0: i = i+1.
There are also conditional statements (as opposed to conditional expressions):

if x > 0: print("positive")
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0.6.4 Grouping in Python using indentation

You will sometimes need to define loops or conditional statements in which the body consists
of more than one statement. Most programming languages have a way of grouping a series
of statements into a block. For example, C and Java use curly braces around the sequence
of statements.

Python uses indentation to indicate grouping of statements. All the statements form-
ing a block should be indented the same number of spaces. Python is very picky
about this. Python files we provide will use four spaces to indent. Also, don’t mix tabs
with spaces in the same block. In fact, I recommend you avoid using tabs for indentation
with Python.

Statements at the top level should have no indentation. The group of statements forming
the body of a control statement should be indented more than the control statement. Here’s
an example:

for x in [1,2,3]:
y = x*x
print(y)

This prints 1, 4, and 9. (After the loop is executed, y remains bound to 9 and x remains
bound to 3.)

Task 0.6.5: Type the above for-loop into Python. You will see that, after you enter the
first line, Python prints an ellipsis (...) to indicate that it is expecting an indented block of
statements. Type a space or two before entering the next line. Python will again print the
ellipsis. Type a space or two (same number of spaces as before) and enter the next line.
Once again Python will print an ellipsis. Press enter, and Python should execute the loop.

The same use of indentation can be used used in conditional statements and in procedure
definitions.

def quadratic(a,b,c):
discriminant = math.sqrt(b*b - 4*a*c)
return ((-b + discriminant)/(2*a), (-b - discriminant)/(2*a))

You can nest as deeply as you like:

def print_greater_quadratic(L):
for a, b, c in L:
plus, minus = quadratic(a, b, c)
if plus > minus:
print(plus)

else:
print(minus)
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Many text editors help you handle indentation when you write Python code. For example,
if you are using Emacs to edit a file with a .py suffix, after you type a line ending with a
colon and hit return, Emacs will automatically indent the next line the proper amount,
making it easy for you to start entering lines belonging to a block. After you enter each line
and hit Return, Emacs will again indent the next line. However, Emacs doesn’t know when
you have written the last line of a block; when you need to write the first line outside of
that block, you should hit Delete to unindent.

0.6.5 Breaking out of a loop

As in many other programming languages, when Python executes the break statement,
the loop execution is terminated, and execution continues immediately after the innermost
nested loop containing the statement.

>>> s = "There is no spoon."
>>> for i in range(len(s)):
... if s[i] == 'n':
... break
...
>>> i
9

0.6.6 Reading from a file

In Python, a file object is used to refer to and access a file. The expression
open('stories_small.txt') returns a file object that allows access to the file with the
name given. You can use a comprehension or for-loop to loop over the lines in the file

>>> f = open('stories_big.txt')
>>> for line in f:
... print(line)

or, if the file is not too big, use list(·) to directly obtain a list of the lines in the file, e.g.

>>> f = open('stories_small.txt')
>>> stories = list(f)
>>> len(stories)
50

In order to read from the file again, one way is to first create a new file object by calling
open again.

0.6.7 Mini-search engine

Now, for the core of the lab, you will be writing a program that acts as a sort of search
engine.
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Given a file of “documents” where each document occupies a line of the file, you are to
build a data structure (called an inverse index) that allows you to identify those documents
containing a given word. We will identify the documents by document number: the document
represented by the first line of the file is document number 0, that represented by the second
line is document number 1, and so on.

You can use a method defined for strings, split(), which splits the string at spaces into
substrings, and returns a list of these substrings:

>>> mystr = 'Ask not what you can do for your country.'
>>> mystr.split()
['Ask', 'not', 'what', 'you', 'can', 'do', 'for', 'your', 'country.']

Note that the period is considered part of a substring. To make this lab easier, we have
prepared a file of documents in which punctuation are separated from words by spaces.

Often one wants to iterate through the elements of a list while keeping track of the indices
of the elements. Python provides enumerate(L) for this purpose.

>>> list(enumerate(['A','B','C']))
[(0, 'A'), (1, 'B'), (2, 'C')]
>>> [i*x for (i,x) in enumerate([10,20,30,40,50])]
[0, 20, 60, 120, 200]
>>> [i*s for (i,s) in enumerate(['A','B','C','D','E'])]
['', 'B', 'CC', 'DDD', 'EEEE']

Task 0.6.6: Write a procedure makeInverseIndex(strlist) that, given a list of strings
(documents), returns a dictionary that maps each word to the set consisting of the document
numbers of documents in which that word appears. This dictionary is called an inverse index.
(Hint: use enumerate.)

Task 0.6.7: Write a procedure orSearch(inverseIndex, query) which takes an inverse
index and a list of words query, and returns the set of document numbers specifying all
documents that conain any of the words in query.

Task 0.6.8: Write a procedure andSearch(inverseIndex, query) which takes an in-
verse index and a list of words query, and returns the set of document numbers specifying
all documents that contain all of the words in query.

Try out your procedures on these two provided files:

• stories_small.txt



CHAPTER 0. THE FUNCTION 48

• stories_big.txt

0.7 Review questions

• What does the notation f : A −→ B mean?

• What are the criteria for f to be an invertible function?

• What is associativity of functional composition?

• What are the criteria for a function to be a probability function?

• What is the Fundamental Principle of Probability Theory?

• If the input to an invertible function is chosen randomly according to the uniform distri-
bution, what is the distribution of the output?

0.8 Problems

Python comprehension problems

For each of the following problems, write the one-line procedure using a comprehension.

Problem 0.8.1: increments(L)
input: list L of numbers
output: list of numbers in which the ith element is one plus the ith element of L.
Example: increments([1,5,7]) should return [2,6,8].

Problem 0.8.2: cubes(L)
input: list L of numbers
output: list of numbers in which the ith element is the cube of the ith element of L.
Example: given [1, 2, 3] return [1, 8, 27].

Problem 0.8.3: tuple sum(A, B)
input: lists A and B of the same length, where each element in each list is a pair (x, y) of numbers
output: list of pairs (x, y) in which the first element of the ith pair is the sum of the first element
of the ith pair in A and the first element of the ith pair in B
example: given lists [(1, 2), (10, 20)] and [(3, 4), (30, 40)], return [(4, 6), (40, 60)].

Problem 0.8.4: inv dict(d)
input: dictionary d representing an invertible function f
output: dictionary representing the inverse of f, the returned dictionary’s keys are the values of
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d and its values are the keys of d
example: given an English-French dictionary
{'thank you': 'merci', 'goodbye': 'au revoir'}
return a French-English dictionary
{'merci':'thank you', 'au revoir':'goodbye'}

Problem 0.8.5: First write a procedure row(p, n) with the following spec:

• input: integer p, integer n

• output: n-element list such that element i is p + i

• example: given p = 10 and n = 4, return [10, 11, 12, 13]

Next write a comprehension whose value is a 15-element list of 20-element lists such that the
jth element of the ith list is i + j. You can use row(p, n) in your comprehension.

Finally, write the same comprehension but without using row(p, n). Hint: replace the call
to row(p, n) with the comprehension that forms the body of row(p, n).

Functional inverse

Problem 0.8.6: Is the following function invertible? If yes, explain why. If not, can you change
domain and/or codomain of the function to make it invertible? Provide the drawing.

Problem 0.8.7: Is the following function invertible? If yes, explain why. If not, can you change
domain and/or codomain of the function to make it invertible? Provide the drawing.
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Functional composition

Problem 0.8.8: Let f : R → R where f(x) = abs(x). Is there a choice of domain and co-
domain for the function g(x) with rule g(x) =

√
x such that g ◦ f is defined? If so, specify it.

If not, explain why not. Could you change domain and/or codomain of f or g so that g ◦ f will
be defined?

Problem 0.8.9: Consider functions f and g in the following figure:

Is f ◦ g defined? If so, draw it, otherwise explain why not.

Probability

Problem 0.8.10: A function f(x) = x+1 with domain {1, 2, 3, 5, 6} and codomain {2, 3, 4, 6, 7}
has the following probability function on its domain: Pr(1) = 0.5, Pr(2) = 0.2 and Pr(3) =
Pr(5) = Pr(6) = 0.1. What is the probability of getting an even number as an output of f(x)?
An odd number?

Problem 0.8.11: A function g(x) = x mod 3 with domain {1, 2, 3, 4, 5, 6, 7} and codomain
{0, 1, 2} has the following probability function on its domain: Pr(1) = Pr(2) = Pr(3) = 0.2 and
Pr(4) = Pr(5) = Pr(6) = Pr(7) = 0.1. What is the probability of getting 1 as an output of
g(x)? What is the probability of getting 0 or 2?
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The Field

...the different branches of
Arithmetic—Ambition, Distraction,
Uglification, and Derision.

Lewis Carroll, Alice in Wonderland

We introduce the notion of a field, a collection of values with a plus operation and a times
operation. The reader is familiar with the field of real numbers but perhaps not with the field
of complex numbers or the field consisting just of zero and one. We discuss these fields and give
examples of applications.

1.1 Introduction to complex numbers

If you stick to real numbers, there are no solutions to the equation x2 = −1. To fill this void,
mathematicians invented i. That’s a bold letter i, and it’s pronounced “i”, but it is usually
defined as the square root of minus 1.

Guest Week: Bill Amend (excerpt, http://xkcd.com/824)

By definition,
i2 = −1

51
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Multiplying both sides by 9, we get
9i2 = −9

which can be transformed to
(3i)2 = −9

Thus 3i is the solution to the equation x2 = −9. Similarly, for any positive number b, the solution
to x2 = −b is

√
b times i. The product of a real number and i is called an imaginary number.

What about the equation (x−1)2 = −9? We can solve this by setting x−1 = 3i, which yields
x = 1 + 3i. The sum of a real number and an imaginary number is called a complex number. A
complex number has a real part and an imaginary part.

Math Paper (http://xkcd.com/410)

1.2 Complex numbers in Python

Python supports complex numbers. The square root of -9, the imaginary number 3i, is written
3j.

>>> 3j
3j

Thus j plays the role of i. (In electrical engineering, i means “current”)
The square root of -1, the imaginary number i, is written 1j so as to avoid confusion with

the variable j.

>>> j
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'j' is not defined
>>> 1j
1j

Since Python allows the use of + to add a real number and an imaginary number, you can write
the complex solution to (x − 1)2 = −9 as 1+3j:

>>> 1+3j
(1+3j)
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In fact, the operators +, -, *, /, and ** all work with complex numbers. When you add two
complex numbers, the real parts are added and the imaginary parts are added.

>>> (1+3j) + (10+20j)
(11+23j)
>>> x=1+3j
>>> (x-1)**2
(-9+0j)

Python considers the value (-9+0j) to be a complex number even though its imaginary part is
zero.

As in ordinary arithmetic, multiplication has precedence over addition; exponentiation has
precedence over multiplication. These precedence rules are illustrated in the following evalua-
tions.

>>> 1+2j*3
(1+6j)
>>> 4*3j**2
(-36+0j)

You can obtain the real and imaginary parts of a complex number using a dot notation.

>>> x.real
1.0
>>> x.imag
3.0

It is not an accident that the notation is that used in object-oriented programming languages
to access instance variables (a.k.a. member variables). The complex numbers form a class in
Python.

>>> type(1+2j)
<class 'complex'>

This class defines the procedures (a.k.a. methods, a.k.a. member functions) used in arithmetic
operations on complex numbers.

1.3 Abstracting over fields

In programming languages, use of the same name (e.g. +) for different procedures operating
on values of different datatypes is called overloading. Here’s an example of why it’s useful in
the present context. Let us write a procedure solve1(a,b, c) to solve an equation of the form
ax + b = c where a is nonzero:

>>> def solve1(a,b,c): return (c-b)/a

It’s a pretty simple procedure. It’s the procedure you would write even if you had never heard
of complex numbers. Let us use it to solve the equation 10x + 5 = 30:
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>>> solve1(10, 5, 30)
2.5

The remarkable thing, however, is that the same procedure can be used to solve equations
involving complex numbers. Let’s use it to solve the equation (10 + 5i)x + 5 = 20:

>>> solve1(10+5j, 5, 20)
(1.2-0.6j)

The procedure works even with complex arguments because the correctness of the procedure
does not depend on what kind of numbers are supplied to it; it depends only on the fact that the
divide operator is the inverse of the multiply operator and the subtract operator is the inverse of
the add operator.

The power of this idea goes well beyond this simple procedure. Much of linear algebra—
concepts, theorems, and, yes, procedures—works not just for the real numbers but also for the
complex numbers and for other kinds of numbers as well. The strategy for achieving this is
simple:

• The concepts, theorems, and procedures are stated in terms of the arithmetic operators +,
-, *, and /.

• They assume only that these operators satisfy certain basic laws, such as commutativity
(a + b = b + a) and distributivity (a(b + c) = ab + ac).

Because the concepts, theorems, and procedures rely only on these basic laws, we can “plug in”
any system of numbers, called a field.1 Different fields arise in different applications.

In this book, we illustrate the generality of linear algebra with three different fields.

• R, the field of real numbers,

• C, the field of complex numbers, and

• GF (2), a field that consists of 0 and 1.

In object-oriented programming, one can use the name of a class to refer to the set of instances
of that class, e.g. we refer to instances of the class Rectangle as Rectangles. In mathematics,
one uses the name of the field, e.g. R or GF (2), to refer also to the set of values.

1.4 Playing with C

Because each complex number z consists of two ordinary numbers, z.real and z.imag, it is
traditional to think of z as specifying a point, a location, in the plane (the complex plane).

1For the reader who knows about object-oriented programming, a field is analogous to a class satisfying an
interface that requires it to possess methods for the arithmetic operators.
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z

z.real

z.imag

To build intuition, let us use a set S of complex numbers to represent a black-and-white
image. For each location in the complex plane where we want a dot, we include the corresponding
complex number in S. The following figure shows S = {2 + 2i, 3 + 2i, 1.75 + 1i, 2 + 1i, 2.25 +
1i, 2.5 + 1i, 2.75 + 1i, 3 + 1i, 3.25 + 1i}:

Task 1.4.1: First, assign to the variable S a list or set consisting of the complex numbers listed
above.

We have provided a module plotting for showing points in the complex plane. The module
defines a procedure plot. Import this class from the module as follows:

>>> from plotting import plot

Next, plot the points in S as follows:

>>>> plot(S, 4)

Python should open a browser window displaying the points of S in the complex plane. The
first argument to plot is a collection of complex numbers (or 2-tuples). The second argument
sets the scale of the plot; in this case, the window can show complex numbers whose real and
imaginary parts have absolute value less than 4. The scale argument is optional and defaults to
1, and there is another optional argument that sets the size of the dots.
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1.4.1 The absolute value of a complex number

The absolute value of a complex number z, written |z| (and, in Python, abs(z)) is the distance
from the origin to the corresponding point in the complex plane.

z

z.real

z.imag

length |z|

By the Pythagorean Theorem, |z|2 = (z.real)2 + (z.imag)2.

>>> abs(3+4j)
5.0
>>> abs(1+1j)
1.4142135623730951

Definition 1.4.2: The conjugate of a complex number z, written z̄, is defined as z.real−z.imag.

In Python, we write z.conjugate().

>>> (3+4j).conjugate()
(3-4j)



CHAPTER 1. THE FIELD 57

Using the fact that i2 = −1, we can get a formula for |z|2 in terms of z and z̄:

|z|2 = z · z̄ (1.1)

Proof

z · z̄ = (z.real + z.imag i) · (z.real − z.imag i)

= z.real · z.real − z.real · z.imag i + z.imag i · z.real − z.imag i · z.imag i

= z.real2 − z.imag i · z.imag i

= z.real2 − z.imag · z.imag i2

= z.real2 + z.imag · z.imag

where the last equality uses the fact that i2 = −1. !

1.4.2 Adding complex numbers

Suppose we add a complex number, say 1 + 2i, to each complex number z in S. That is, we
derive a new set by applying the following function to each element of S:

f(z) = 1 + 2i + z

This function increases each real coordinate (the x coordinate) by 1 and increases each imaginary
coordinate (the y coordinate) by 2. The effect is to shift the picture one unit to the right and
two units up:

This transformation of the numbers in S is called a translation. A translation has the form

f(z) = z0 + z (1.2)

where z0 is a complex number. Translations can take the picture anywhere in the complex plane.
For example, adding a number z0 whose real coordinate is negative would have the effect of
translating the picture to the left.
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Task 1.4.3: Create a new plot using a comprehension to provide a set of points derived from
S by adding 1 + 2i to each:

>>> plot({1+2j+z for z in S}, 4)

Quiz 1.4.4: The “left eye” of the set S of complex numbers is located at 2 + 2i. For what
value of z0 does the translation f(z) = z0 + z move the left eye to the origin?

Answer

z0 = −2 − 2i. That is, the translation is f(z) = −2 − 2i + z.

Problem 1.4.5: Show that, for any two distinct points z1 and z2,

• there is a translation that maps z1 to z2,

• there is a translation that maps z2 to z1, and

• there is no translation that both maps z1 to z2 and z2 to z1.

Complex numbers as arrows It is helpful to visualize a translation f(z) by an arrow. The
tail of the arrow is located at any point z in the complex plane; the head of the arrow is then
located at the point f(z), the translation of z. Of course, this representation is not unique.

Since a translation has the form f(z) = z0 + z, we represent the translation by the complex
number z0. It is therefore appropriate to represent the complex number z0 by an arrow.

z

z0

z0 + z

Again, the representation is not unique. For example, the vector z0 = 5 − 2i can be represented
by an arrow whose tail is at 0 + 0i and whose head is at 5− 2i, or one whose tail is at 1 + 1i and
whose head is at 6 − 1i, or....
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z1

z1+z2 z2

Figure 1.1: This figure illustrates the geometric interpretation of complex-number addition.

Problem 1.4.6: Draw a diagram representing the complex number z0 = −3 + 3i using two
arrows with their tails located at different points.

Composing translations, adding arrows Let f1(z) = z1 + z and f2(z) = z2 + z be two
translations. Then their composition is also a translation:

(f2 ◦ f1)(z) = f2(f1(z))

= f2(z1 + z)

= z2 + z1 + z

and is defined by z )→ (z2 + z1) + z. The idea that two translations can be collapsed into one is
illustrated by Figure 1.1, in which each translation is represented by an arrow.

The translation arrow labeled by z1 takes a point (in this case, the origin) to another point,
which in turn is mapped by z2 to a third point. The arrow mapping the origin to the third point
is the composition of the two other translations, so, by the reasoning above, is z1 + z2.

1.4.3 Multiplying complex numbers by a positive real number

Now suppose we halve each complex number in S:

g(z) =
1

2
z

This operation simply halves the real coordinate and the imaginary coordinate of each complex
number. The effect on the picture is to move all the points closer from the origin but also closer
to each other:
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This operation is called scaling. The scale of the picture has changed. Similarly, doubling each
complex number moves the points farther from the origin and from each other.

Task 1.4.7: Create a new plot titled “My scaled points” using a comprehension as in Task 1.4.3.
The points in the new plot should be halves of the points in S.

1.4.4 Multiplying complex numbers by a negative number: rotation
by 180 degrees

Here is the result of multiplying each complex number by -1:

Think of the points as drawn on a shape that rotates about the origin; this picture is the result
of rotating the shape by 180 degrees.
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1.4.5 Multiplying by i: rotation by 90 degrees

“The number you have dialed is imaginary. Please rotate your phone by ninety degrees
and try again.”

How can we rotate the shape by only 90 degrees?

For this effect, a point located at (x, y) must be moved to (−y, x). The complex number located
at (x, y) is x + iy. Now is our chance to use the fact that i2 = −1. We use the function

h(z) = i · z

Multiplying x + iy by i yields ix + i2y, which is ix− y, which is the complex number represented
by the point (−y, x).

Task 1.4.8: Create a new plot in which the points of S are rotated by 90 degrees and scaled
by 1/2. Use a comprehension in which the points of S are multiplied by a single complex number.
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Task 1.4.9: Using a comprehension, create a new plot in which the points of S are rotated by
90 degrees, scaled by 1/2, and then shifted down by one unit and to the right two units. Use
a comprehension in which the points of S are multiplied by one complex number and added to
another.

Task 1.4.10: We have provided a module image with a procedure file2image(filename)
that reads in an image stored in a file in the .png format. Import this procedure and invoke it,
providing as argument the name of a file containing an image in this format, assigning the returned
value to variable data. An example grayscale image, img01.png, is available for download.

The value of data is a list of lists, and data[y][x] is the intensity of pixel (x,y). Pixel
(0,0) is at the bottom-left of the image, and pixel (width-1, height-1) is at the top-right.
The intensity of a pixel is a number between 0 (black) and 255 (white).

Use a comprehension to assign to a list pts the set of complex numbers x+ yi such that the
image intensity of pixel (x, y) is less than 120, and plot the list pts.
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Task 1.4.11: Write a Python procedure f(z) that takes as argument a complex number z so
that when f(z) is applied to each of the complex numbers in S, the set of resulting numbers
is centered at the origin. Write a comprehension in terms of S and f whose value is the set of
translated points, and plot the value.

Task 1.4.12: Repeat Task 1.4.8 with the points in pts instead of the points in S.

1.4.6 The unit circle in the complex plane: argument and angle

We shall see that it is not a coincidence that rotation by 180 or 90 degrees can be represented
by complex multiplication: any rotation can be so represented. However, it is convenient to use
radians instead of degrees to measure the angle of rotation.
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The argument of a complex number on the unit circle

Consider the unit circle—the circle of radius one, centered at the origin of the complex plane.

0 radians

! /4 radians

!  radians

3! /4 radians

! /2 radians

7! /4 radians

3! /2 radians

5! /4 radians

A point z on the circle is represented by the distance an ant would have to travel counterclockwise
along the circle to get to z if the ant started at 1 + 0i, the rightmost point of the circle. We call
this number the argument of z.

0 radians

! /4 radians

Example 1.4.13: Since the circumference of the circle is 2π, the point halfway around the
circle has an argument of π, and the point one-eighth of the way around has an argument of
π/4.

The angle formed by two complex numbers on the unit circle

We have seen how to label points on the unit circle by distances. We can similarly assign a
number to the angle formed by the line segments from the origin to two points z1 and z2 on
the circle. The angle, measured in radians, is the distance along the circle traversed by an ant
walking counterclockwise from z2 to z1.
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z1 z2
1

4
π

Example 1.4.14: Let z1 be the point on the circle that has argument 5
16π, and let z2 be the

point on the circle that has argument 3
16π. An ant starting at z2 and traveling to z1 would travel

a distance of 1
8π counterclockwise along the circle, so 1

8π is the angle between the origin-to-z1
line segment and the origin-to-z2 line segment.

Remark 1.4.15: The argument of z is the angle formed by z with 1 + 0i.

1.4.7 Euler’s formula

He calculated just as men breathe, as
eagles sustain themselves in the air.

Said of Leonhard Euler

We turn to a formula due to Leonhard Euler, a remarkable mathematician who contributed to
the foundation for many subfields of mathematics: number theory and algebra, complex analysis,
calculus, differential geometry, fluid mechanics, topology, graph theory, and even music theory
and cartography. Euler’s formula states that, for any real number θ, ei·θ is the point z on the
unit circle with argument θ. Here e is the famous transcendental number 2.718281828....

Example 1.4.16: The point −1 + 0i has argument π. Plugging π into Euler’s formula yields
the surprising equation eiπ + 1 = 0.
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e to the π times i (http://xkcd.com/179/)

Task 1.4.17: From the module math, import the definitions e and pi. Let n be the integer
20. Let w be the complex number e2πi/n. Write a comprehension yielding the list consisting of
w0, w1, w2, . . . , wn−1. Plot these complex numbers.

1.4.8 Polar representation for complex numbers

Euler’s formula gives us a convenient representation for complex numbers that lie on the unit
circle. Now consider any complex number z. Let L be the line segment in the complex plane
from the origin to z, and let z′ be the point at which this line segment intersects the unit circle.

z
r

z'
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Let r be the length of the line segment to z. Viewing z′ as the result of scaling down z, we have

z′ =
1

r
z

Let θ be the argument of z′. Euler’s formula tells us that z′ = eθi. We therefore obtain

z = reθi

The astute student might recognize that r and θ are the polar coordinates of z. In the context
of complex numbers, we define the argument of z to be θ, and we define the absolute value of z
(written |z|) to be r.

1.4.9 The First Law of Exponentiation

When powers multiply, their exponents add:

euev = eu+v

We can use this rule to help us understand how to rotate a complex number z. We can write

z = reθi

where r = |z| and θ = arg z.

1.4.10 Rotation by τ radians

Let τ be a number of radians. The rotation of z by τ should have the same absolute value as z
but its argument should be τ more than that of z, i.e. it should be re(θ+τ)i. How do we obtain
this number from z?

re(θ+τ)i = reθieτ i

= zeτ i

Thus the function that rotates by τ is simply

f(z) = zeτ i

Task 1.4.18: Recall from Task 1.4.1 the set S of complex numbers. Write a comprehension
whose value is the set consisting of rotations by π/4 of the elements of S. Plot the value of this
comprehension.
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Task 1.4.19: Similarly, recall from Task 1.4.10 the list pts of points derived from an image.
Plot the rotation by π/4 of the complex numbers comprising pts.
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1.4.11 Combining operations

Task 1.4.20: Write a comprehension that transforms the set pts by translating it so the image
is centered, then rotating it by π/4, then scaling it by half. Plot the result.

Because the complex numbers form a field, familiar algebraic rules can be used. For example,
a · (b · z) = (a · b) · z. Using this rule, two scaling operations can be combined into one; scaling
by 2 and then by 3 is equivalent to scaling by 6.

Similarly, since rotation is carried out by multiplication, two rotations can be combined into
one; rotating by π

4 (multiplying by e
π
4
i) and and then rotating by π

3 (multiplying by e
π
3
i) is

equivalent to multiplying by e
π
4
i · e

π
3
i, which is equal to e

π
4
i+π

3
i, i.e. rotating by π

4 + π
3 .

Since scaling and rotation both consist in multiplication, a rotation and a scaling can be
combined: rotating by π

4 (multiplying by e
π
4
i) and then scaling by 1

2 is equivalent to multiplying
by 1

2e
π
4
i.

1.4.12 Beyond two dimensions

The complex numbers are so convenient for transforming images—and, more generally, sets of
points in the plane—one might ask whether there is a similar approach to operating on points in
three dimensions. We discuss this in the next chapter.

1.5 Playing with GF (2)

GF (2) is short for Galois Field 2. Galois was a mathematician, born in 1811, who while in his
teens essentially founded the field of abstract algebra. He died in a duel at age twenty.
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The field GF (2) is very easy to describe. It has two elements, 0 and 1. Arithmetic over GF (2)
can be summarized in two small tables:
× 0 1
0 0 0
1 0 1

+ 0 1
0 0 1
1 1 0

Addition is modulo 2. It is equivalent to exclusive-or. In particular, 1 + 1 = 0.
Subtraction is identical to addition. The negative of 1 is again 1, and the negative of 0 is

again 0.
Multiplication in GF (2) is just like ordinary multiplication of 0 and 1: multiplication by 0

yields 0, and 1 times 1 is 1. You can divide by 1 (as usual, you get the number you started with)
but dividing by zero is illegal (as usual).

We provide a module, GF2, with a very simple implementation of GF (2). It defines a value,
one, that acts as the element 1 of GF (2). Ordinary zero plays the role of the element 0 of GF (2).
(For visual consistency, the module defines zero to be the value 0.)

>>> from GF2 import one
>>> one*one
one
>>> one*0
0
>>> one + 0
one
>>> one+one
0
>>> -one
one

1.5.1 Perfect secrecy revisited

In Chapter 0, we described a cryptosystem that achieves perfect secrecy (in transmitting a single
bit). Alice and Bob randomly choose the key k uniformly from {♣,♥}. Subsequently, Alice uses
the following encryption function to transform the plaintext bit p to a cyphertext bit c:

p k c
0 ♣ 0
0 ♥ 1
1 ♣ 1
1 ♥ 0

The encryption method is just GF (2) addition in disguise! When we replace ♣ with 0 and ♥
with 1, the encryption table becomes the addition table for GF (2):

p k c
0 0 0
0 1 1
1 0 1
1 1 0

For each plaintext p ∈ GF (2), the function k )→ k + p (mapping GF (2) to GF (2)) is invertible
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(hence one-to-one and onto). Therefore, when the key k is chosen uniformly at random, the
cyphertext is also distributed uniformly. This shows that the scheme achieves perfect secrecy.

Using integers instead of GF (2)

Why couldn’t Alice and Bob use, say, ordinary integers instead of GF (2)? After all, for each
x ∈ Z, the function y )→ x + y mapping Z to Z is also invertible. The reason this cannot work
as a cryptosystem is that there is no uniform distribution over Z, so the first step—choosing a
key—is impossible.

Encrypting long messages

How, then, are we to encrypt a long message? Students of computer science know that a long
message can be represented by a long string of bits. Suppose the message to be encrypted will
consist of n bits. Alice and Bob should select an equally long sequence of key bits k1 . . . kn. Now,
once Alice has selected the plaintext p1 . . . pn, she obtains the cyphertext c1 . . . cn one bit at a
time:

c1 = k1 + p1

c2 = k2 + p2
...

cn = kn + pn

We argue informally that this system has perfect secrecy. The earlier argument shows that each
bit ci of cyphertext tells Eve nothing about the corresponding bit pi of plaintext; certainly the
bit ci tells Eve nothing about any of the other bits of plaintext. From this we infer that the
system has perfect secrecy.

Our description of the multi-bit system is a bit cumbersome, and the argument for perfect
secrecy is rather sketchy. In Chapter 2, we show that using vectors over GF (2) simplify the
presentation.

The one-time pad

The cryptosystem we have described is called the one-time pad. As suggested by the name, it is
crucial that each bit of key be used only once, i.e. that each bit of plaintext be encrypted with
its bit of key. This can be a burden for two parties that are separated for long periods of time
because the two parties must agree before separating on many bits of key.

Starting in 1930, the Soviet Union used the one-time pad for communication. During World
War II, however, they ran out of bits of key and began to re-use some of the bits. The US
and Great Britain happen to discover this; they exploited it (in a top-secret project codenamed
VENONA) to partially decrypt some 1% of the encrypted messages, revealing, for example, the
involvement of Julius Rosenberg and Alger Hiss in espionage.
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Problem 1.5.1: An 11-symbol message has been encrypted as follows. Each symbol is repre-
sented by a number between 0 and 26 (A )→ 0, B )→ 1, . . . , Z )→ 25, space )→ 26). Each number
is represented by a five-bit binary sequence (0 )→ 00000, 1 )→ 00001, ..., 26 )→ 11010). Finally,
the resulting sequence of 55 bits is encrypted using a flawed version of the one-time pad: the
key is not 55 random bits but 11 copies of the same sequence of 5 random bits. The cyphertext
is

10101 00100 10101 01011 11001 00011 01011 10101 00100 11001 11010

Try to find the plaintext.

1.5.2 Network coding

Consider the problem of streaming video through a network. Here is a simple example network:

s

c d
The node at the top labeled s needs to stream a video to each of the two customer nodes, labeled
c and d, at the bottom. Each link in the network has a capacity of 1 megabit per second. The
video stream, however, requires 2 megabits per second. If there were only one customer, this
would be no problem; as shown below, the network can handle two simultaneous 1-megabit-per-
second streams from s to c:
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s

c d

b1 b2

A million times a second, one bit b1 is sent along one path and another bit b2 is sent along
another path. Thus the total rate of bits delivered to the customer is 2 megabits per second.

However, as shown below, we can’t use the same scheme to deliver two bitstreams to each of
two customers because the streams contend for bandwidth on one of the network links.

s

c d

b1 b2

Two bits 
contend for
same link

GF (2) to the rescue! We can use the fact that network nodes can do a tiny bit (!) of
computation. The scheme is depicted here:
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s

c d

b1 b2

b1 + b2

At the centermost node, the bits b1 and b2 arrive and are combined by GF (2) addition to obtain
a single bit. That single bit is transmitted as shown to the two customers c and d. Customer c
receives bit b1 and the sum b1 + b2, so can also compute the bit b2. Customer d receives bit b2
and the sum b1 + b2, so can also compute the bit b1.

We have shown that a network that appears to support streaming only one megabit per second
to a pair of customers actually supports streaming two megabits per second. This approach to
routing can of course be generalized to larger networks and more customers; the idea is called
network coding.

1.6 Review questions

• Name three fields.

• What is the conjugate of a complex number? What does it have to do with the absolute
value of a complex number?

• How does complex-number addition work?

• How does complex-number multiplication work?

• How can translation be defined in terms of complex numbers?

• How can scaling be defined in terms of complex numbers?

• How can rotation by 180 degrees be defined in terms of complex numbers?

• How can rotation by 90 degrees be defined in terms of complex numbers?

• How does addition of GF (2) values work?

• How does multiplication of GF (2) values work?
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1.7 Problems

Python comprehension problems

Write each of the following three procedures using a comprehension:

Problem 1.7.1: my filter(L, num)
input: list of numbers and a positive integer.
output: list of numbers not containing a multiple of num.
example: given list = [1,2,4,5,7] and num = 2, return [1,5,7].

Problem 1.7.2: my lists(L)
input: list L of non-negative integers.
output: a list of lists: for every element x in L create a list containing 1, 2, . . . , x.
example: given [1,2,4] return [[1],[1,2],[1,2,3,4]]. example: given [0] return [[]].

Problem 1.7.3: my function composition(f,g)
input: two functions f and g, represented as dictionaries, such that g ◦ f exists.
output: dictionary that represents the function g ◦ f .
example: given f = {0:’a’, 1:’b’} and g = {’a’:’apple’, ’b’:’banana’}, return {0:’apple’, 1:’banana’}.

Python loop problems

For procedures in the following five problems, use the following format:

def <ProcedureName>(L):
current = ...
for x in L:

current = ...
return current

The value your procedure initially assigns to current turns out to be the return value in
the case when the input list L is empty. This provides us insight into how the answer should be
defined in that case. Note: You are not allowed to use Python built-in procedures sum(·) and
min(·).

Problem 1.7.4: mySum(L)
Input: list of numbers
Output: sum of numbers in the list
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Problem 1.7.5: myProduct(L)
input: list of numbers
output: product of numbers in the list

Problem 1.7.6: myMin(L)
input: list of numbers
output: minimum number in the list

Problem 1.7.7: myConcat(L)
input: list of strings
output: concatenation of all the strings in L

Problem 1.7.8: myUnion(L)
input: list of sets
output: the union of all sets in L.

In each of the above problems, the value of current is combined with an element of myList
using some operation ⋄. In order that the procedure return the correct result, current should
be initialized with the identity element for the operation ⋄, i.e. the value i such that i ⋄ x = x
for any value x.

It is a consequence of the structure of the procedure that, when the input list is empty, the
output value is the initial value of current (since in this case the body of the loop is never
executed). It is convenient to define this to be the correct output!

Problem 1.7.9: Keeping in mind the comments above, what should be the value of each of
the following?

1. The sum of the numbers in an empty set.

2. The product of the numbers in an empty set.

3. The minimum of the numbers in an empty set.

4. The concatenation of an empty list of strings.

5. The union of an empty list of sets.

What goes wrong when we try to apply this reasoning to define the intersection of an empty list
of sets?
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Complex addition practice

Problem 1.7.10: Each of the following problems asks for the sum of two complex numbers.
For each, write the solution and illustrate it with a diagram like that of Figure 1.1. The arrows
you draw should (roughly) correspond to the vectors being added.

a. (3 + 1i) + (2 + 2i)

b. (−1 + 2i) + (1 − 1i)

c. (2 + 0i) + (−3 + .001i)

d. 4(0 + 2i) + (.001 + 1i)

Multiplication of exponentials

Problem 1.7.11: Use the First Rule of Exponentiation (Section 1.4.9) to express the product
of two exponentials as a single exponential. For example, e(π/4)ie(π/4)i = e(π/2)i.

a. e1ie2i

b. e(π/4)ie(2π/3)i

c. e−(π/4)ie(2π/3)i

Combining operations on complex numbers

Problem 1.7.12: Write a procedure transform(a,b, L) with the following spec:

• input: complex numbers a and b, and a list L of complex numbers

• output: the list of complex numbers obtained by applying f(z) = az + b to each complex
number in L

Next, for each of the following problems, explain which value to choose for a and b in order
to achieve the specified transformation. If there is no way to achieve the transformation, explain.

a. Translate z one unit up and one unit to the right, then rotate ninety degrees clockwise, then
scale by two.

b. Scale the real part by two and the imaginary part by three, then rotate by forty-five degrees
counterclockwise, and then translate down two units and left three units.

GF (2) arithmetic

Problem 1.7.13: For each of the following problems, calculate the answer over GF (2).
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a. 1 + 1 + 1 + 0

b. 1 · 1 + 0 · 1 + 0 · 0 + 1 · 1

c. (1 + 1 + 1) · (1 + 1 + 1 + 1)

Network coding

Problem 1.7.14: Copy the example network used in Section 1.5.2. Suppose the bits that need
to be transmitted in a given moment are b1 = 1 and b2 = 1. Label each link of the network with
the bit transmitted across it according to the network-coding scheme. Show how the customer
nodes c and d can recover b1 and b2.



Chapter 2

The Vector

One of the principal objects of
theoretical research in my department of
knowledge is to find the point of view
from which the subject appears in its
greatest simplicity.

Josiah Willard Gibbs

Josiah Gibbs, the inventor of modern vector analysis, was up against stiff competition. The
dominant system of analysis, quaternions, had been invented by Sir William Rowan Hamilton.
Hamilton had been a bona fide prodigy. By age five, he was reported to have learned Latin,
Greek, and Hebrew. By age ten, he had learned twelve languages, including Persian, Arabic,
Hindustani and Sanskrit.

Hamilton was a Trinity man. His uncle (who raised him) had gone to Trinity College in
Dublin, and Hamilton matriculated there. He was first in every subject. However, he did not
complete college; while still an undergraduate, he was appointed Professor of Astronomy.

Among Hamilton’s contributions to mathematics is his elegant theory of quaternions. We
saw in Chapter 1 that the field of complex numbers makes it simple to describe transformations
on points in the plane, such as translations, rotations, and scalings. Hamilton struggled to find
a similar approach. When the solution came to him while he was walking along Dublin’s Royal
Canal with his wife, he committed a particularly egregious form of vandalism, carving the defining
equations in the stone of Brougham Bridge.

Hamilton described his epipheny in a letter to a friend:

And here there dawned on me the notion that we must admit, in some sense, a fourth
dimension of space for the purpose of calculating with triples ... An electric circuit
seemed to close, and a spark flashed forth.

Quaternions occupied much of Hamilton’s subsequent life.

Josiah Willard Gibbs, on the other hand, was a Yale man. His father, Josiah Willard Gibbs,
was a professor at Yale, and the son matriculated there at age fifteen. He got his Ph.D. at Yale,

79
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tutored at Yale, and spent three years studying in Europe, after which he returned to become a
professor at Yale and remained there for the rest of his life. He developed vector analysis as an
alternative to quaternions.

Figure 2.1: Josiah Willard Gibbs, the inventor of vector analysis

For twenty years vector analysis did not appear in published form (the primary source was
unpublished notes) until Gibbs finally agreed to publish a book on the topic. It began to displace
the theory of quaternions because it was more convenient to use.

However, it had the drawback of having been invented by an American. The eminent British
physicist Peter Guthrie Tait, a former student of Hamilton and a partisan of quaternions, attacked
mercilessly, writing, for example,

“Professor Willard Gibbs must be ranked as one of the retarders of ... progress in
virtue of his pamphlet on Vector Analysis; a sort of hermaphrodite monster.”

Tait, Elementary Treatise on Quaternions

Today, quaternions are still used, especially in representing rotations in three dimensions. It
has its advocates in computer graphics and computer vision. However, it is safe to say that, in
the end, vector analysis won out. It is used in nearly every field of science and engineering, in
economics, in mathematics, and, of course, in computer science.

2.1 What is a vector?

The word vector comes from the Latin for “carrier”. We don’t plan to study pests; the term
comes from a vector’s propensity to move something from one location to another.

In some traditional math courses on linear algebra, we are taught to think of a vector as a
list of numbers:

[3.14159, 2.718281828,−1.0, 2.0]
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You need to know this way of writing a vector because it is commonly used.1 Indeed, we will
sometimes represent vectors using Python’s lists.

Definition 2.1.1: A vector with four entries, each of which is a real number, is called a 4-vector
over R.

The entries of a vector must all be drawn from a single field. As discussed in the previous
chapter, three examples of fields are R, C, and GF (2). Therefore we can have vectors over each
of these fields.

Definition 2.1.2: For a field F and a positive integer n, a vector with n entries, each belonging
to F, is called an n-vector over F. The set of n-vectors over F is denoted Fn.

For example, the set of 4-vectors over R is written R4.
This notation might remind you of the notation FD for the set of functions from D to F. In-

deed, I suggest you interpret Fd as shorthand for F{0,1,2,3,...,d−1} According to this interpretation,
Fd is the set of functions from {0, 1, . . . , d − 1} to F.

For example, the 4-vector we started with, [3.14159, 2.718281828,−1.0, 2.0], is in fact the
function

0 )→ 3.14159

1 )→ 2.718281828

2 )→ −1.0

3 )→ 2.0

2.2 Vectors are functions

1Often parentheses are used instead of brackets.
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excerpt from Matrix Revisited (http://xkcd.com/566/)

Once we embrace this interpretation—once we accept that vectors are functions—a world of
applications opens to us.

Example 2.2.1: Documents as vectors: Here’s an example from a discipline called infor-
mation retrieval that addresses the problem of finding information you want from a corpus of
documents.

Much work in information retrieval has been based on an extremely simple model that dis-
regards grammar entirely: the word-bag model of documents. A document is considered just a
multiset (also called a bag) of words. (A multiset is like a set but can contain more than one
copy of an element. The number of copies is called the multiplicity of the element.)

We can represent a bag of words by a function f whose domain is the set of words and whose
co-domain is the set of real numbers. The image of a word is its multiplicity. Let WORDS be
the set of words (e.g. English words). We write

f : WORDS −→ R

to indicate that f maps from WORDS to R.
Such a function can be interpreted as representing a vector. We would call it aWORDS-vector

over R.

Definition 2.2.2: For a finite set D and a field F, a D-vector over F is a function from D to
F.

This is a computer scientist’s definition; it lends itself to representation in a data structure.
It differs in two important ways from a mathematician’s definition.

• I require the domain D to be finite. This has important mathematical consequences: we will
state theorems that would not be true if D were allowed to be infinite. There are important
mathematical questions that are best modeled using functions with infinite domains, and
you will encounter them if you continue in mathematics.

• The traditional, abstract approach to linear algebra does not directly define vectors at all.
Just as a field is defined as a set of values with some operations (+, -, *, /) that satisfy
certain algebraic laws, a vector space is defined as a set with some operations that satisfy
certain algebraic laws; then vectors are the things in that set. This approach is more
general but it is more abstract, hence harder for some people to grasp. If you continue in
mathematics, you will become very familiar with the abstract approach.

Returning to the more concrete approach we take in this book, according to the notation
from Section 0.3.3, we use FD to denote the set of functions with domain D and co-domain F,
i.e. the set of all D-vectors over F.
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Example 2.2.3: To illustrate this notation for vectors as functions, consider the following:

(a.) RWORDS : The set of all WORDS-vectors over R, seen in Example 2.2.1 (Page 82).

(b.) GF (2){0,1,...,n−1} : The set of all n-vectors over GF (2)

2.2.1 Representation of vectors using Python dictionaries

We will sometimes use Python’s lists to represent vectors. However, we have decreed that a
vector is a function with finite domain, and Python’s dictionaries are a convenient representation
of functions with finite domains. Therefore we often use dictionaries in representing vectors.

For example, the 4-vector of Section 2.1 could be represented as {0:3.14159, 1:2.718281828,
2:-1.0, 3:2.0}.

In Example 2.2.1 (Page 82) we discussed the word-bag model of documents, in which a
document is represented by a WORDS-vector over R. We could represent such a vector as a
dictionary but the dictionary would consist of perhaps two hundred thousand key-value pairs.
Since a typical document uses a small subset of the words in WORDS, most of the values would
be equal to zero. In information-retrieval, one typically has many documents; representing each
of them by a two-hundred-thousand-element dictionary would be profligate. Instead, we adopt
the convention of allowing the omission of key-value pairs whose values are zero. This is called a
sparse representation. For example, the document “The rain in Spain falls mainly on the plain”
would be represented by the dictionary

{’on’: 1, ’Spain’: 1, ’in’: 1, ’plain’: 1, ’the’: 2, ’mainly’: 1,

’rain’: 1, ’falls’: 1}

There is no need to explicitly represent the fact that this vector assigns zero to ’snow’, ’France’,
’primarily’, ’savannah’, and the other elements of WORDS.

2.2.2 Sparsity

A vector most of whose values are zero is called a sparse vector. If no more than k of the
entries are nonzero, we say the vector is k-sparse. A k-sparse vector can be represented using
space proportional to k. Therefore, for example, when we represent a corpus of documents by
WORD-vectors, the storage required is proportional to the total number of words comprising all
the documents.

Vectors that represent data acquired via physical sensors (e.g. images or sound) are not likely
to be sparse. In a future chapter, we will consider a computational problem in which the goal,
given a vector and a parameter k, is to find the “closest” k-sparse vector. After we learn what it
means for vectors to be close, it will be straightforward to solve this computational problem.

A solution to this computational problem would seem to be the key to compressing images
and audio segments, i.e. representing them compactly so more can be stored in the same amount
of computer memory. This is correct, but there is a hitch: unfortunately, the vectors representing
images or sound are not even close to sparse vectors. In Section 5.2, we indicate the way around
this obstacle. In Chapter 10, we explore some compression schemes based on the idea.
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In Chapter 4, we introduce matrices and their representation. Because matrices are often
sparse, in order to save on storage and computational time we will again use a dictionary repre-
sentation in which zero values need not be represented.

However, many matrices arising in real-world problems are not sparse in the obvious sense.
In Chapter 11, we investigate another form of sparsity for matrices, low rank. Low-rank matrices
arise in analyzing data to discover factors that explain the data. We consider a computational
probem in which the goal, given a matrix and a parameter k, is to find the closest matrix whose
rank is at most k. We show that linear algebra provides a solution for this computational problem.
It is at the heart of a widely used method called principal component analysis, and we will explore
some of its applications.

2.3 What can we represent with vectors?

We’ve seen two examples of what we can represent with vectors: multisets and sets. Now I want
to give some more examples.

Binary string An n-bit binary string 10111011, e.g. the secret key to a cryptosystem, can
be represented by an n-vector over GF (2), [1, 0, 1, 1, 1, 0, 1, 1]. We will see how some simple
cryptographic schemes can be specified and analyzed using linear algebra.

Attributes In learning theory, we will consider data sets in which each item is represented by
a collection of attribute names and attribute values. This collection is in turn represented by a
function that maps attribute names to the corresponding values.

For example, perhaps the items are congresspeople. Each congressperson is represented by his
or her votes on a set of bills. A single vote is represented by +1, -1, or 0 (aye, nay, or abstain).
We will see in Lab 2.12 a method for measuring the difference between two congresspersons’
voting policies.

Perhaps the items are consumers. Each consumer is represented by his or her age, education
level, and income, e.g.

>>> Jane = {'age':30, 'education level':16, 'income':85000}

Given data on which consumers liked a particular product, one might want to come up with a
function that predicted, for a new consumer vector, whether the consumer would like the product.
This is an example of machine learning. In Lab 8.4, we will consider vectors that describe tissue
samples, and use a rudimentary machine-learning technique to try to predict whether a cancer
is benign or malignant.

State of a system We will also use functions/vectors to represent different states of an evolving
system. The state the world might be represented, for example, by specifying the the population
of each of the five most populous countries:

{'China':1341670000, 'India':1192570000, 'US':308745538,
'Indonesia':237556363, 'Brazil':190732694}

We will see in Chapter 12 that linear algebra provides a way to analyze a system that evolves
over time according to simple known rules.
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Probability distribution Since a finite probability distribution is a function from a finite
domain to the real numbers, e.g.

{1:1/6, 2:1/6, 3:1/6, 4:1/6, 5:1/6, 6:1/6}

it can be considered a vector. We will see in Chapter 12 that linear algebra provides a way to
analyze a random process that evolves over time according to simple probabilistic rules. One
such random process underlies the original definition of PageRank, the method by which Google
ranks pages.

Image A black-and-white 1024 × 768 image can be viewed as a function from the set of pairs
{(i, j) : 0 ≤ i < 1024, 0 ≤ j < 768} to the real numbers, and hence as a vector. The
pixel-coordinate pair (i, j) maps to a number, called the intensity of pixel (i, j). We will study
several applications of representing images by vectors, e.g. subsampling, blurring, searching for
a specified subimage, and face detection.

Example 2.3.1: As an example of a black and white image, consider an 4x8 gradient, repre-
sented as a vector in dictionary form (and as an image), where 0 is black and 255 is white:

{(0,0): 0, (0,1): 0, (0,2): 0, (0,3): 0,
(1,0): 32, (1,1): 32, (1,2): 32, (1,3): 32,
(2,0): 64, (2,1): 64, (2,2): 64, (2,3): 64,
(3,0): 96, (3,1): 96, (3,2): 96, (3,3): 96,
(4,0): 128, (4,1): 128, (4,2): 128, (4,3): 128,
(5,0): 160, (5,1): 160, (5,2): 160, (5,3): 160,
(6,0): 192, (6,1): 192, (6,2): 192, (6,3): 192,
(7,0): 224, (7,1): 224, (7,2): 224, (7,3): 224}

Point in space We saw in Chapter 1 that points in the plane could be represented by com-
plex numbers. Here and henceforth, we use vectors to represent points in the plane, in three
dimensions, and in higher-dimensional spaces.

Task 2.3.2: In this task, we will represent a vector using a Python list.
In Python, assign to the variable L a list of 2-element lists:

>>> L = [[2, 2], [3, 2], [1.75, 1], [2, 1], [2.25, 1], [2.5, 1], [2.75,
1], [3, 1], [3.25, 1]]

Use the plot module described in Task 1.4.1 to plot these 2-vectors.

>>> plot(L, 4)

Unlike complex numbers, vectors can represent points in a higher-dimensional space, e.g. a
three-dimensional space:
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2.4 Vector addition

We have seen examples of what vectors can represent. Now we study the operations performed
with vectors. We have seen that vectors are useful for representing geometric points. The
concept of a vector originated in geometry, and it is in the context of geometry that the basic
vector operations are most easily motivated. We start with vector addition.

2.4.1 Translation and vector addition

We saw in Chapter 1 that translation was achieved in the complex plane by a function f(z) = z0+z
that adds a complex number z0 to its input complex number; here we similarly achieve translation
by a function f(v) = v0 + v that adds a vector to its input vector.

Definition 2.4.1: Addition of n-vectors is defined in terms of addition of corresponding entries:

[u1, u2, . . . , un] + [v1, v2, . . . , vn] = [u1 + v1, u2 + v2, . . . , un + vn]

For 2-vectors represented in Python as 2-element lists, the addition procedure is as follows:

def add2(v,w):
return [v[0]+w[0], v[1]+w[1]]

Quiz 2.4.2: Write the translation “go east one mile and north two miles” as a function from
2-vectors to 2-vectors, using vector addition. Next, show the result of applying this function to
the vectors [4, 4] and [−4,−4].

Answer
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f(v) = [1, 2] + v

f([4, 4]) = [5, 6]

f([−4,−4]) = [−3,−2]

Since a vector such as [1, 2] corresponds to a translation, we can think of the vector as
“carrying” something from one point to another, e.g. from [4, 4] to [5, 6] or from [−4,−4] to
[−3,−2]. This is the sense in which a vector is a carrier.

Task 2.4.3: Recall the list L defined in Task 2.3.2. Enter the procedure definition for 2-vector
addition, and use a comprehension to plot the points obtained from L by adding [1, 2] to each:

>>> plot([add2(v, [1,2]) for v in L], 4)

Quiz 2.4.4: Suppose we represent n-vectors by n-element lists. Write a procedure addn to
compute the sum of two vectors so represented.

Answer

def addn(v, w): return [x+y for (x,y) in zip(v,w)]
or

def addn(v, w): return [v[i]+w[i] for i in range(len(v))]

Every field F has a zero element, so the set FD of D-vectors over F necessarily has a zero
vector, a vector all of whose entries have value zero. I denote this vector by 0D, or merely by 0
if it is not necessary to specify D.

The function f(v) = v + 0 is a translation that leaves its input unchanged.

2.4.2 Vector addition is associative and commutative

Two properties of addition in a field are associativity

(x + y) + z = x + (y + z)

and commutativity
x + y = y + x

Since vector addition is defined in terms of an associative and commutative operation, it too is
associative and commutative:

Proposition 2.4.5 (Associativity and Commutativity of Vector Addition): For any
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vectors u,v,w,
(u + v) + w = u + (v + w)

and
u + v = v + u

2.4.3 Vectors as arrows

Like complex numbers in the plane, n-vectors over R can be visualized as arrows in Rn. The
2-vector [3, 1.5] can be represented by an arrow with its tail at the origin and its head at (3, 1.5)

or, equivalently, by an arrow whose tail is at (−2,−1) and whose head is at (1, 0.5):
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Exercise 2.4.6: Draw a diagram representing the vector [−2, 4] using two different arrows.

In three dimensions, for example, the vector [1, 2, 3] can be represented by an arrow whose
tail is at the origin and whose head is at [1, 2, 3]

or by an arrow whose tail is at [0, 1, 0] and whose head is at [1, 3, 3]:

Like complex numbers, addition of vectors over R can be visualized using arrows. To add u
and v, place the tail of v’s arrow on the head of u’s arrow, and draw a new arrow (to represent
the sum) from the tail of u to the head of v.

u

v
u+v

We can interpret this diagram as follows: the translation corresponding to u can be composed
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with the translation corresponding to v to obtain the translation corresponding to u + v.

Exercise 2.4.7: Draw a diagram illustrating [−2, 4] + [1, 2].

2.5 Scalar-vector multiplication

We saw in Chapter 1 that scaling could be represented in the complex plane by a function
f(z) = r z that multiplies its complex-number input by a positive real number r, and that
multiplying by a negative number achieves a simultaneous scaling and rotation by 180 degrees.
The analogous operation for vectors is called scalar-vector multiplication. In the context of
vectors, a field element (e.g. a number) is called a scalar because it can be be used to scale a
vector via multiplication. In this book, we typically use Greek letters (e.g. α,β, γ) to denote
scalars.

Definition 2.5.1: Multiplying a vector v by a scalar α is defined as multiplying each entry of
v by α:

α [v1, v2, . . . , vn] = [α v1,α v2, . . . ,α vn]

Example 2.5.2: 2 [5, 4, 10] = [2 · 5, 2 · 4, 2 · 10] = [10, 8, 20]

Quiz 2.5.3: Suppose we represent n-vectors by n-element lists. Write a procedure
scalar_vector_mult(alpha, v) that multiplies the vector v by the scalar alpha.

Answer

def scalar_vector_mult(alpha, v):
return [alpha*v[i] for i in range(len(v))]

Task 2.5.4: Plot the result of scaling the vectors in L by 0.5, then plot the result of scaling
them by -0.5.

How shall we interpret an expression such as 2 [1, 2, 3] + [10, 20, 30]? Do we carry out the
scalar-vector multiplication first or the vector addition? Just as multiplication has precedence
over addition in ordinary arithmetic, scalar-vector multiplication has precedence over vector
addition. Thus (unless parentheses indicate otherwise) scalar-vector multiplication happens first,
and the result of the expression above is [2, 4, 6] + [10, 20, 30], which is [12, 24, 36].
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2.5.1 Scaling arrows

Scaling a vector over R by a positive real number changes the length of the corresponding arrow
without changing its direction. For example, an arrow representing the vector [3, 1.5] is this:

and an arrow representing two times this vector is this:

The vector [3, 1.5] corresponds to the translation f(v) = [3, 1.5]+v, and two times this vector
([6, 3]) corresponds to a translation in the same direction but twice as far.

Multiplying a vector by a negative number negates all the entries. As we have seen in
connection with complex numbers, this reverses the direction of the corresponding arrow. For
example, negative two times [3, 1.5] is [−6,−3], which is represented by the arrow
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2.5.2 Associativity of scalar-vector multiplication

Multiplying a vector by a scalar and then multiplying the result by another scalar can be sim-
plified:

Proposition 2.5.5 (Associativity of scalar-vector multiplication): α(βv) = (αβ)v

Proof

To show that the left-hand side equals the right-hand side, we show that each entry of the
left-hand side equals the corresponding enty of the right-hand side. For each element k of
the domain D, entry k of βv is βv[k], so entry k of α(βv) is α(βv[k]). Entry k of (αβ)v is
(αβ)v[k]. By the field’s associative law, α(βv[k]) and (αβ)v[k] are equal. !

2.5.3 Line segments through the origin

Let v be the 2-vector [3, 2] over R. Consider the set of scalars {0, 0.1, 0.2, 0.3, . . . , 0.9, 1.0}. For
each scalar α in this set, α v is a vector that is somewhat shorter than v but points in the same
direction:

The following plot shows the points obtained by multiplying each of the scalars by v:
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plot([scalar_vector_mult(i/10, v) for i in range(11)], 5)

Hmm, seems to be tracing out the line segment from the origin to the point (3, 2). What if
we include as scalar multipliers all the real numbers between 0 and 1? The set of points

{α v : α ∈ R, 0 ≤ α ≤ 1}

forms the line segment between the origin and v. We can visualize this by plotting not all such
points (even Python lacks the power to process an uncountably infinite set of points) but a
sufficiently dense sample, say a hundred points:

plot([scalar_vector_mult(i/100, v) for i in range(101)], 5)

2.5.4 Lines through the origin

As long as we have permitted an infinite set of scales, let’s go all out. What shape do we obtain
when α ranges over all real numbers? The scalars bigger than 1 give rise to somewhat larger
copies of v. The negative scalars give rise to vectors pointing in the opposite direction. Putting
these together,
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we see that the points of
{αv : α ∈ R}

forms the (infinite) line through the origin and through v:

Review question: Express the line segment between the origin and another point through
the origin as a set of scalar multiples of a single vector.

Review question: Express a line through the origin as the set of scalar multiples of a single
vector.

2.6 Combining vector addition and scalar multiplication

2.6.1 Line segments and lines that don’t go through the origin

Great—we can describe the set of points forming a line or line segment through the origin. It
would be a lot more useful if we could describe the set of points forming an arbitrary line or line
segment; we could then, for example, plot street maps:
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We already know that the points forming the segment from [0, 0] to [3, 2] are {α [3, 2] : α ∈
R, 0 ≤ α ≤ 1}. By applying the translation [x, y] )→ [x + 0.5, y + 1] to these points,

we obtain the line segment from [0.5, 1] to [3.5, 3]:

Thus the set of points making up this line segment is:

{α [3, 2] + [0.5, 1] : α ∈ R, 0 ≤ α ≤ 1}

Accordingly, we can plot the line segment using the following statement:

plot([add2(scalar_vector_mult(i/100., [3,2]), [0.5,1]) for i in range(101)], 4)
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We can similarly represent the entire line through two given points. For example, we know
that the line through [0, 0] and [3, 2] is {α [3, 2] : α ∈ R}. Adding [0.5, 1] to each point in this
set gives us the line through [0.5, 1] and [3.5, 3]: {[0.5, 1] + α [3, 2] : α ∈ R}.

Exercise 2.6.1: Given points u = [2, 3] and v = [5, 7] in R2, what is the point w such that
the origin-to-w line segment can be translated to yield the u-to-v line segment? And what is
the translation vector that is applied to both endpoints?

Exercise 2.6.2: Given a pair of points, u = [1, 4], v = [6, 3] in R2, write a mathematical
expressing giving the set of points making up the line segment between the points.

2.6.2 Distributive laws for scalar-vector multiplication and vector ad-
dition

To get a better understanding of this formulation of line segments and lines, we make use of two
properties that arise in combining scalar-vector multiplication and vector adddition. Both arise
from the distributive law for fields, x(y + z) = xy + xz.

Proposition 2.6.3 (Scalar-vector multiplication distributes over vector addition):

α(u + v) = αu + αv (2.1)

Example 2.6.4: As an example, consider the multiplication:

2 ([1, 2, 3] + [3, 4, 4]) = 2 [4, 6, 7] = [8, 12, 14]
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which is the same as:

2 ([1, 2, 3] + [3, 4, 4]) = 2 [1, 2, 3] + 2 [3, 4, 4] = [2, 4, 6] + [6, 8, 8] = [8, 12, 14]

Proof

We use the same approach as used in the proof of Proposition 2.5.5. To show that the
left-hand side of Equation 2.1 equals the right-hand side, we show that each entry of the
left-hand side equals the corresponding entry of the right-hand side.

For each element k of the domain D, entry k of (u + v) is u[k] + v[k], so entry k of
α (u + v) is α (u[k] + v[k]).

Entry k of αu is αu[k] and entry k of α v is α v[k], so entry k of αu+α v is αu[k]+α v[k].
Finally, by the distributive law for fields, α(u[k] + v[k]) = αu[k] + α v[k]. !

Proposition 2.6.5 (scalar-vector multiplication distributes over scalar addition):

(α + β)u = αu + βu

Problem 2.6.6: Prove Proposition 2.6.5.

2.6.3 First look at convex combinations

It might seem odd that the form of the expression for the set of points making up the [0.5, 1]-to-
[3.5, 3] segment, {α [3, 2]+[0.5, 1] : α ∈ R, 0 ≤ α ≤ 1}, mentions one endpoint but not the other.
This asymmetry is infelicitous. Using a bit of vector algebra, we can obtain a nicer expression:

α [3, 2] + [0.5, 1] = α ([3.5, 3] − [0.5, 1]) + [0.5, 1]

= α [3.5, 3] − α [0.5, 1] + [0.5, 1] by Proposition 2.6.3

= α [3.5, 3] + (1 − α) [0.5, 1] by Proposition 2.6.5

= α [3.5, 3] + β [0.5, 1]

where β = 1 − α. We now can write an expression for the [0.5, 1]-to-[3.5, 3] segment

{α [3.5, 3] + β [0.5, 1] : α,β ∈ R,α,β ≥ 0,α + β = 1}

that is symmetric in the two endpoints.
An expression of the form αu + β v where α,β ≥ 0 and α + β = 1 is called a convex

combination of u and v. Based on the example, we are led to the following assertion, which is
true for any pair u,v of distinct n-vectors over R:
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Proposition 2.6.7: The u-to-v line segment consists of the set of convex combinations of u
and v.

Example 2.6.8: The table below shows some convex combinations of pairs of 1- and 2-vectors
over R:

1. u1 = [2], v1 = [12]

2. u2 =

[

5
2

]

, v2 =

[

10
−6

]

α = 1
β = 0

α = .75
β = .25

α = .5
β = .5

α = .25
β = .75

α = 0
β = 1

αu1 + βv1 [2] [4.5] [7] [9.5] [12]

αu2 + βv2

[

5
2

] [

6.25
−2

] [

7.5
−2

] [

8.75
−4

] [

10
−6

]

Task 2.6.9: Write a python procedure segment(pt1, pt2) that, given points represented as
2-element lists, returns a list of a hundred points spaced evenly along the line segment whose
endpoints are the two points

Plot the hundred points resulting when pt1 = [3.5, 3] and pt2 = [0.5, 1]

Example 2.6.10: Let’s consider the convex combinations of a pair of vectors that represent
images,

u = and v = .

For example, with scalars 1
2 and 1

2 , the convex combination, which is the average, looks like this:

1

2
+

1

2
=

To represent the “line segment” between the two face images, we can take a number of convex
combinations:
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1u + 0v 7
8u + 1

8v
6
8u + 2

8v
5
8u + 3

8v
4
8u + 4

8v
3
8u + 5

8v
2
8u + 6

8v
1
8u + 7

8v 0u + 1v

By using these images as frames in a video, we get the effect of a crossfade.

2.6.4 First look at affine combinations

What about the infinite line through [0.5, 1] and [3.5, 3]? We saw that this line consists of the
points of {[0.5, 1] + α [3, 2] : α ∈ R}. Using a similar argument, we can rewrite this set as

{α [3.5, 3] + β [0.5, 1] : α ∈ R,β ∈ R,α + β = 1}

An expression of the form αu+ β v where α+ β = 1 is called an affine combination of u and v.
Based on the example, we are led to the following assertion:

Hypothesis 2.6.11: The line through u and v consists of the set of affine combinations of u
and v.

In Chapter 3, we will explore affine and convex combinations of more than two vectors.

2.7 Dictionary-based representations of vectors

In Section 2.2, I proposed that a vector is a function from some domain D to a field. In Sec-
tion 2.2.1, I proposed to represent such a function using a Python dictionary. It is convenient to
define a Python class Vec so that an instance has two fields (also known as instance variables,
also known as attributes):

• f, the function, represented by a Python dictionary, and

• D, the domain of the function, represented by a Python set.

We adopt the convention described in Section 2.2.1 in which entries with value zero may be
omitted from the dictionary f . This enables sparse vectors to be represented compactly.

It might seem a bad idea to require that each instance of Vec keep track of the domain.
For example, as I pointed out in Section 2.2.1, in information retrieval one typically has many
documents, each including only a very small subset of words; it would waste memory to duplicate
the entire list of allowed words with each document. Fortunately, as we saw in Section 0.5.4,
Python allows many variables (or instance variables) to point to the same set in memory. Thus,
if we are careful, we can ensure that all the vectors representing documents point to the same
domain.

The Python code required to define the class Vec is
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class Vec:
def __init__(self, labels, function):

self.D = labels
self.f = function

Once Python has processed this definition, you can create an instance of Vec like so:

>>> Vec({'A','B','C'}, {'A':1})

The first argument is assigned to the new instance’s D field, and the second is assigned to the
f field. The value of this expression will be the new instance. You can assign the value to a
variable

>>> v = Vec({'A','B','C'}, {'A':1})

and subsequently access the two fields of v, e.g.:

>>> for d in v.D:
... if d in v.f:
... print(v.f[d])
...
1.0

Quiz 2.7.1: Write a procedure zero_vec(D) with the following spec:

• input: a set D

• output: an instance of Vec representing a D-vector all of whose entries have value zero

Answer

Exploiting the sparse-representation convention, we can write the procedure like this:

def zero_vec(D): return Vec(D, {})

Without the convention, one could write it like this:

def zero_vec(D): return Vec(D, {d:0 for d in D})

The procedure zero_vec(D) is defined in the provided file vecutil.py.

2.7.1 Setter and getter

In the following quizzes, you will write procedures that work with the class-based representation
of vectors. In a later problem, you will incorporate some of these procedures into a module that
defines the class Vec.

The following procedure can be used to assign a value to a specified entry of a Vec v:
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def setitem(v, d, val): v.f[d] = val

The second argument d should be a member of the domain v.D. The procedure can be used, for
example, as follows:

>>> setitem(v, 'B', 2.)

Quiz 2.7.2: Write a procedure getitem(v, d) with the following spec:

• input: an instance v of Vec, and an element d of the set v.D

• output: the value of entry d of v

Write your procedure in a way that takes into account the sparse-representation convention.
Hint: the procedure can be written in one-line using a conditional expression (Section 0.5.3).
You can use your procedure to obtain the 'A' entry of the vector v we defined earlier:

>>> getitem(v, 'A')
1

Answer

The following solution uses a conditional expression:

def getitem(v,d): return v.f[d] if d in v.f else 0

Using an if-statement, you could write it like this:

def getitem(v,d):
if d in v.f:

return v.f[d]
else:

return 0

2.7.2 Scalar-vector multiplication

Quiz 2.7.3: Write a procedure scalar_mul(v, alpha) with the following spec:

• input: an instance of Vec and a scalar alpha

• output: a new instance of Vec that represents the scalar-vector product alpha times v.

There is a nice way to ensure that the output vector is as sparse as the input vector, but you are
not required to ensure this. You can use getitem(v, d) in your procedure but are not required
to. Be careful to ensure that your procedure does not modify the vector it is passed as argument;
it creates a new instance of Vec. However, the new instance should point to the same set D as
the old instance.
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Try it out on the vector v:

>>> scalar_mul(v, 2)
<__main__.Vec object at 0x10058cd10>

Okay, that’s not so enlightening. Let’s look at the dictionary of the resulting Vec:

>>> scalar_mul(v, 2).f
{'A': 2.0, 'C': 0, 'B': 4.0}

Answer

The following procedure does not preserve sparsity.

def scalar_mul(v, alpha):
return Vec(v.D, {d:alpha*getitem(v,d) for d in v.D})

To preserve sparsity, you can instead write

def scalar_mul(v, alpha):
return Vec(v.D, {d:alpha*value for d,value in v.f.items()})

2.7.3 Addition

Quiz 2.7.4: Write a procedure add(u, v) with the following spec:

• input: instances u and v of Vec

• output: an instance of Vec that is the vector sum of u and v

Here’s an example of the procedure being used:

>>> u = Vec(v.D, {'A':5., 'C':10.})
>>> add(u,v)
<__main__.Vec object at 0x10058cd10>
>>> add(u,v).f
{'A': 6.0, 'C': 10.0, 'B': 2.0}

You are encouraged to use getitem(v, d) in order to tolerate sparse representations. You are
encouraged not to try to make the output vector sparse. Finally, you are encouraged to use a
dictionary comprehension to define the dictionary for the new instance of Vec.

Answer

def add(u, v):
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return Vec(u.D,{d:getitem(u,d)+getitem(v,d) for d in u.D})

2.7.4 Vector negative, invertibility of vector addition, and vector sub-
traction

The negative of a vector v is the vector −v obtained by negating each element of v. If we
interpret v as an arrow, its negative −v is the arrow of the same length pointed in the exactly
opposite direction.

If we interpret v as a translation (e.g. “Go east two miles and north three miles”), its negative
(e.g., “Go east negative two miles and north negative three miles”) is the inverse translation.
Applying one translation and then another leaves you back where you started.

Vector subtraction is defined in terms of vector addition and negative: u − v is defined as
u + (−v). This definition is equivalent to the obvious definition of vector subtraction: subtract
corresponding elements.

Vector subtraction is the inverse of vector addition. For some vector w, consider the function

f(v) = v + w

that adds w to its input and the function

g(v) = v −w

that subtracts w from its input. One function translates its input by w and the other translates
its input by −w. These functions are inverses of each other. Indeed,

(g ◦ f)(v) = g(f(v))

= g(v + w)

= v + w −w

= v

Quiz 2.7.5: Write a Python procedure neg(v) with the following spec:

• input: an instance v of Vec

• output: a dictionary representing the negative of v

Here’s an example of the procedure being used:

>>> neg(v).f
{'A': -1.0, 'C': 0, 'B': -2.0}

There are two ways to write the procedure. One is by explicitly computing the .f field of the
output vector using a comprehension. The other way is by using an appropriate call to the
procedure scalar_mul you defined in Quiz 2.7.3.
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Answer

def neg(v):
return Vec(v.D, {d:-getitem(v, d) for d in v.D})
or

def neg(v):
return Vec(v.D, {key:-value for key, value in v.f.items()})

or

def neg(v): return scalar_mul(v, -1)

2.8 Vectors over GF (2)

So far we have studied only vectors over R. In this section, we consider vectors over GF (2), and
give some example applications. Remember from Section 1.5 that GF (2) is a field in which the
only values are 0 and 1, and adding 1 and 1 gives 0, and subtracting is the same as adding.

For the sake of brevity, we will sometimes write specific n-vectors over GF (2) as n-bit binary
strings. For example, we write 1101 for the 4-vector whose only zero is in its third entry.

Quiz 2.8.1: GF (2) vector addition practice: What is 1101 + 0111? (Note: it is the same as
1101 − 0111.)

Answer

1010

2.8.1 Perfect secrecy re-revisited

Recall Alice and Bob and their need for perfect secrecy. We saw in Section 1.5.1 that encrypting
a single-bit plaintext consisted of adding that bit to a single-bit key, using GF (2) addition. We
saw also that, to encrypt a sequence of bits of plaintext, it sufficed to just encrypt each bit with
its own bit of key. That process can be expressed more compactly using addition of vectors over
GF (2).

Suppose Alice needs to send a ten-bit plaintext p to Bob.

Vernam’s cypher: Alice and Bob randomly choose a 10-vector k.
Alice computes the cyphertext c according to the formula

c = p + k

where the sum is a vector sum.
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The first thing to check is that this cryptosystem is decryptable—that Bob, who knows k and c,
can recover p. He does so using the equation

p = c− k (2.2)

Example 2.8.2: For example, Alice and Bob agree on the following 10-vector as a key:

k = [0, 1, 1, 0, 1, 0, 0, 0, 0, 1]

Alice wants to send this message to Bob:

p = [0, 0, 0, 1, 1, 1, 0, 1, 0, 1]

She encrypts it by adding p to k:

c = k + p = [0, 1, 1, 0, 1, 0, 0, 0, 0, 1] + [0, 0, 0, 1, 1, 1, 0, 1, 0, 1]

c = [0, 1, 1, 1, 0, 1, 0, 1, 0, 0]

When Bob receives c, he decrypts it by adding k:

c + k = [0, 1, 1, 1, 0, 1, 0, 1, 0, 0] + [0, 1, 1, 0, 1, 0, 0, 0, 0, 1] = [0, 0, 0, 1, 1, 1, 0, 1, 0, 1]

which is the original message.

Next we check that the system satisfies perfect secrecy. The argument should be familiar.
For each plaintext p, the function k )→ k + p is one-to-one and onto, hence invertible. Since the
key k is chosen uniformly at random, therefore, the cyphertext c is also distributed uniformly.

2.8.2 All-or-nothing secret-sharing using GF (2)

I have a secret: the midterm exam. I’ve represented it as an n-vector v over GF (2). I want to
provide it to my two teaching assistants, Alice and Bob (A and B), so they can administer the
midterm while I’m taking a vacation. However, I don’t completely trust them. One TA might
be bribed by a student into giving out the exam ahead of time, so I don’t want to simply provide
each TA with the exam.

I therefore want to take precautions. I provide pieces to the TAs in such a way that the two
TAs can jointly reconstruct the secret but that neither of the TAs all alone gains any information
whatsoever.

Here’s how I do that. I choose a n-vector vA over GF (2) randomly according to the uniform
distribution. (That involves a lot of coin-flips.) I then compute another n-vector vB by

vB := v − vA

Finally, I provide Alice with vA and Bob with vB , and I leave for vacation.
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When the time comes to administer the exam, the two TAs convene to reconstruct the exam
from the vectors they have been given. They simply add together their vectors

vA + vB

The definition of vB ensures that this sum is in fact the secret vector v.
How secure is this scheme against a single devious TA? Assume that Alice is corrupt and

wants to sell information about the exam. Assume that Bob is honest, so Alice cannot get his
help in her evil plan. What does Alice learn from her piece, vA, about the exam v? Since Alice’s
piece was chosen uniformly at random, she learns nothing from it.

Now suppose instead that Bob is the corrupt TA. What does he learn from his piece, vB ,
about the exam? Define the function f : GF (2)n −→ GF (2)n by

f(x) = v − x

The function g(y) = v + x is the inverse of f , so f is an invertible function.2 Therefore, since
vB = f(vA) and vA is chosen according to the uniform distribution, the distribution of vB is also
uniform. This shows that Bob learns nothing about the secret from his piece. The secret-sharing
scheme is secure.

The company RSA recently introduced a product based on this idea:

The main idea is to split each password into two parts, and store the two parts on two different
servers. An attack on only one server does not compromise the security of the passwords.

Problem 2.8.3: Explain how to share an n-bit secret among three TAs so that a cabal con-
sisting of any two of them learns nothing about the secret.

2.8.3 Lights Out

Vectors over GF (2) can be used to analyze a puzzle called Lights Out. It is a five-by-five grid of
lighted buttons.

2In fact, because we are using GF (2), it turns out that g is the same function as f , but that is not important
here.



CHAPTER 2. THE VECTOR 107

Initially some lights are on and some are off. When you push a button, you switch the corre-
sponding light (from on to off or vice versa) but you also switch the lights of the button’s four
neighbors. The goal is to turn out all the lights.

Solving this problem is a computational problem:

Computational Problem 2.8.4: Solving Lights Out:
Given an initial configuration of lights, find a sequence of button-pushes that turns out all the
lights, or report that none exists.

This Computational Problem raises a question:

Question 2.8.5: Is there a way to solve the puzzle for every possible starting configuration?

Of course, the Question and the Computational Problem can be studied not just for the tradi-
tional five-by-five version of Lights Out, but for a version of any dimensions.

What do vectors have to do with Lights Out? The state of the puzzle can be represented by
a vector over GF (2) with one entry for each of the grid positions. A convenient domain is the
set of tuples (0,0), (0,1), ..., (4,3), (4,4). We adopt the convention of representing a light that is
on by a one and a light that is off by a zero. Thus the state of the puzzle in the picture is

{(0,0):one, (0,1):one, (0,2):one, (0,3):one, (0,4):0,
(1,0):one, (1,1):one, (1,2):one, (1,3):0, (1,4):one,
(2,0):one, (2,1):one, (2,2):one, (2,3):0, (2,4):one,
(3,0):0, (3,1):0, (3,2):0, (3,3):one, (3,4):one,
(4,0):one, (4,1):one, (4,2):0, (4,3):one, (4,4):one}

Let s denote this vector.
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A move consists of pushing a button, which changes the state of the puzzle. For example,
pushing the top-left button (0,0) flips the light at (0,0), at (0,1), and at (1,0). Therefore this
change can be represented by the “button vector”

{(0,0):one, (0,1):one, (1,0):one}

Let v0,0 denote this vector.
The new state resulting when you start s and then push button (0, 0) is represented by the

vector s + v0,0. Why?

• For each entry (i, j) for which v0,0 is zero, entries (i, j) in s and s + v0,0 are the same.

• For each entry (i, j) for which v0,0 is one, entries (i, j) in s and s + v0,0 differ.

We chose the vector v0,0 to have ones in exactly the positions that change when you push
button (0, 0).

The state of the puzzle is now

Next we will push the button at (1, 1), which flips the lights at (1,1), (0,1), (1,0), (2,1), and
(1,2). This button corresponds to the vector

{(1,1):one, (0,1):one, (1,0):one, (2,1):one, (1,2):one}

which we denote by v1,1. Before the button is pushed, the state is represented by the vector
s + v0,0. After the button is pushed, the state is represented by the vector s + v0,0 + v1,1.
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Summarizing, executing a move—pushing a button—means updating the state of the puzzle as:

new state := old state + button vector

where by addition we mean addition of vectors over GF (2). Thus a button vector can be viewed
as a translation.

Here is an example of solving an instance of the 3 × 3 puzzle:

•
•

•
+

• •
• =

•
• •

•
state move new state

Returning to the 5 × 5 case, there are twenty-five buttons, and for each button there is a
corresponding button vector. We can use these vectors to help us solve the puzzle. Given an
initial state of the lights, the goal is to find a sequence of button-pushes that turn off all the
lights. Translated into the language of vectors, the problem is: given a vector s representing the
initial state, select a sequence of button vectors v1, . . . ,vm such that

(· · · ((s + v1) + v2) · · · ) + vm = the zero vector

By the associativity of vector addition, the parenthesization on the left-hand side is irrelevant,
so we can instead write

s + v1 + v2 + · · · + vm = the all-zeroes vector

Let us add s to both sides. Since a vector plus itself is the all-zeroes vector, and adding the
all-zeroes vector does nothing, we obtain

v1 + v2 + · · · + vm = s
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If a particular button’s vector appears twice on the left-hand side, the two occurences cancel
each other out. Thus we can restrict attention to solutions in which each button vector appears
at most once.

By the commutativity of vector addition, the order of addition is irrelevant. Thus finding
out how to get from a given initial state of the lights to the completely dark state is equivalent
to selecting a subset of the button vectors whose sum is the vector s corresponding to the given
initial state. If we could solve this puzzle, just think of the energy savings!

For practice, let’s try the 2×2 version of the puzzle. The button vectors for the 2×2 puzzle are:

• •
•

• •
•

•
• •

•
• •

where the black dots represent ones.

Quiz 2.8.6: Find the subset of the button vectors whose sum is
•
•

Answer

•
• =

• •
• +

•
• •

Now that we know how to model Lights Out in terms of vectors, we can see Computational
Problem 2.8.4 (Solving Lights Out) as a special case of a more general problem:

Computational Problem 2.8.7: Representing a given vector as a sum of a subset of other
given vectors over GF (2)

• input: a vector s and a list L of vectors over GF (2)

• output: A subset of the vectors in L whose sum is s, or a report that there is no such
subset.

There is a brute-force way to compute a solution to this problem: try each possible subset
of vectors in L. The number of possibilities is 2|L|, 2 to the power of the cardinality of L. For
example, in the Lights Out problem, L consists of twenty-five vectors, one for each of the buttons.
The number of possible subsets is 225, which is 33,554,432.

However, there is a much slicker way to compute the solution. In Chapter 3, we introduce
a still more general problem, Computational Problem 3.1.8. In Chapter 7, we will describe an
algorithm to solve it. The algorithm is relevant not only to Lights Out problems but to other,
perhaps more serious problems such as factoring integers.
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2.9 Dot-product

For two D-vectors u and v, the dot-product is the sum of the product of corresponding entries:

u · v =
∑

k∈D

u[k] v[k]

For example, for traditional vectors u = [u1, . . . , un] and v = [v1, . . . , vn],

u · v = u1v1 + u2v2 + · · · + unvn

Note that the output is a scalar, not a vector. For this reason, the dot-product is sometimes
called the scalar product of vectors.

Example 2.9.1: Consider the dot-product of [1, 1, 1, 1, 1] with [10, 20, 0, 40,−100]. To find
the dot-product, we can write the two vectors so that corresponding entries are aligned, multiply
the pairs of corresponding entries, and sum the resulting products.

1 1 1 1 1
• 10 20 0 40 -100

10 + 20 + 0 + 40 + (-100) = -30
In general, the dot-product of an all-ones vector with a second vector equals the sum of entries
of the second vector:

[1, 1, . . . , 1] · [v1, v2, . . . , vn] = 1 · v1 + 1 · v2 + · · · + 1 · vn

= v1 + v2 + · · · + vn

Example 2.9.2: Consider the dot-product of [0, 0, 0, 0, 1] with [10, 20, 0, 40,−100].
0 0 0 0 1

• 10 20 0 40 -100
0 + 0 + 0 + 0 + (-100) = -100

In general, if only one entry of u, say the ith entry, is 1, and all other entries of u are zero, u ·v
is the ith entry of v:

[0, 0, · · · , 0, 1, 0, · · · , 0, 0] · [v1, v2, · · · , vi−1, vi, vi+1, . . . , vn]

= 0 · v1 + 0 · v2 + · · · + 0 · vi−1 + 1 · vi + 0 · vi+1 + · · · + 0 · vn

= 1 · vi

= vi

Quiz 2.9.3: Express the average of the entries of an n-vector v as a dot-product.



CHAPTER 2. THE VECTOR 112

Answer

Let u be the vector in which every entry is 1/n. Then u · v is the average of the entries of
v.

Quiz 2.9.4: Write a procedure list_dot(u, v) with the following spec:

• input: equal-length lists u and v of field elements

• output: the dot-product of u and v interpreted as vectors

Use the sum(·) procedure together with a list comprehension.

Answer

def list_dot(u, v): return sum([u[i]*v[i] for i in range(len(u))])
or

def list_dot(u, v): return sum([a*b for (a,b) in zip(u,v)])

2.9.1 Total cost or benefit

Example 2.9.5: Suppose D is a set of foods, e.g. four ingredients of beer:

D = {hops,malt,water, yeast}

A cost vector maps each food to a price per unit amount:

cost = Vec(D, {hops : $2.50/ounce,malt : $1.50/pound,water : $0.006, yeast : $0.45/gram})

A quantity vector maps each food to an amount (e.g. measured in pounds). For example, here
is the amount of each of the four ingredients going into about six gallons of stout:
quantity = Vec({hops:6 ounces, malt:14 pounds, water:7 gallons, yeast:11 grams})
The total cost is the dot-product of cost with quantity:

cost · quantity = $2.50 · 6 + $1.50 · 14 + $0.006 · 7 + $0.45 · 11 = $40.992

A value vector maps each food to its caloric content per pound:

value = {hops : 0,malt : 960,water : 0, yeast : 3.25}

The total calories represented by six gallons of stout is the dot-product of value with quantity:

value · quantity = 0 · 6 + 960 · 14 + 7 · 0 + 3.25 · 11 = 13475.75



CHAPTER 2. THE VECTOR 113

2.9.2 Linear equations

Definition 2.9.6: A linear equation is an equation of the form a ·x = β, where a is a vector,
β is a scalar, and x is a vector variable.

The scalar β is called the right-hand side of the linear equation because it is conventionally
written on the right of the equals sign.

Example 2.9.7: Sensor node energy utilization: Sensor networks are made up of small, cheap
sensor nodes. Each sensor node consists of some hardware components (e.g., radio, temperature
sensor, memory, CPU). Often a sensor node is battery-driven and located in a remote place, so
designers care about each component’s power consumption. Define

D = {radio, sensor,memory,CPU}

The function mapping each hardware component to its power consumption is a vector that we
will call rate:

rate = Vec(D, {memory : 0.06W, radio : 0.1W, sensor : 0.004W,CPU : 0.0025W})

The function mapping each component to the amount of time it is on during a test period is a
vector that we will call duration:

duration = Vec(D, {memory : 1.0s, radio : 0.2s, sensor : 0.5s,CPU : 1.0s})

The total energy consumed by the sensor node during the test period is the dot-product of rate
and duration:

duration · rate = 0.0845J

measured in Joules (equivalently, Watt-seconds)

>>> D = {'memory', 'radio', 'sensor', 'CPU'}
>>> rate = Vec(D, {'memory':0.06, 'radio':0.1, 'sensor':0.004, 'CPU':0.0025})
>>> duration = Vec(D, {'memory':1.0, 'radio':0.2, 'sensor':0.5, 'CPU':1.0})
>>> rate*duration
0.0845

Now suppose that in reality we don’t know the power consumption of each hardware com-
ponent; the values of the entries of rate are unknowns. Perhaps we can calculate these values
by testing the total power consumed during each of several test periods. Suppose that there are
three test periods. For i = 1, 2, 3, we have a vector durationi giving the amount of time each
hardware component is on during test period i, and a scalar βi giving the total power used during
the test period. We consider rate a vector-valued variable, and we write down what we know in
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terms of five linear equations involving that variable:

duration1 · rate = β1

duration2 · rate = β2

duration3 · rate = β3

Can we compute the entries of rate from these equations? This amounts to two questions:

1. Is there an algorithm to find a vector that satisfies these linear equations?

2. Is there exactly one solution, one vector that satisfies the linear equations?

Even if there is an algorithm to compute some vector that satisfies the linear equations, we
cannot be sure that the solution we compute is in fact the vector we are seeking unless there is
only one vector that satisfies the equations.

Example 2.9.8: Here are some duration vectors:

>>> duration1 = Vec(D, {'memory':1.0, 'radio':0.2, 'sensor':0.5, 'CPU':1.0})
>>> duration2 = Vec(D, {'sensor':0.2, 'CPU':0.4})
>>> duration3 = Vec(D, {'memory':0.3, 'CPU':0.1})

Can we find a vector rate such that duration1*rate = 0.11195, duration2*rate = 0.00158,
and duration3*rate = 0.02422? And is there only one such vector?

Quiz 2.9.9: Using the data in the following table, calculate the rate of energy consumption of
each of the hardware components. The table specifies for each of four test periods how long each
hardware component operates and how much charge is transferred through the sensor node.

radio sensor memory CPU TOTAL ENERGY CONSUMED
test 0 1.0 sec 1.0 sec 0 sec 0 sec 1.5 J
test 1 2.0 sec 1.0 sec 0 0 2.5 J
test 2 0 0 1.0 sec 1.0 sec 1.5 J
test 3 0 0 0 1.0 sec 1 W

Answer

radio sensor memory CPU
1 W 0.5 W 0.5 W 1 W

Definition 2.9.10: In general, a system of linear equations (often abbreviated linear system)



CHAPTER 2. THE VECTOR 115

is a collection of equations:

a1 · x = β1

a2 · x = β2

... (2.3)

am · x = βm

where x is a vector variable. A solution is a vector x̂ that satisfies all the equations.

With these definitions in hand, we return to the two questions raised in connection with esti-
mating the energy consumption of sensor-node components. First, the question of uniqueness:

Question 2.9.11: Uniqueness of solution to a linear system
For a given linear system (such as 2.3), how can we tell if there is only one solution?

Second, the question of computing a solution:

Computational Problem 2.9.12: Solving a linear system

• input: a list of vectors a1, . . . ,am, and corresponding scalars β1, . . . ,βm (the right-hand
sides)

• output: a vector x̂ satisfying the linear system 2.3 or a report that none exists.

Computational Problem 2.8.7, Representing a given vector as a sum of a subset of other given
vectors over GF (2), will turn out to be a special case of this problem. We will explore the
connections in the next couple of chapters. In later chapters, we will describe algorithms to solve
the computational problems.

2.9.3 Measuring similarity

Dot-product can be used to measure the similarity between vectors over R.

Comparing voting records

In Lab 2.12, you will compare the voting records of senators using dot-product. The domain D
is a set of bills the Senate voted on. Each senator is represented by a vector that maps a bill to
{+1,−1, 0}, corresponding to Aye, Nay, or Abstain. Consider the dot-product of two Senators,
e.g. (then) Senator Obama and Senator McCain. For each bill, if the two senators agreed (if
they both voted in favor or both voted against), the product of the corresponding entries is 1. If
the senators disagreed (if one voted in favor and one voted against), the product is -1. If one or
both abstained, the product is zero. Adding up these products gives us a measure of how much
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they agree: the higher the sum, the greater the agreement. A positive sum indicates general
agreement, and a negative sum indicates general disagreement.

Comparing audio segments

Suppose you have a short audio clip and want to search for occurences of it in a longer audio
segment. How would you go about searching for the needle (the short audio clip) in the long
segment (the haystack)?

We pursue this idea in the next example. In preparation, we consider a simpler problem:
measuring the similarity between two audio segments of the same length.

Mathematically, an audio segment is a waveform, a continuous function of time:

The value of the function is amplitude. The amplitude oscillates between being a positive number
and being a negative number. How positive and how negative depends on the volume of the audio.

On a digital computer, the audio segment is represented by a sequence of numbers, values of
the continuous function sampled at regular time intervals, e.g. 44,100 times a second:

Let’s first consider the task of comparing two equally long audio segments. Suppose we have two
segments, each consisting of n samples, represented as n-vectors u and v.

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

5 -3 -9 0 -1 3 0 -2 -1 6 0 0 -4 5 -7 1 -9 0 -1 0 9 5 -3



CHAPTER 2. THE VECTOR 117

One simple way to compare them is using dot-product
∑n

i=1 u[i] v[i]. Term i in this sum is
positive if u[i] and v[i] have the same sign, and negative if they have opposite signs. Thus, once
again, the greater the agreement, the greater the value of the dot-product.

Nearly identical audio segments (even if they differ in loudness) will produce a higher value
than different segments. However, the bad news is that if the two segments are even slightly
off in tempo or pitch, the dot-product will be small, probably close to zero. (There are other
techniques to address differences of this kind.)

Finding an audio clip

Back to the problem of finding a needle (a short audio clip) in a haystack (a long audio segment).
Suppose, for example, that the haystack consists of 23 samples and the needle consists of 11
samples.

Suppose we suspect that samples 10 through 22 of the long segment match up with the sam-
ples comprising the short clip. To verify that suspicion, we can form the vector consisting of
samples 10 through 22 of the long segment, and compute the dot-product of that vector with the
short clip:

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

Of course, we ordinarily have no idea where in the long segment we might find the short clip.
It might start at position 0, or position 1, or ... or 12. There are 23 − 11 + 1 possible starting
positions (not counting those positions too close to the end for the short clip to appear there).
We can evaluate each of these possibilities by computing an appropriate dot-product.

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9
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5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

2 7 4 -3 0 -1 -6 4 5 -8 -9

For this example, the long segment consists of 23 numbers and the short clip consists of 11
numbers, so we end up with 23 − 11 dot-products. We put these twelve numbers in an output
vector.

Quiz 2.9.13: Suppose the haystack is [1,−1, 1, 1, 1,−1, 1, 1, 1] and the needle is [1,−1, 1, 1,−1, 1].
Compute the dot-products and indicate which position achieves the best match.

Answer

The dot-products are [2, 2, 0, 0], so the best matches start at position 0 and 1 of the haystack.

Quiz 2.9.14: This method of searching is not universally applicable. Say we wanted to locate
the short clip [1, 2, 3] in the longer segment [1, 2, 3, 4, 5, 6]. What would the dot-product method
select as the best match?

Answer

There are 4 possible starts to our vector, and taking the dot product at each yields the
following vector:

[1 + 4 + 9, 2 + 6 + 12, 3 + 8 + 15, 4 + 10 + 18] = [14, 20, 26, 32]

By that measure, the best match is to start at 4, which is obviously not right.

Now you will write a program to carry out these dot-products.

Quiz 2.9.15: Write a procedure dot_product_list(needle,haystack) with the following
spec:
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• input: a short list needle and a long list haystack, both containing numbers

• output: a list of length len(haystack)-len(needle) such that entry i of the output list
equals the dot-product of the needle with the equal-length sublist of haystack starting at
position i

Your procedure should use a comprehension and use the procedure list_dot(u,v) from Quiz 2.9.4.
Hint: you can use slices as described in Section 0.5.5.

Answer

def dot_product_list(needle, haystack):
s = len(needle)
return [dot(needle, haystack[i:i+s]) for i in range(len(haystack)-s)]

First look at linear filters

In Section 2.9.3, we compared a short needle to a slice of a long haystack by turning the slice
into a vector and taking the dot-product of the slice with the needle. Here is another way to
compute the same number: we turn the needle into a longer vector by padding it with zeroes,
and then calculate the dot-product of the padded vector with the haystack:

5 -6 9 -9 -5 -9 -5 5 -8 -5 -9 9 8 -5 -9 6 -2 -4 -9 -1 -1 -9 -3

0 0 0 0 0 0 0 0 0 0 2 7 4 -3 0 -1 -6 4 5 -8 -9 0 0

We can similarly compute the dot-products corresponding to other alignments of the needle
vector with the haystack vector. This process is an example of applying a linear filter. The short
clip plays the role of the kernel of the filter. In a more realistic example, both the needle vector
and the haystack vector would be much longer. Imagine if the haystack were of length 5,000,000
and the needle were of length 50,000. We would have to compute almost 5,000,000 dot-products,
each involving about 50,000 nonzero numbers. This would take quite a while.

Fortunately, there is a computational shortcut. In Chapter 4, we observe that matrix-vector
multiplication is a convenient notation for computing the output vector w from the input vector u
and the kernel. In Chapter 10, we give an algorithm for quickly computing all these dot-products.
The algorithm draws on an idea we study further in Chapter 12.

2.9.4 Dot-product of vectors over GF (2)

We have seen some applications of dot-products of vectors over R. Now we consider dot-products
of vectors over GF (2).

Example 2.9.16: Consider the dot-product of 11111 and 10101:
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1 1 1 1 1
• 1 0 1 0 1

1 + 0 + 1 + 0 + 1 = 1

Next, consider the dot-product of 11111 and 00101:

1 1 1 1 1
• 0 0 1 0 1

0 + 0 + 1 + 0 + 1 = 0

In general, when you take the dot-product of an all-ones vector with a second vector, the value
is the parity of the second vector: 0 if the number of ones is even, 1 if the number of ones is
odd.

2.9.5 Parity bit

When data are stored or transmitted, errors can occur. Often a system is designed to detect such
errors if they occur infrequently. The most basic method of error detection is a parity check bit.
To reliably transmit an n-bit sequence, one computes one additional bit, the parity bit, as the
parity of the n-bit sequence, and sends that along with the n-bit sequence.

For example, the PCI (peripheral component interconnect) bus in a computer has a PAR line
that transmits the parity bit. A mismatch generally causes a processor interrupt.

Parity check has its weaknesses:

• If there are exactly two bit errors (more generally, an even number of errors), the parity
check will not detect the problem. In Section 3.6.4, I discuss checksum functions, which do
a better job of catching errors.

• In case there is a single error, parity check doesn’t tell you in which bit position the error
has occurred. In Section 4.7.3, I discuss error-correcting codes, which can locate the error.

2.9.6 Simple authentication scheme

We consider schemes that enable a human to log onto a computer over an insecure network.
Such a scheme is called an authentication scheme since it provides a way for the human to give
evidence that he is who he says he is. The most familiar such scheme is based on passwords:
Harry, the human, sends his password to Carole, the computer, and the computer verifies that
it is the correct password.

This scheme is a disaster if there is an eavesdropper, Eve, who can read the bits going over the
network. Eve need only observe one log-on before she learns the password and can subsequently
log on as Harry.

A scheme that is more secure against eavesdroppers is a challenge-response scheme: A human
tries to log on to Carole. In a series of trials, Carole repeatedly asks the human questions that
someone not possessing the password would be unlikely to answer correctly. If the human answers
each of several questions correctly, Carole concludes that the human knows the password.

Here is a simple challenge-response scheme. Suppose the password is a n-bit string, i.e. an
n-vector x̂ over GF (2), chosen uniformly at random. In the ith trial, Carole selects a nonzero
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Figure 2.2: Password Reuse (http://xkcd.com/792/)
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n-vector ai, a challenge vector, and sends it to the human. The human sends back a single bit βi,
which is supposed to be the dot-product of ai and the password x̂, and Carole checks whether
βi = ai · x̂. If the human passes enough trials, Carole concludes that the human knows the
password, and allows the human to log in.

Example 2.9.17: The password is x̂ = 10111. Harry initiates log-in. In response, Carole
selects the challenge vector a1 = 01011 and sends it to Harry. Harry computes the dot-product
a1 · x̂:

0 1 0 1 1
• 1 0 1 1 1

0 + 0 + 0 + 1 + 1 = 0

and responds by sending the resulting bit β1 = 0 back to Carole.
Next, Carole sends the challenge vector a2 = 11110 to Harry. Harry computes the dot-

product a2 · x̂:
1 1 1 1 0

• 1 0 1 1 1
1 + 0 + 1 + 1 + 0 = 1

and responds by sending the resulting bit β2 = 1 back to Carole.
This continues for a certain number k of trials. Carole lets Harry log in if β1 = a1 · x̂,β2 =

a2 · x̂, . . . ,βk = ak · x̂.

2.9.7 Attacking the simple authentication scheme

We consider how Eve might attack this scheme. Suppose she eavesdrops on m trials in which
Harry correctly responds. She learns a sequence of challenge vectors a1,a2, . . . ,am and the
corresponding response bits β1,β2, . . . ,βm. What do these tell Eve about the password?

Since the password is unknown to Eve, she represents it by a vector-valued variable x. Since
Eve knows that Harry correctly computed the response bits, she knows that the following linear
equations are true:

a1 · x = β1

a2 · x = β2

...

am · x = βm (2.4)

Perhaps Eve can compute the password by using an algorithm for Computational Problem 2.9.12,
solving a linear system! Well, perhaps she can find some solution to the system of equations but
is it the correct one? We need to consider Question 2.9.11: does the linear system have a unique
solution?

Perhaps uniqueness is too much to hope for. Eve would likely be satisfied if the number of
solutions were not too large, as long as she could compute them all and then try them out one
by one. Thus we are interested in the following Question and Computational Problem:
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Question 2.9.18: Number of solutions to a linear system over GF (2)
How many solutions are there to a given linear system over GF (2)?

Computational Problem 2.9.19: Computing all solutions to a linear system over GF (2)
Find all solutions to a given linear system over GF (2).

However, Eve has another avenue of attack. Perhaps even without precisely identifying the
password, she can use her knowledge of Harry’s response bits to derive the answers to future
challenges! For which future challenge vectors a can the dot-products with x be computed from
the m equations? Stated more generally:

Question 2.9.20: Does a system of linear equations imply any other linear equations? If so,
what other linear equations?

We next study properties of dot-product, one of which helps address this Question.

2.9.8 Algebraic properties of the dot-product

In this section we introduce some simple but powerful algebraic properties of the dot-product.
These hold regardless of the choice of field (e.g. R or GF (2)).

Commutativity When you take a dot-product of two vectors, the order of the two does not
matter:

Proposition 2.9.21 (Commutativity of dot-product): u · v = v · u

Commutativity of the dot-product follows from the fact that scalar-scalar multiplication is com-
mutative:

Proof

[u1, u2, . . . , un] · [v1, v2, . . . , vn] = u1v1 + u2v2 + · · · + unvn

= v1u1 + v2u2 + · · · + vnun

= [v1, v2, . . . , vn] · [u1, u2, . . . , un]

!
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Homogeneity The next property relates dot-product to scalar-vector multiplication: multi-
plying one of the vectors in the dot-product is equivalent to multiplying the value of the dot-
product.

Proposition 2.9.22 (Homogeneity of dot-product): (αu) · v = α (u · v)

Problem 2.9.23: Prove Proposition 2.9.22.

Problem 2.9.24: Show that (αu) · (α v) = α (u ·v) is not always true by giving a counterex-
ample.

Distributivity The final property relates dot-product to vector addition.

Proposition 2.9.25 (Dot-product distributes over vector addition): (u + v) · w =
u · w + v · w

Proof

Write u = [u1, . . . , un],v = [v1, . . . , vn] and w = [w1, . . . , wn].

(u + v) · w = ([u1, . . . , un] + [v1, . . . , vn]) · [w1, . . . , wn]

= [u1 + v1, . . . , un + vn] · [w1, . . . , wn]

= (u1 + v1)w1 + · · · + (un + vn)wn

= u1w1 + v1w1 + · · · + unwn + vnwn

= (u1w1 + · · · + unwn) + (v1w1 + · · · + vnwn)

= [u1, . . . , un] · [w1, . . . , wn] + [v1, . . . , vn] · [w1, . . . , wn]

!

Problem 2.9.26: Show by giving a counterexample that (u + v) · (w + x) = u · w + v · x is
not true.

Example 2.9.27: We first give an example of the distributive property for vectors over the
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reals: [27, 37, 47] · [2, 1, 1] = [20, 30, 40] · [2, 1, 1] + [7, 7, 7] · [2, 1, 1]:

20 30 40
• 2 1 1

20 · 2 + 30 · 1 + 40 · 1 = 110

7 7 7
• 2 1 1

7 · 2 + 7 · 1 + 7 · 1 = 28

27 37 47
• 2 1 1

27 · 2 + 37 · 1 + 47 · 1 = 138

2.9.9 Attacking the simple authentication scheme, revisited

I asked in Section 2.9.7 whether Eve can use her knowledge of Harry’s responses to some challenges
to derive the answers to others. We address that question by using the distributive property for
vectors over GF (2).

Example 2.9.28: This example builds on Example 2.9.17 (Page 122). Carole had previously
sent Harry the challenge vectors 01011 and 11110, and Eve had observed that the response bits
were 0 and 1. Suppose Eve subsequently tries to log in as Harry, and Carole happens to send
her as a challenge vector the sum of 01011 and 11110. Eve can use the distributive property to
compute the dot-product of this sum with the password x even though she does not know the
password:

(01011 + 11110) · x = 01011 · x + 11110 · x
= 0 + 1
= 1

Since you know the password, you can verify that this is indeed the correct response to the
challenge vector.

This idea can be taken further. For example, suppose Carole sends a challenge vector that
is the sum of three previously observed challenge vectors. Eve can compute the response bit
(the dot-product with the password) as the sum of the responses to the three previous challenge
vectors.

Indeed, the following math shows that Eve can compute the right response to the sum of any
number of previous challenges for which she has the right response:

if a1 · x = β1

and a2 · x = β2
...

...
and ak · x = βk

then (a1 + a2 + · · · + ak) · x = (β1 + β2 + · · · + βk)
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Problem 2.9.29: Eve knows the following challenges and responses:

challenge response
110011 0
101010 0
111011 1
001100 1

Show how she can derive the right responses to the challenges 011101 and 000100.

Imagine that Eve has observed hundreds of challenges a1, . . . ,an and responses β1, . . . ,βn,
and that she now wants to respond to the challenge a. She must try to find a subset of a1, . . . ,an

whose sum equals a.
Question 2.9.20 asks: Does a system of linear equations imply any other linear equations?

The example suggests a partial answer:

if a1 · x = β1

and a2 · x = β2
...

...
and ak · x = βk

then (a1 + a2 + · · · + ak) · x = (β1 + β2 + · · · + βk)

Therefore, from observing challenge vectors and the response bits, Eve can derive the response
to any challenge vector that is the sum of any subset of previously observed challenge vectors.

That presumes, of course, that she can recognize that the new challenge vector can be ex-
pressed as such a sum, and determine which sum! This is precisely Computational Problem 2.8.7.
We are starting to see the power of computational problems in linear algebra; the same compu-
tational problem arises in addressing solving a puzzle and attacking an authentication scheme!
Of course, there are many other settings in which this problem arises.

2.10 Our implementation of Vec

In Section 2.7, we gave the definition of a rudimentary Python class for representing vectors, and
we developed some procedures for manipulating this representation.

2.10.1 Syntax for manipulating Vecs

We will expand our class definition of Vec to provide some notational conveniences:
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operation syntax
vector addition u+v
vector negation -v

vector subtraction u-v
scalar-vector multiplication alpha*v

division of a vector by a scalar v/alpha
dot-product u*v

getting value of an entry v[d]
setting value of an entry v[d] = ...
testing vector equality u == v
pretty-printing a vector print(v)

copying a vector v.copy()

In addition, if an expression has as a result a Vec instance, the value of the expression will be
presented not as an obscure Python incantation

>>> v
<__main__.Vec object at 0x10058cad0>

but as an expression whose value is a vector:

>>> v
Vec({'A', 'B', 'C'},{'A': 1.0})

2.10.2 The implementation

In Problem 2.14.10, you will implement Vec. However, since this book is not about the intricacies
of defining classes in Python, you need not write the class definition; it will be provided for you.
All you need to do is fill in the missing bodies of some procedures, most of which you wrote in
Section 2.7.

2.10.3 Using Vecs

You will write the bodies of named procedures such as setitem(v, d, val) and add(u,v) and
scalar mul(v, alpha). However, in actually using Vecs in other code, you must use operators
instead of named procedures, e.g.

>>> v['a'] = 1.0

instead of

>>> setitem(v, 'a', 1.0)

and

>>> b = b - (b*v)*v

instead of

>>> b = add(b, neg(scalar_mul(v, dot(b,v))))
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In fact, in code outside the vec module that uses Vec, you will import just Vec from the vec
module:

from vec import Vec

so the named procedures will not be imported into the namespace. Those named procedures in
the vec module are intended to be used only inside the vec module itself.

2.10.4 Printing Vecs

The class Vec defines a procedure that turns an instance into a string for the purpose of printing:

>>> print(v)

A B C
------
1 0 0

The procedure for pretty-printing a vector v must select some order on the domain v.D. Ours uses
sorted(v.D, key=hash), which agrees with numerical order on numbers and with alphabetical
order on strings, and which does something reasonable on tuples.

2.10.5 Copying Vecs

The Vec class defines a .copy() method. This method, called on an instance of Vec, returns a
new instance that is equal to the old instance. It shares the domain .D with the old instance.
but has a new function .f that is initially equal to that of the old instance.

Ordinarily you won’t need to copy Vecs. The scalar-vector multiplication and vector addition
operations return new instances of Vec and do not mutate their inputs.

2.10.6 From list to Vec

The Vec class is a useful way of representing vectors, but it is not the only such representation. As
mentioned in Section 2.1, we will sometimes represent vectors by lists. A list L can be viewed as a
function from {0, 1, 2, . . . , len(L)−1}, so it is possible to convert from a list-based representation
to a dictionary-based representation.

Quiz 2.10.1: Write a procedure list2vec(L) with the following spec:

• input: a list L of field elements

• output: an instance v of Vec with domain {0, 1, 2, . . . , len(L) − 1} such that v[i] = L[i]
for each integer i in the domain

Answer

def list2vec(L):
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return Vec(set(range(len(L))), {k:x for k,x in enumerate(L)})
or

def list2vec(L):
return Vec(set(range(len(L))), {k:L[k] for k in range(len(L))})

This procedure facilitates quickly creating small Vec examples. The procedure definition is
included in the provided file vecutil.py.

2.11 Solving a triangular system of linear equations

As a step towards Computational Problem 2.9.12 (Solving a linear system), we describe an
algorithm for solving a system if the system has a special form.

2.11.1 Upper-triangular systems

A upper-triangular system of linear equations has the form

[ a11, a12, a13, a14, · · · a1,n−1, a1,n ] · x = β1

[ 0, a22, a23, a24, · · · a2,n−1, a2,n ] · x = β2

[ 0, 0, a33, a34, · · · a3,n−1, a3,n ] · x = β3
...

[ 0, 0, 0, 0, · · · an−1,n−1, an−1,n ] · x = βn−1

[ 0, 0, 0, 0, · · · 0, an,n ] · x = βn

That is,

• the first vector need not have any zeroes,

• the second vector has a zero in the first position,

• the third vector has zeroes in the first and second positions,

• the fourth vector has zeroes in the first, second, and third positions,

...

• the n − 1st vector is all zeroes except possibly for the n − 1st and nth entries, and

• the nth vector is all zeroes except possibly for the nth entry.
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Example 2.11.1: Here’s an example using 4-vectors:

[ 1, 0.5, −2, 4 ] · x = −8
[ 0, 3, 3, 2 ] · x = 3
[ 0, 0, 1, 5 ] · x = −4
[ 0, 0, 0, 2 ] · x = 6

The right-hand sides are -8, 3, -4, and 6.

The origin of the term upper-triangular system should be apparent by considering the positions
of the nonzero entries: they form a triangle:

Writing x = [x1, x2, x3, x4] and using the definition of dot-product, we can rewrite this system
as four ordinary equations in the (scalar) unknowns x1, x2, x3, x4:

1x1 + 0.5x2 − 2x3 + 4x4 = −8
3x2 + 3x3 + 2x4 = 3

1x3 + 5x4 = −4
2x4 = 6

2.11.2 Backward substitution

This suggests a solution strategy. First, solve for x4 using the fourth equation. Plug the resulting
value for x4 into the third equation, and solve for x3. Plug the values for x3 and x4 into the
second equation and solve for x2. Plug the values for x2, x3, and x4 into the first equation and
solve for x1. In each iteration, only one variable needs to be solved for.

Thus the above system is solved as follows:

2x4 = 6
so x4 = 6/2 = 3

1x3 = −4 − 5x4 = −4 − 5(3) = −19
so x3 = −19/1 = −19

3x2 = 3 − 3x3 − 2x4 = 3 − 2(3) − 3(−19) = 54
so x2 = 54/3 = 18

1x1 = −8 − 0.5x2 + 2x3 − 4x4 = −8 − 4(3) + 2(−19) − 0.5(18) = −67
so x1 = −67/1 = −67

The algorithm I have illustrated is called backward substitution (“backward” because it starts
with the last equation and works its way towards the first).
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Quiz 2.11.2: Using the above technique, solve the following system by hand:

2x1 + 3x2 − 4x3 = 10
1x2 + 2x3 = 3

5x3 = 15

Answer

x3 = 15/5 = 3

x2 = 3 − 2x3 = −3

x1 = (10 + 4x3 − 3x2)/2 = (10 + 12 + 9)/2 = 31/2

Exercise 2.11.3: Solve the following system:

1x1 − 3x2 − 2x3 = 7
2x2 + 4x3 = 4

−10x3 = 12

2.11.3 First implementation of backward substitution

There is a convenient way to express this algorithm in terms of vectors and dot-products. The
procedure initializes the solution vector x to the all-zeroes vector. The procedure will populate
x entry by entry, starting at the last entry. By the beginning of the entry in which xi will be
populated, entries xi+1, xi+2, . . . , xn will have already been populated and the other entries are
zero, so the procedure can use a dot-product to calculate the part of the expression that involves
variables whose values are already known:

entry aii · value of xi = βi − (expression involving known variables)

so

value of xi =
βi − (expression involving known variables)

aii

Using this idea, let’s write a procedure triangular_solve_n(rowlist, b) with the following
spec:

• input: for some integer n, a triangular system consisting of a list rowlist of n-vectors, and
a length-n list b of numbers

• output: a vector x̂ such that, for i = 0, 1, . . . , n − 1, the dot-product of rowlist[i] with x̂
equals b[i]

The n in the name indicates that this procedure requires each of the vectors in rowlist to have
domain {0, 1, 2, . . . , n − 1}. (We will later write a procedure without this requirement.)
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Here is the code:

def triangular_solve_n(rowlist, b):
D = rowlist[0].D
n = len(D)
assert D == set(range(n))
x = zero_vec(D)
for i in reversed(range(n)):

x[i] = (b[i] - rowlist[i] * x)/rowlist[i][i]
return x

Exercise 2.11.4: Enter triangular_solve_n into Python and try it out on the example
system above.
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2.11.4 When does the algorithm work?

The backward substitution algorithm does not work on all upper triangular systems of equations.
If rowlist[i][i] is zero for some i, the algorithm will fail. We must therefore require when
using this algorithm that these entries are not zero. Thus the spec given above is incomplete.

If these entries are nonzero so the algorithm does succeed, it will have found the only solution
to the system of linear equations. The proof is by induction; it is based on the observation that
the value assigned to a variable in each iteration is the only possible value for that variable that
is consistent with the values assigned to variables in previous iterations.

Proposition 2.11.5: For a triangular system specified by a length-n list rowlist of n-vectors
and an n-vector b, if rowlist[i][i] ̸= 0 for i = 0, 1, . . . , n − 1 then the solution found by
triangular_solve_n(rowlist, b) is the only solution to the system.

On the other hand,

Proposition 2.11.6: For a length-n list rowlist of n-vector, if rowlist[i][i] = 0 for some
integer i then there is a vector b for which the triangular system has no solution.

Proof

Let k be the largest integer less than n such that rowlist[k][k] = 0. Define b to be a
vector whose entries are all zero except for entry k which is nonzero. The algorithm iterates
i = n − 1, n − 2, . . . , k + 1. In each of these iterations, the value of x before the iteration is
the zero vector, and b[i] is zero, so x[i] is assigned zero. In each of these iterations, the
value assigned is is the only possible value consistent with the values assigned to variables
in previous iterations.

Finally, the algorithm gets to i = k. The equation considered at this point is

rowlist[k][k]*x[k]+rowlist[k][k+1]*x[k+1]+ · · · +rowlist[k][n-1]*x[n-1] = nonzero

but the variables x[k+1], x[k+2], x[n-1] have all been forced to be zero, and rowlist[k][k]
is zero, so the left-hand side of the equation is zero, so the equation cannot be satisfied. !

2.11.5 Backward substitution with arbitrary-domain vectors

Next we write a procedure triangular_solve(rowlist, label_list, b) to solve a triangular
system in which the domain of the vectors in rowlist need not be {0, 1, 2, . . . , n − 1}. What
does it mean for a system to be triangular? The argument label_list is a list that specifies an
ordering of the domain. For the system to be triangular,

• the first vector in rowlist need not have any zeroes,

• the second vector has a zero in the entry labeled by the first element of label_list,
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• the third vector has zeroes in the entries labeled by the first two elements of label_list,

and so on.
The spec of the procedure is:

• input: for some positive integer n, a list rowlist of n Vecs all having the same n-element
domain D, a list label list consisting of the elements of D, and a list b consisting of n
numbers such that, for i = 0, 1, . . . , n − 1,

– rowlist[i][label list[j]] is zero for j = 0, 1, 2, . . . , i − 1 and is nonzero for j = i

• output: the Vec x such that, for i = 0, 1, . . . , n − 1, the dot-product of rowlist[i] and x
equals b[i].

The procedure involves making small changes to the procedure given in Section 2.11.3.
Here I illustrate how the procedure is used.

>>> label_list = ['a','b','c','d']
>>> D = set(label_list)
>>> rowlist=[Vec(D,{'a':4, 'b':-2,'c':0.5,'d':1}), Vec(D,{'b':2,'c':3,'d':3}),

Vec(D,{'c':5, 'd':1}), Vec(D,{'d':2.})]
>>> b = [6, -4, 3, -8]
>>> triangular_solve(rowlist, label_list, b)
Vec({'d', 'b', 'c', 'a'},{'d': -4.0, 'b': 1.9, 'c': 1.4, 'a': 3.275})

Here is the code for triangular solve. Note that it uses the procedure zero vec(D).

def triangular_solve(rowlist, label_list, b):
D = rowlist[0].D
x = zero_vec(D)
for j in reversed(range(len(D))):

c = label_list[j]
row = rowlist[j]
x[c] = (b[j] - x*row)/row[c]

return x

The procedures triangular solve(rowlist, label list, b) and
triangular solve n(rowlist, b) are provided in the module triangular.

2.12 Lab: Comparing voting records using dot-product

In this lab, we will represent a US senator’s voting record as a vector over R, and will use
dot-products to compare voting records. For this lab, we will just use a list to represent a
vector.

2.12.1 Motivation

These are troubled times. You might not have noticed from atop the ivory tower, but take
our word for it that the current sociopolitical landscape is in a state of abject turmoil. Now
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is the time for a hero. Now is the time for someone to take up the mantle of protector, of
the people’s shepherd. Now is the time for linear algebra.

In this lab, we will use vectors to evaluate objectively the political mindset of the senators
who represent us. Each senator’s voting record can be represented as a vector, where each
element of that vector represents how that senator voted on a given piece of legislation. By
looking at the difference between the “voting vectors” of two senators, we can dispel the fog
of politics and see just where our representatives stand.

Or, rather, stood. Our data are a bit dated. On the bright side, you get to see how
Obama did as a senator. In case you want to try out your code on data from more recent
years, we will post more data files on resources.codingthematrix.com.

2.12.2 Reading in the file

As in the last lab, the information you need to work with is stored in a whitespace-
delimited text file. The senatorial voting records for the 109th Congress can be found
in voting record dump109.txt.

Each line of the file represents the voting record of a different senator. In case you’ve
forgotten how to read in the file, you can do it like this:

>>> f = open('voting_record_dump109.txt')
>>> mylist = list(f)

You can use the split(·) procedure to split each line of the file into a list; the first
element of the list will be the senator’s name, the second will be his/her party affiliation (R
or D), the third will be his/her home state, and the remaining elements of the list will be
that senator’s voting record on a collection of bills. A “1” represents a ’yea’ vote, a “-1” a
’nay’, and a “0” an abstention.

Task 2.12.1: Write a procedure create voting dict(strlist) that, given a list of
strings (voting records from the source file), returns a dictionary that maps the last name
of a senator to a list of numbers representing that senator’s voting record. You will need to
use the built-in procedure int(·) to convert a string representation of an integer (e.g. ‘1’)
to the actual integer (e.g. 1).

2.12.3 Two ways to use dot-product to compare vectors

Suppose u and v are two vectors. Let’s take the simple case (relevant to the current lab) in
which the entries are all 1, 0, or -1. Recall that the dot-product of u and v is defined as

u · v =
∑

k

u[k]v[k]

Consider the kth entry. If both u[k] and v[k] are 1, the corresponding term in the sum is 1.
If both u[k] and v[k] are -1, the corresponding term in the sum is also 1. Thus a term in the
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sum that is 1 indicates agreement. If, on the other hand, u[k] and v[k] have different signs,
the corresponding term is -1. Thus a term in the sum that is -1 indicates disagreement. (If
one or both of u[k] and v[k] are zero then the term is zero, reflecting the fact that those
entries provide no evidence of either agreement or disagreement.) The dot-product of u and
v therefore is a measure of how much u and v are in agreement.

2.12.4 Policy comparison

We would like to determine just how like-minded two given senators are. We will use the
dot-product of vectors u and v to judge how often two senators are in agreement.

Task 2.12.2: Write a procedure policy compare(sen a, sen b, voting dict) that,
given two names of senators and a dictionary mapping senator names to lists representing
voting records, returns the dot-product representing the degree of similarity between two
senators’ voting policies.

Task 2.12.3: Write a procedure most similar(sen, voting dict) that, given the name
of a senator and a dictionary mapping senator names to lists representing voting records,
returns the name of the senator whose political mindset is most like the input senator
(excluding, of course, the input senator him/herself).

Task 2.12.4: Write a very similar procedure least similar(sen, voting dict) that
returns the name of the senator whose voting record agrees the least with the senator whose
name is sen.

Task 2.12.5: Use these procedures to figure out which senator is most like Rhode Island
legend Lincoln Chafee. Then use these procedures to see who disagrees most with Pennsyl-
vania’s Rick Santorum. Give their names.

Task 2.12.6: How similar are the voting records of the two senators from your favorite
state?

2.12.5 Not your average Democrat
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Task 2.12.7: Write a procedure find average similarity(sen, sen set, voting dict)
that, given the name sen of a senator, compares that senator’s voting record to the voting
records of all senators whose names are in sen set, computing a dot-product for each, and
then returns the average dot-product.

Use your procedure to compute which senator has the greatest average similarity with
the set of Democrats (you can extract this set from the input file).

In the last task, you had to compare each senator’s record to the voting record of each
Democrat senator. If you were doing the same computation with, say, the movie preferences
of all Netflix subscribers, it would take far too long to be practical.

Next we see that there is a computational shortcut, based on an algebraic property of
the dot-product: the distributive property:

(v1 + v2) · x = v1 · x + v2 · x

Task 2.12.8: Write a procedure find average record(sen set, voting dict) that,
given a set of names of senators, finds the average voting record. That is, perform vector
addition on the lists representing their voting records, and then divide the sum by the number
of vectors. The result should be a vector.

Use this procedure to compute the average voting record for the set of Democrats, and
assign the result to the variable average Democrat record. Next find which senator’s
voting record is most similar to the average Democrat voting record. Did you get the same
result as in Task 2.12.7? Can you explain?

2.12.6 Bitter Rivals

Task 2.12.9: Write a procedure bitter rivals(voting dict) to find which two sena-
tors disagree the most.

This task again requires comparing each pair of voting records. Can this be done faster than
the obvious way? There is a slightly more efficient algorithm, using fast matrix multiplication.
We will study matrix multiplication later, although we won’t cover the theoretically fast
algorithms.

2.12.7 Open-ended study

You have just coded a set of simple yet powerful tools for sifting the truth from the sordid
flour of contemporary politics. Use your new abilities to answer at least one of the following
questions (or make up one of your own):

• Who/which is the most Republican/Democratic senator/state?

• Is John McCain really a maverick?
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• Is Barack Obama really an extremist?

• Which two senators are the most bitter rivals?

• Which senator has the most political opponents? (Assume two senators are opponents
if their dot-product is very negative, i.e. is less than some negative threshold.)

2.13 Review Questions

• What is vector addition?

• What is the geometric interpretation of vector addition?

• What is scalar-vector multiplication?

• What is the distributive property that involves scalar-vector multiplication but not vector
addition?

• What is the distributive property that involves both scalar-vector multiplication and vector
addition?

• How is scalar-vector multiplication used to represent the line through the origin and a given
point?

• How are scalar-vector multiplication and vector addition used to represent the line through
a pair of given points?

• What is dot-product?

• What is the homogeneity property that relates dot-product to scalar-vector multiplication?

• What is the distributive property property that relates dot-product to vector addition?

• What is a linear equation (expressed using dot-product)?

• What is a linear system?

• What is an upper-triangular linear system?

• How can one solve an upper-triangular linear system?

2.14 Problems

Vector addition practice

Problem 2.14.1: For vectors v = [−1, 3] and u = [0, 4], find the vectors v + u, v − u, and
3v − 2u. Draw these vectors as arrows on the same graph..
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Problem 2.14.2: Given the vectors v = [2,−1, 5] and u = [−1, 1, 1], find the vectors v + u,
v − u, 2v − u, and v + 2u.

Problem 2.14.3: For the vectors v = [0, one, one] and u = [one, one, one] over GF (2), find
v + u and v + u + u.

Expressing one GF (2) vector as a sum of others

Problem 2.14.4: Here are six 7-vectors over GF (2):

a = 1100000 d = 0001100
b = 0110000 e = 0000110
c = 0011000 f = 0000011

For each of the following vectors u, find a subset of the above vectors whose sum is u, or report
that no such subset exists.

1. u = 0010010

2. u = 0100010

Problem 2.14.5: Here are six 7-vectors over GF (2):

a = 1110000 d = 0001110
b = 0111000 e = 0000111
c = 0011100 f = 0000011

For each of the following vectors u, find a subset of the above vectors whose sum is u, or report
that no such subset exists.

1. u = 0010010

2. u = 0100010

Finding a solution to linear equations over GF (2)

Problem 2.14.6: Find a vector x = [x1, x2, x3, x4] over GF (2) satisfying the following linear
equations:

1100 · x = 1

1010 · x = 1

1111 · x = 1
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Show that x + 1111 also satisfies the equations.

Formulating equations using dot-product

Problem 2.14.7: Consider the equations

2x0 + 3x1 − 4x2 + x3 = 10
x0 − 5x1 + 2x2 + 0x3 = 35
4x0 + x1 − x2 − x3 = 8

Your job is not to solve these equations but to formulate them using dot-product. In particular,
come up with three vectors v1, v2, and v3 represented as lists so that the above equations are
equivalent to

v1 · x = 10

v2 · x = 35

v3 · x = 8

where x is a 4-vector over R.

Plotting lines and line segments

Problem 2.14.8: Use the plot module to plot

(a) a substantial portion of the line through [-1.5,2] and [3,0], and

(b) the line segment between [2,1] and [-2,2].

For each, provide the Python statements you used and the plot obtained.

Practice with dot-product

Problem 2.14.9: For each of the following pairs of vectors u and v over R, evaluate the
expression u · v:

(a) u = [1, 0],v = [5, 4321]

(b) u = [0, 1],v = [12345, 6]

(c) u = [−1, 3],v = [5, 7]

(d) u = [−
√
2
2 ,

√
2
2 ],v = [

√
2
2 ,−

√
2
2 ]

Writing procedures for the Vec class
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Problem 2.14.10: Download the file vec.py to your computer, and edit it. The file defines
procedures using the Python statement pass, which does nothing. You can import the vec
module and create instancs of Vec but the operations such as * and + currently do nothing.
Your job is to replace each occurence of the pass statement with appropriate code. Your code
for a procedure can include calls to others of the seven. You should make no changes to the
class definition.

Docstrings At the beginning of each procedure body is a multi-line string (deliminated by
triple quote marks). This is called a documentation string (docstring). It specifies what the
procedure should do.

Doctests The documentation string we provide for a procedure also includes examples of the
functionality that procedure is supposed to provide to Vecs. The examples show an interaction
with Python: statements and expressions are evaluated by Python, and Python’s responses are
shown. These examples are provided to you as tests (called doctests). You should make sure that
your procedure is written in such a way that the behavior of your Vec implementation matches
that in the examples. If not, your implementation is incorrect.a

Python provides convenient ways to test whether a module such as vec passes all its doctests.
You don’t even need to be in a Python session. From a console, make sure your current working
directory is the one containing vec.py, and type

python3 -m doctest vec.py

to the console, where python3 is the name of your Python executable. If your implementation
passes all the tests, this command will print nothing. Otherwise, the command prints information
on which tests were failed.

You can also test a module’s doctest from within a Python session:

>>> import doctest
>>> doctest.testfile("vec.py")

Assertions For most of the procedures to be written, the first statement after the docstring
is an assertion. Executing an assertion verifies that the condition is true, and raises an error if
not. The assertions are there to detect errors in the use of the procedures. Take a look at the
assertions to make sure you understand them. You can take them out, but you do so at your
own risk.

Arbitrary set as domain: Our vector implementation allows the domain to be, for example,
a set of strings. Do not make the mistake of assuming that the domain consists of integers. If
your code includes len or range, you’re doing it wrong.

Sparse representation: Your procedures should be able to cope with our sparse represen-
tation, i.e. an element in the domain v.D that is not a key of the dictionary v.f. For example,
getitem(v, k) should return a value for every domain element even if k is not a key of v.f.
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However, your procedures need not make any effort to retain sparsity when adding two vectors.
That is, for two instances u and v of Vec, it is okay if every element of u.D is represented
explicitly in the dictionary of the instance u+v.

Several other procedures need to be written with the sparsity convention in mind. For
example, two vectors can be equal even if their .f fields are not equal: one vector’s .f field can
contain a key-value pair in which the value is zero, and the other vector’s .f field can omit this
particular key. For this reason, the equal(u, v) procedure needs to be written with care.

aThe examples provided for each procedure are supposed to test that procedure; however, note that, since
equality is used in tests for procedures other than equal(u,v), a bug in your definition for equal(u,v) could
cause another procedure’s test to fail.



Chapter 3

The Vector Space

[Geometry of the ancients] ... is so
exclusively restricted to the consideration
of figures that it can exercise the
understanding only on condition of
greatly fatiguing the imagination....

René Descartes, Discourse on Method

In the course of discussing applications of vectors in the previous chapter, we encountered four
Questions. We will soon encounter two more. However, we won’t answer any of the Questions in
this chapter; instead, we will turn them into newer and deeper Questions. The answers will come
in Chapters 5 and 6. In this chapter, we will encounter the concept of vector spaces, a concept
that underlies the answers and everything else we do in this book.

3.1 Linear combination

3.1.1 Definition of linear combination

Definition 3.1.1: Suppose v1, . . . ,vn are vectors. We define a linear combination of v1, . . . ,vn

to be a sum
α1v1 + · · · + αnvn

where α1, . . . ,αn are scalars. In this context, we refer to α1, . . . ,αn as the coefficients in this
linear combination. In particular, α1 is the coefficient of v1 in the linear combination, α2 is the
coefficient of v2, and so on.

Example 3.1.2: One linear combination of [2, 3.5] and [4, 10] is

−5 [2, 3.5] + 2 [4, 10]

143
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which is equal to [−5 · 2,−5 · 3.5] + [2 · 4, 2 · 10], which is equal to [−10,−17.5] + [8, 20], which
is [−2, 2.5].

Another linear combination of the same vectors is

0 [2, 3.5] + 0 [4, 10]

which is equal to the zero vector [0, 0].

If all the coefficients in a linear combination are zero, we say that it is a trivial linear combi-
nation

3.1.2 Uses of linear combinations

Example 3.1.3: Stock portfolios: Let D be the set of stocks. A D-vector over R represents a
portfolio, i.e. it maps each stock to a number of shares owned.

Suppose that there are n mutual funds. For i = 1, . . . , n, each share of mutual fund i
represents ownership of a certain amount of each stock, and can therefore be represented by a
D-vector vi. Let αi be the number of shares of mutual fund i that you own. Then your total
implied ownership of stocks is represented by the linear combination

α1v1 + · · · + αnvn

Example 3.1.4: Diet design: In the 1930’s and 1940’s the US military wanted to find the
minimum-cost diet that would satisfy a soldier’s nutritional requirements. An economist, George
Stigler, considered seventy-seven different foods (wheat flour, evaporated milk, cabbage ...) and
nine nutritional requirements (calories, Vitamin A, riboflavin...). For each food, he calculated
how much a unit of that food satisfied each of nine nutritional requirements. The results can be
represented by seventy-seven 9-vectors vi, one for each food.

A possible diet is represented by an amount of each food: one pound wheat flour, half a
pound of cabbage, etc. For i = 1, . . . , 77, let αi be the amount of food i specified by the diet.
Then the linear combination

α1v1 + · · · + α77v77

represents the total nutritional value provided by that diet.
In Chapter 13, we will study how to find the minimum-cost diet achieving specified nutritional

goals.

Example 3.1.5: Average face: As mentioned in Section 2.3, black-and-white images, e.g. of
faces, can be stored as vectors. A linear combination of three such vectors, with coefficients 1/3
and 1/3 and 1/3, yields an average of the three faces.
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1
3 +

1
3 +

1
3 =

The idea of average faces arises later in the book, when we describe a method for face detection.

Example 3.1.6: Products and resources: The JunkCo factory makes things using five re-
sources: metal, concrete, plastic, water, and electricity. Let D be this set of resources. The
factory has the ability to make five different products.

Here is a fabricated table that shows how much of each resource is used in making each product,
on a per-item basis:

metal concrete plastic water electricity
garden gnome 0 1.3 .2 .8 .4
hula hoop 0 0 1.5 .4 .3
slinky .25 0 0 .2 .7

silly putty 0 0 .3 .7 .5
salad shooter .15 0 .5 .4 .8

The ith product’s resource utilization is stored in a D-vector vi over R. For example, a gnome
is represented by

vgnome = Vec(D,{'concrete':1.3,'plastic':.2,'water':.8,'electricity':.4})

Suppose the factory plans to make αgnome garden gnomes, αhoop hula hoops, αslinky slinkies,
αputty silly putties, and αshooter salad shooters. The total resource utilization is expressed as a
linear combination

αgnome vgnome + αhoop vhoop + αslinky vslinky + αputty vputty + αshooter vshooter

For example, suppose JunkCo decides to make 240 gnomes, 55 hoops, 150 slinkies, 133 putties,
and 90 shooters. Here’s how the linear combination can be written in Python using our Vec
class:
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>>> D = {'metal','concrete','plastic','water','electricity'}
>>> v_gnome = Vec(D,{'concrete':1.3,'plastic':.2,'water':.8,'electricity':.4})
>>> v_hoop = Vec(D, {'plastic':1.5, 'water':.4, 'electricity':.3})
>>> v_slinky = Vec(D, {'metal':.25, 'water':.2, 'electricity':.7})
>>> v_putty = Vec(D, {'plastic':.3, 'water':.7, 'electricity':.5})
>>> v_shooter = Vec(D, {'metal':.15, 'plastic':.5, 'water':.4,'electricity':.8})

>>> print(240*v_gnome + 55*v_hoop + 150*v_slinky + 133*v_putty + 90*v_shooter)

plastic metal concrete water electricity
-----------------------------------------

215 51 312 373 356

We build on this example in the next section.

3.1.3 From coefficients to linear combination

For a length-n list [v1, . . . ,vn] of vectors, there is a function f that maps each length-n list
[α1, . . . ,αn] of coefficients to the corresponding linear combination α1 v1 + · · · + αn vn. As
discussed in Section 0.3.2, there are two related computational problems, the forward problem
(given an element of the domain, find the image under the function) and the backward problem
(given an element of the co-domain, find any pre-image if there is one).

Solving the forward problem is easy.

Quiz 3.1.7: Define a procedure lin_comb(vlist, clist) with the following spec:

• input: a list vlist of vectors, a list clist of the same length consisting of scalars

• output: the vector that is the linear combination of the vectors in vlist with corresponding
coefficients clist

Answer

def lin_comb(vlist,clist):
return sum([coeff*v for (coeff,v) in zip(clist, vlist)])
or

def lin_comb(vlist,clist):
return sum([clist[i]*vlist[i] for i in range(len(vlist))])

For example, the JunkCo factory can use this procedure for the forward problem: given an
amount of each product, the factory can compute how much of each resource will be required.
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3.1.4 From linear combination to coefficients

Suppose, however, you are an industrial spy. Your goal is to figure out how many garden gnomes
the JunkCo factory is manufacturing. To do this, you can sneakily observe how much of each
resource the factory is consuming. That is, you can acquire the vector b that is the output of
the function f .

The first question is: can you solve the backward problem? That is, can you obtain a pre-
image of b under f? The second question is: how can we tell whether there is a single solution?
If there are multiple pre-images of b, we cannot be confident that we have calculated the true
number of garden gnomes.

The first question is a computational problem:

Computational Problem 3.1.8: Expressing a given vector as a linear combination of other
given vectors

• input: a vector b and a list [v1, . . . ,vn] of n vectors

• output: a list [α1, . . . ,αn] of coefficients such that

b = α1 v1 + · · · + αn vn

or a report that none exists.

In Chapter 4, we will see that finding a linear combination of given vectors v1, . . . ,vn that equals
a given vector b is equivalent to solving a linear system. Therefore the above Computational
Problem is equivalent to Computational Problem 2.9.12, Solving a system of linear equations,
and the question of whether there is at most a single solution is equivalent to Question 2.9.11,
Uniqueness of solutions to systems of linear equations.

Example 3.1.9: (Lights Out) We saw in Section 2.8.3 that the state of the Lights Out puzzle
could be represented by a vector over GF (2), and that each button corresponds to a “button”
vector over GF (2).

Let s denote the initial state of the puzzle. We saw that finding a solution to the puzzle
(which buttons to push in order to turn off all the lights) is equivalent to finding a subset of the
button vectors whose sum is s.

We can in turn formulate this problem using the notion of linear combinations. Over GF (2),
the only coefficients are zero and one. A linear combination of the twenty-five button vectors

α0,0v0,0 + α0,1v0,1 + · · · + α4,4v4,4

is the sum of some subset of button vectors, namely those whose corresponding coefficents are
one.

Our goal, then, is to find a linear combination of the twenty-five button vectors whose value
is s:

s = α0,0v0,0 + α0,1v0,1 + · · · + α4,4v4,4 (3.1)
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That is, once again we must solve Computational Problem 3.1.8.

Quiz 3.1.10: For practice, we use the 2 × 2 version of Lights Out. Show how to express

s =
•

• as a linear combination of the button vectors

• •
•

• •
•

•
• •

•
• •

Answer

•
• = 1

• •
• + 0

• •
• + 0

•
• • + 1

•
• •

3.2 Span

3.2.1 Definition of span

Definition 3.2.1: The set of all linear combinations of vectors v1, . . . ,vn is called the span of
these vectors, and is written Span {v1, . . . ,vn}.

For vectors over infinite fields such as R or over C, the span is usually an infinite set. In the
next section, we discuss the geometry of such a set. For vectors over GF (2), a finite field, the
span is finite.

Quiz 3.2.2: How many vectors are in Span {[1, 1], [0, 1]} over the field GF (2)?

Answer

The linear combinations are

0 [1, 1] + 0 [0, 1] = [0, 0]

0 [1, 1] + 1 [0, 1] = [0, 1]

1 [1, 1] + 0 [0, 1] = [1, 1]

1 [1, 1] + 1 [0, 1] = [1, 0]

Thus there are four vectors in the span.
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Quiz 3.2.3: How many vectors are in Span {[1, 1]} over the field GF (2)?

Answer

The linear combinations are

0 [1, 1] = [0, 0]

1 [1, 1] = [1, 1]

Thus there are two vectors in the span.

Quiz 3.2.4: How many vectors are in the span of an empty set of 2-vectors?

Answer

Don’t make the mistake of thinking that there are no linear combinations, i.e. no assignments
of numbers to coefficients. There is one such assignment: the empty assignment. Taking
the sum of this empty set of vectors (and thinking back to Problem 1.7.9), we obtain [0, 0].

Quiz 3.2.5: How many vectors are in the span of the 2-vector [2, 3] over R?

Answer

There are an infinite number. The span is {α [2, 3] : α ∈ R}, which, as we saw in
Section 2.5.3, consists of the points on the line through the origin and [2, 3].

Quiz 3.2.6: For which 2-vector v over R does Span {v} consists of a finite number of vectors?

Answer

The zero vector [0, 0].

3.2.2 A system of linear equations implies other equations
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Example 3.2.7: Recall the simple authentication scheme from Section 2.9.6. The secret pass-
word is a vector x̂ over GF (2). The computer tests the human’s knowledge of the password by
sending a challenge vector a; the human must respond with the dot-product a · x̂.

Meanwhile, the eavesdropper, Eve, is observing all their communication. Suppose Eve has
observed the challenges a1 = [1, 1, 1, 0, 0], a2 = [0, 1, 1, 1, 0], a3 = [0, 0, 1, 1, 1] and the corre-
sponding responses β1 = 1, β2 = 0, β3 = 1. For what possible challenge vectors can Eve derive
the right response?

We consider all linear combinations of a1,a2,a3. Since there are three vectors, there are
three coefficients α1,α2,α3 to choose. For each coefficient αi, there are two choices, 0 and 1.
Therefore there are eight vectors in the span. Here is a table of them:

0 [1, 1, 1, 0, 0] + 0 [0, 1, 1, 1, 0] + 0 [0, 0, 1, 1, 1] = [0, 0, 0, 0, 0]

1 [1, 1, 1, 0, 0] + 0 [0, 1, 1, 1, 0] + 0 [0, 0, 1, 1, 1] = [1, 1, 1, 0, 0]

0 [1, 1, 1, 0, 0] + 1 [0, 1, 1, 1, 0] + 0 [0, 0, 1, 1, 1] = [0, 1, 1, 1, 0]

1 [1, 1, 1, 0, 0] + 1 [0, 1, 1, 1, 0] + 0 [0, 0, 1, 1, 1] = [1, 0, 0, 1, 0]

0 [1, 1, 1, 0, 0] + 0 [0, 1, 1, 1, 0] + 1 [0, 0, 1, 1, 1] = [0, 0, 1, 1, 1]

1 [1, 1, 1, 0, 0] + 0 [0, 1, 1, 1, 0] + 1 [0, 0, 1, 1, 1] = [1, 1, 0, 1, 1]

0 [1, 1, 1, 0, 0] + 1 [0, 1, 1, 1, 0] + 1 [0, 0, 1, 1, 1] = [0, 1, 0, 0, 1]

1 [1, 1, 1, 0, 0] + 1 [0, 1, 1, 1, 0] + 1 [0, 0, 1, 1, 1] = [1, 0, 1, 0, 1]

If the challenge is in the span, Eve can calculate the right response to it. For example, suppose
the challenge is [1, 0, 1, 0, 1], the last vector in the table. We see from the table that

[1, 0, 1, 0, 1] = 1 [1, 1, 1, 0, 0] + 1 [0, 1, 1, 1, 0] + 1 [0, 0, 1, 1, 1]

Therefore

[1, 0, 1, 0, 1] · x̂ = (1 [1, 1, 1, 0, 0] + 1 [0, 1, 1, 1, 0] + 1 [0, 0, 1, 1, 1]) · x̂
= 1 [1, 1, 1, 0, 0] · x̂ + 1 [0, 1, 1, 1, 0] · x̂ + 1 [0, 0, 1, 1, 1] · x̂ by distributivity

= 1 ([1, 1, 1, 0, 0] · x̂) + 1 ([0, 1, 1, 1, 0] · x̂) + 1 ([0, 0, 1, 1, 1] · x̂) by homogeneity

= 1β1 + 1β2 + 1β3

= 1 · 1 + 1 · 0 + 1 · 1

= 0

More generally, if you know that a vector x̂ satisfies linear equations

a1 · x = β1

...

am · x = βm

over any field then you can calculate the dot-product with x̂ of any vector a that is in the span
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of a1, . . . ,am.
Suppose a = α1 a1 + · · · + αm am. Then

a · x = (α1 a1 + · · · + αm am) · x
= α1 a1 · x + · · · + αm am · x by distributivity

= α1 (a1 · x) + · · · + αm (am · x) by homogeneity

= α1 β1 + · · · + αm βm

This math addresses Question 2.9.20: Does a system of linear equations imply any other linear
equations? If so, what other linear equations? The system of linear equations implies a linear
equation of the form a · x = β for every vector a in the span of a1, . . . ,am.

But we have only partially answered the Question, for we have not yet shown that these are
the only linear equations implied by the system. We will show this in a later chapter.

Example 3.2.8: (Attacking the simple authentication scheme:) Suppose Eve has already seen
a collection of challenge vectors a1, . . . ,am for which she knows the responses. She can answer
any challenge in Span {a1, . . . ,am}. Does that include all possible challenges? This is equivalent
to asking if GF (2)n equals Span {a1, . . . ,am}.

3.2.3 Generators

Definition 3.2.9: Let V be a set of vectors. If v1, . . . ,vn are vectors such that V = Span {v1, . . . ,vn}
then we say {v1, . . . ,vn} is a generating set for V, and we refer to the vectors v1, . . . ,vn as
generators for V.

Example 3.2.10: Let V be the set {00000, 11100, 01110, 10010, 00111, 11011, 01001, 10101}
of 5-vectors over GF (2). We saw in Example 3.2.7 (Page 150) that these eight vectors are exactly
the span of 11100, 01110, and 00111. Therefore 11100, 01110, and 00111 form a generating
set for V.

Example 3.2.11: I claim that {[3, 0, 0], [0, 2, 0], [0, 0, 1]} is a generating set for R3. To prove
that claim, I must show that the set of linear combinations of these three vectors is equal to R3.
That means I must show two things:

1. Every linear combination is a vector in R3.

2. Every vector in R3 is a linear combination.

The first statement is pretty obvious since R3 includes all 3-vectors over R. To prove the second
statement, let [x, y, z] be any vector in R3. I must demonstrate that [x, y, z] can be written as
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a linear combination, i.e. I must specify the coefficients in terms of x, y, and z. Here goes:

[x, y, z] = (x/3) [3, 0, 0] + (y/2) [0, 2, 0] + z [0, 0, 1]

3.2.4 Linear combinations of linear combinations

I claim that another generating set for R3 is {[1, 0, 0], [1, 1, 0], [1, 1, 1]}. This time, I prove that
their span includes all of R3 by writing each of the three vectors in Example 3.2.11 (Page 151)
as a linear combination:

[3, 0, 0] = 3 [1, 0, 0]

[0, 2, 0] = −2 [1, 0, 0] + 2 [1, 1, 0]

[0, 0, 1] = 0 [1, 0, 0] − 1 [1, 1, 0] + 1 [1, 1, 1]

Why is that sufficient? Because each of the old vectors can in turn be written as a linear
combination of the new vectors, I can convert any linear combination of the old vectors into a
linear combination of the new vectors. We saw in Example 3.2.11 (Page 151) that any 3-vector
[x, y, z] can be written as a linear combination of the old vectors, hence it can be written as a
linear combination of the new vectors.

Let’s go through that explicitly. First we write [x, y, z] as a linear combination of the old
vectors:

[x, y, z] = (x/3) [3, 0, 0] + (y/2) [0, 2, 0] + z [0, 0, 1]

Next, we replace each old vector with an equivalent linear combination of the new vectors:

[x, y, z] = (x/3)

(

3 [1, 0, 0]

)

+ (y/2)

(

− 2 [1, 0, 0] + 2 [1, 1, 0]

)

+ z

(

− 1 [1, 1, 0] + 1 [1, 1, 1]

)

Next, we multiply through, using associativity of scalar-vector multiplication (Proposition 2.5.5)
and the fact that scalar multiplication distributes over vector addition (Proposition 2.6.3):

[x, y, z] = x [1, 0, 0] − y [1, 0, 0] + y [1, 1, 0] − z [1, 1, 0] + z [1, 1, 1]

Finally, we collect like terms, using the fact that scalar-vector multiplication distributes over
scalar addition (Proposition 2.6.5):

[x, y, z] = (x − y) [1, 0, 0] + (y − z) [1, 1, 0] + z [1, 1, 1]

We have shown that an arbitrary vector in R3 can be written as a linear combination of [1, 0, 0],
[1, 1, 0], and [1, 1, 1]. This shows that R3 is a subset of Span {[1, 0, 0], [1, 1, 0], [1, 1, 1]}.

Of course, every linear combination of these vectors belongs to R3, which means
Span {[1, 0, 0], [1, 1, 0], [1, 1, 1]} is a subset of R3. Since each of these two sets is a subset of the
other, they are equal.

Quiz 3.2.12: Write each of the old vectors [3, 0, 0], [0, 2, 0], and [0, 0, 1] as a linear combination
of new vectors [2, 0, 1], [1, 0, 2], [2, 2, 2], and [0, 1, 0].
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Answer

[3, 0, 0] = 2 [2, 0, 1] − 1 [1, 0, 2] + 0 [2, 2, 2]

[0, 2, 0] = −2

3
[2, 0, 1] − 2

3
[1, 0, 2] + 1 [2, 2, 2]

[0, 0, 1] = −1

3
[2, 0, 1] +

2

3
[1, 0, 2] + 0 [2, 2, 2]

3.2.5 Standard generators

We saw a formula expressing [x, y, z] as a linear combination of the vectors [3, 0, 0], [0, 2, 0], and
[0, 0, 1]. The formula was particularly simple because of the special form of those three vectors.
It gets even simpler if instead we use [1, 0, 0], [0, 1, 0], and [0, 0, 1]:

[x, y, z] = x [1, 0, 0] + y [0, 1, 0] + z [0, 0, 1]

The simplicity of this formula suggests that these vectors are the most “natural” generators for
R3. Indeed, the coordinate representation of [x, y, z] in terms of these generators is [x, y, z].

We call these three vectors the standard generators for R3. We denote them by e0, e1, e2
(when it is understood we are working with vectors in R3).

When we are working with, for example, R4, we use e0, e1, e2, e3 to refer to [1, 0, 0, 0],
[0, 1, 0, 0], [0, 0, 1, 0],[0, 0, 0, 1].

For any positive integer n, the standard generators for Rn are:

e0 = [1, 0, 0, 0, . . . , 0]

e1 = [0, 1, 0, 0, . . . , 0]

e2 = [0, 0, 1, 0, . . . , 0]

...

en−1 = [0, 0, 0, 0, . . . , 1]

where ei is all zeroes except for a 1 in position i.
Naturally, for any finite domain D and field F, there are standard generators for FD. We

define them as follows. For each k ∈ D, ek is the function {k : 1}. That is, ek maps k to 1 and
maps all other domain elements to zero.

It is easy to prove that what we call “standard generators” for FD are indeed generators for
FD. We omit the proof since it is not very illuminating.

Quiz 3.2.13: Write a procedure standard(D, one) that, given a domain D and given the
number one for the field, returns the list of standard generators for RD. (The number one is
provided as an argument so that the procedure can support use of GF (2).)
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Answer

>>> def standard(D, one): return [Vec(D, {k:one}) for k in D]

Example 3.2.14: (Solvability of 2×2 Lights Out:) Can 2×2 Lights Out be solved from every
starting configuration? This is equivalent to asking whether the 2 × 2 button vectors

• •
•

• •
•

•
• •

•
• •

are generators for GF (2)D, where D = {(0, 0), (0, 1), (1, 0), (1, 1)}.
To prove that the answer is yes, it suffices to show that each of the standard generators can

be written as a linear combination of the button vectors:

•
= 1

• •
• + 1

• •
• + 1

•
• • + 0

•
• •

•
= 1

• •
• + 1

• •
• + 0

•
• • + 1

•
• •

• = 1
• •
• + 0

• •
• + 1

•
• • + 1

•
• •

• = 0
• •
• + 1

• •
• + 1

•
• • + 1

•
• •

Exercise 3.2.15: For each of the subproblems, you are to investigate whether the given vectors
span R2. If possible, write each of the standard generators for R2 as a linear combination of the
given vectors. If doing this is impossible for one of the subproblems, you should first add one
additional vector and then do it.

1. [1, 2], [3, 4]

2. [1, 1], [2, 2], [3, 3]

3. [1, 1], [1,−1], [0, 1]

Exercise 3.2.16: You are given the vectors [1, 1, 1], [0.4, 1.3,−2.2]. Add one additional vector
and express each of the standard generators for R3 as a linear combination of the three vectors.
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3.3 The geometry of sets of vectors

In Chapter 2, we saw how to write lines and line segments in terms of vectors. In a physical
simulation or graphics application, we might need to manipulate higher-dimensional geometrical
objects such as planes—perhaps we need to represent a wall or the surface of a table, or perhaps
we are representing the surface of a complicated three-dimensional object by many flat polygons
glued together. In this section, we informally investigate the geometry of the span of vectors over
R, and, as a bonus, the geometry of other kinds of sets of vectors.

3.3.1 The geometry of the span of vectors over R

Consider the set of all linear combinations of a single nonzero vector v:

Span {v} = {α v : α ∈ R}

We saw in Section 2.5.3 that this set forms the line through the origin and the point v. A line
is a one-dimensional geometrical object.

An even simpler case is the span of an empty set of vectors. We saw in Quiz 3.2.4 that the
span consists of exactly one vector, the zero vector. Thus in this case the span consists of a point,
which we consider a zero-dimensional geometrical object.

What about the span of two vectors? Perhaps it is a two-dimensional geometric object, i.e.
a plane?

Example 3.3.1: What is Span {[1, 0], [0, 1]}? These vectors are the standard generators for
R2, so every 2-vector is in the span. Thus Span {[1, 0], [0, 1]} includes all points in the Euclidean
plane.

Example 3.3.2: What is Span {[1, 2], [3, 4]}? You might have shown in Exercise 3.2.15 that
the standard generators for R2 can be written as linear combinations of these vectors, so again
we see that the set of linear combinations of the two vectors includes all points in the plane.

Example 3.3.3: What about the span of two 3-vectors? The linear combinations of [1, 0, 1.65]
and [0, 1, 1] form a plane through the origin; part of this plane is shown below:
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We can use these two vectors in plotting the plane. Here is a plot of the points in the set
{α [1, 0, 1.65] + β [0, 1, 1] : α ∈ {−5,−4, . . . , 3, 4},
β ∈ {−5,−4, . . . , 3, 4}}:

Example 3.3.4: Do every two distinct vectors span a plane? What about Span {[1, 2], [2, 4]}?
For any pair of coefficients α1 and α2,

α1[1, 2] + α2[2, 4] = α1[1, 2] + α2(2 [1, 2])

= α1[1, 2] + (α2 · 2)[1, 2]

= (α1 + 2α2)[1, 2]

This shows that Span {[1, 2], [2, 4]} = Span {[1, 2]}, and we know from Section 2.5.3 that
Span {[1, 2]} forms a line, not a plane.

These examples lead us to believe that the span of two vectors over R forms a plane or a
lower-dimensional object (a line or a point). Note that the span of any collection of vectors
must include the origin, because the trivial linear combination (all coefficients equal to zero) is
included in the set.

The pattern begins to become clear:

• The span of zero vectors forms a point—a zero-dimensional object—which must be the
origin.
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• The span of one vector forms a line through the origin—a one-dimensional object—or a
point, the origin.

• The span of two vectors forms a plane through the origin—a two-dimensional object—or a
line through the origin or a point, the origin.

A geometric object such as a point, a line, or a plane is called a flat. There are higher-
dimensional flats too. All of R3 is a three-dimensional flat. Although it is hard to envision, one
can define a three-dimensional flat within four-dimensional space, R4, and so on.

Generalizing from our observations, we are led to hypothesize:

Hypothesis 3.3.5: The span of k vectors over R forms a k-dimensional flat containing the
origin or a flat of lower dimension containing the origin.

Observing this pattern raises the following Question:

Question 3.3.6: How can we tell if the span of a given collection of k vectors forms a k-
dimensional object? More generally, given a collection of vectors, how can we predict the
dimensionality of the span?

The question will be answered starting in Chapter 6.

3.3.2 The geometry of solution sets of homogeneous linear systems

Perhaps a more familiar way to specify a plane is with an equation, e.g. {(x, y, z) ∈ R3 :
ax + by + cz = d}. For now, we want to focus on planes that contain the origin (0, 0, 0). For
(0, 0, 0) to satisfy the equation ax + by + cz = d, it must be that d equals zero.

Example 3.3.7: The plane depicted earlier, Span {[1, 0, 1.65], [0, 1, 1]}, can be represented as

{(x, y, z) ∈ R3 : 1.65x + 1y − 1z = 0}

We can rewrite the equation using dot-product, obtaining

{[x, y, z] ∈ R3 : [1.65, 1,−1] · [x, y, z] = 0}

Thus the plane is the solution set of a linear equation with right-hand side zero.

Definition 3.3.8: A linear equation with right-hand side zero is a homogeneous linear equation.



CHAPTER 3. THE VECTOR SPACE 158

Example 3.3.9: The line

can be represented as Span {[3, 2]} but it can also be represented as

{[x, y] ∈ R2 : 2x − 3y = 0}

That is, the line is the solution set of a homogeneous linear equation.

Example 3.3.10: This line

can be represented as Span {[−1,−2, 2]}. It can also be represented as the solution set of a pair
of homogeneous linear equations

{[x, y, z] ∈ R3 : [4,−1, 1] · [x, y, z] = 0, [0, 1, 1] · [x, y, z] = 0}

That is, the line consists of the set of triples [x, y, z] that satisfy both of these two homogeneous
linear equations.

Definition 3.3.11: A linear system (collection of linear equations) with all right-hand sides
zero is called a homogeneous linear system.

Generalizing from our two examples, we are led to hypothesize:

Hypothesis 3.3.12: A flat containing the origin is the solution set of a homogeneous linear
system.
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We are not yet in a position to formally justify our hypotheses or even to formally define flat.
We are working towards developing the notions that underlie that definition.

3.3.3 The two representations of flats containing the origin

A well-established theme in computer science is the usefulness of multiple representations for the
same data. We have seen two ways to represent a flat containing the origin:

• as the span of some vectors, and

• as the solution set to a homogeneous linear system.

Each of these representations has its uses. Or, to misquote Hat Guy,

Different tasks call for different representations.

Suppose you want to find the plane containing two given lines, the line Span {[4,−1, 1]} and the
line Span {[0, 1, 1]}.

Since the lines are represented as spans, it is easy to obtain the solution: The plane containing
these two lines is Span {[4,−1, 1], [0, 1, 1]}:

On the other hand, suppose you want to find the intersection of two given planes, the plane
{[x, y, z] : [4,−1, 1] · [x, y, z] = 0} and the plane {[x, y, z] : [0, 1, 1] · [x, y, z] = 0}:

Since each plane is represented as the solution set of a homogeneous linear equation, it is
easy to obtain the solution. The set of points that belong to both planes is the set of vectors
satisfying both equations: {[x, y, z] : [4,−1, 1] · [x, y, z] = 0, [0, 1, 1] · [x, y, z] = 0}.

Since each representation is useful, we would like to be able to transform from one repre-
sentation to another. Is this possible? Can any set represented as the span of vectors also be
represented as the solution set of a homogeneous linear system? What about the other way
round? We further discuss these conversion problems in Section 6.5. We first need to better
understand the underlying mathematics.
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3.4 Vector spaces

3.4.1 What’s common to the two representations?

Our goal is understanding the connection between these two representations. We will see that a
subset V of FD, whether V is the span of some D-vectors over F or the solution set of a linear
system, has three properties:

Property V1: V contains the zero vector,

Property V2: For every vector v, if V contains v then it contains α v for every scalar α, is
closed under scalar-vector multiplication, and

Property V3: For every pair u and v of vectors, if V contains u and v then it contains u+ v.

First suppose V = Span {v1, . . . ,vn}. Then V satisfies

• Property V1 because
0v1 + · · · + 0vn

• Property V2 because

if v = β1 v1 + · · · + βn vn then α v = αβ1v1 + · · · + αβn vn

• Property V3 because

if u = α1 v1 + · · · + αn v1

and v = β1 v1 + · · · + βn vn

then u + v = (α1 + β1)v1 + · · · + (αn + βn)vn

Now suppose V is the solution set {x : a1 ·x = 0, . . . , am ·x = 0} of a linear system. Then
V satisfies

• Property V1 because
a1 · 0 = 0, . . . , am · 0 = 0

• Property V2 because

if a1 · v = 0, . . . , am · v = 0
then α (a1 · v) = 0, · · · , α (am · v) = 0

so a1 · (α v) = 0, · · · , am · (α v) = 0

• Property V3 because

if a1 · u = 0, . . . , am · u = 0
and a1 · v = 0, . . . , am · v = 0

then a1 · u + a1 · v = 0, . . . , am · u + am · v = 0
so a1 · (u + v) = 0, . . . , am · (u + v) = 0
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3.4.2 Definition and examples of vector space

We use Properties V1, V2, and V3 to define a notion that encompasses both kinds of represen-
tations: spans of vectors, and solution sets of homogeneous linear systems.

Definition 3.4.1: A set V of vectors is called a vector space if it satisfies Properties V1, V2,
and V3.

Example 3.4.2: We have seen that the span of some vectors is a vector space.

Example 3.4.3: We have seen that the solution set of a homogeneous linear system is a vector
space.

Example 3.4.4: A flat (such as a line or a plane) that contains the origin can be written as
the span of some vectors or as the solution set of a homogeneous linear system, and therefore
such a flat is a vector space.

The statement “If V contains v then it contains α v for every scalar α” is expressed in Mathese
as

“V is closed under scalar-vector multiplication.”

The statement “if V contains u and v then it contains u + v” is expressed in Mathese as

“V is closed under vector addition.”

(In general, we say a set is closed under an operation if the set contains any object produced by
that operation using inputs from the set.)

What about FD itself?

Example 3.4.5: For any field F and any finite domain D, the set FD of D-vectors over F
is a vector space. Why? Well, FD contains a zero vector and is closed under scalar-vector
multiplication and vector addition. For example, R2 and R3 and GF (2)4 are all vector spaces.

What is the smallest subset of FD that is a vector space?

Proposition 3.4.6: For any field F and any finite domain D, the singleton set consisting of
the zero vector 0D is a vector space.
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Proof

The set {0D} certainly contains the zero vector, so Property V1 holds. For any scalar α,
α0D = 0D, so Property V2 holds: {0D} is closed under scalar-vector multiplication. Finally,
0D + 0D = 0D, so Property V3 holds: {0D} is closed under vector addition. !

Definition 3.4.7: A vector space consisting only of a zero vector is a trivial vector space.

Quiz 3.4.8: What is the minimum number of vectors whose span is {0D}?

Answer

The answer is zero. As we discussed in the answer to Quiz 3.2.4, {0D} equals the span of
the empty set of D-vectors. It is true, as discussed in the answer to Quiz 3.2.6, that {0D} is
the span of {0D}, but this just illustrates that there are different sets with the same span.
We are often interested in the set with the smallest size.

3.4.3 Subspaces

Definition 3.4.9: If V and W are vector spaces and V is a subset of W, we say V is a subspace
of W.

Remember that a set is considered a subset of itself, so one subspace of W is W itself.

Example 3.4.10: The only subspace of {[0, 0]} is itself.

Example 3.4.11: The set {[0, 0]} is a subspace of {α [2, 1] : α ∈ R}, which is in turn a
subspace of R2.

Example 3.4.12: The set R2 is not a subspace of R3 since R2 is not contained in R3; indeed,
R2 consists of 2-vectors and R3 contains no 2-vectors.

Example 3.4.13: What vector spaces are contained in R2?

• The smallest is {[0, 0]}.
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• The largest is R2 itself.

• For any nonzero vector [a, b], the line through the origin and [a, b], Span {[a, b]}, is a vector
space.

Does R2 have any other subspaces? Suppose V is a subspace of R2. Assume it has some nonzero
vector [a, b], and assume it also has some other vector [c, d] such that [c, d] is not in Span {[a, b]}.
We prove that in this case V = R2.

Lemma 3.4.14: ad ̸= bc

Proof

Since [a, b] ̸= [0, 0], either a ̸= 0 or b ̸= 0 (or both).
Case 1: a ̸= 0. In this case, define α = c/a. Since [c, d] is not in Span {[a, b]}, it must be
that [c, d] ̸= α [a, b]. Because c = α a, it must be that d ̸= α b. Substituting c/a for α, we
infer that d ̸= c

ab. Multiplying through by a, we infer that ad ̸= cb.
Case 2: b ̸= 0. In this case, define α = d/b. Since [c, d] ̸= α [a, b], we infer that c ̸= α a.

Substituting for α and multiplying through by b, we infer that ad ̸= cb. !

Now we show that V = R2. To show that, we show that every vector in R2 can be written
as a linear combination of just two vectors in V, namely [a, b] and [c, d].

Let [p, q] be any vector in R2. Define α = dp−cq
ad−bc and β = aq−bp

ad−bc . Then

α [a, b] + β [c, d]

=
1

ad − bc
[(pd − qc)a + (aq − bp)c, (pd − qc)b + (aq − bp)d]

=
1

ad − bc
[adp − bcp, adq − bcq]

= [p, q]

We have shown that [p, q] is equal to a linear combination of [a, b] and [c, d]. Since [p, q] is an
arbitrary element of R2, we have shown that R2 = Span {[a, b], [c, d]}.

Since V contains [a, b] and [c, d] and is closed under scalar-vector multiplication and vector
addition, it contains all of Span {[a, b], [c, d]}. This proves that V contains all of R2. Since every
vector in V belongs to R2, V is also a subset of R2. Since each of V and R2 is a subset of the
other, they must be equal.

We came to the concept of vector space by considering two ways of forming a set:

• as the span of some vectors, and

• as the solution set of a homogeneous linear system.

Each of these is a vector space. In particular, each is a subspace of FD for some field F and some
domain D.

What about the converse?
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Question 3.4.15: Can any subspace of FD be expressed as the span of a finite set of vectors?

Question 3.4.16: Can any subspace of FD be expressed as the solution set of a homogeneous
linear system?

We will see in Chapter 6 that the answers are yes, and yes. Establishing this, however,
requires we learn some more mathematics.

3.4.4 *Abstract vector spaces

I am tempted to state more simply that any vector space can be expressed as the span of a finite
number of vectors and as the solution set of a homogeneous linear system. However, that is not
true according to the formal definitions of Mathematics.

In this book, I have defined a vector as a function from a finite domain D to a field F.
However, modern mathematics tends to define things in terms of the axioms they satisfy rather
than in terms of their internal structure. (I informally raised this idea in discussing the notion
of a field.)

Following this more abstract approach, one does not define the notion of a vector; instead, one
defines a vector space over a field F to be any set V that is equipped with a addition operation and
a scalar-multiplication operation (satisfying certain axioms) and that satisfies Properties V1, V2,
and V3. The elements of V, whatever they happen to be, play the role of vectors.

This definition avoids committing to a specific internal structure for vectors and consequently
allows for a much broader class of mathematical objects to be considered vectors. For example,
the set of all functions from R to R is a vector space according to the abstract definition. The
question of whether a subspace of this space is the span of a finite set of vectors is a deeper
mathematical question than we can address in this book.

I avoid the abstract approach in this book because I find that the more concrete notion of
vector is helpful in developing intuition. However, if you go deeper into mathematics, you should
expect to encounter this approach.

3.5 Affine spaces

What about points, lines, planes, etc. that do not include the origin?

3.5.1 Flats that don’t go through the origin

In Section 2.6.1, we observed that a line segment not through the origin could be obtained
from a line segment through the origin by translation, i.e. by applying a function such as
f([x, y]) = [x, y] + [0.5, 1].

How can we represent a line not through the origin? Two approaches were outlined in
Section 2.6.4. First, we start with a line that does go through the origin
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We now know that the points of this line form a vector space V.
We can choose a vector a and add it to every vector in V:

In Mathese, we would write the resulting set as

{a + v : v ∈ V}

We will abbreviate this set expression as a + V.
The resulting set is a line that goes through a (and not through the origin):

Now let’s carry out the same process on a plane.

Example 3.5.1: There is one plane through the points u1 = [1, 0, 4.4], u2 = [0, 1, 4], and
u3 = [0, 0, 3]:
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How can we write the set of points in the plane as a translation of a vector space?
Define a = u2 − u1 and b = u3 − u1, and let V be the vector space Span a, b. Then the

points of V form a plane:

Now consider the set
u1 + V

Intuitively, the translation of a plane remains a plane. Note in addition that u1 + V contains

• the point u1 since V contains the zero vector,

• the point u2 since V contains u2 − u1, and

• the point u3 since V contains u3 − u1.

Since the plane u1 + V contains u1, u2, and u3, it must be the unique plane through those
points.

3.5.2 Affine combinations

In Section 2.6.4, we saw another way to write the line through points u and v: as the set of affine
combinations of u and v. Here we generalize that notion as well.

Definition 3.5.2: A linear combination α1 u1 + · · · + αnun is called an affine combination if
the coefficients sum to one.

Example 3.5.3: The linear combination 2 [10., 20.] + 3 [0, 10.] + (−4) [30., 40.] is a an affine
combination of the vectors because 2 + 3 + (−4) = 1.

Example 3.5.4: In Example 3.5.1 (Page 165), we wrote the plane through u1, u2, and u3 as

u1 + V
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where V = Span {u2 − u1,u3 − u1}.
The vectors in V are the vectors that can be written as linear combinations

α (u2 − u1) + β (u3 − u1)

so the vectors in u1 + V are the vectors that can be written as

u1 + α (u2 − u1) + β (u3 − u1)

which can be rewritten as
(1 − α− β)u1 + αu2 + β u3

Let γ = 1 − α− β. Then the above expression can be rewritten as the affine combination

γ u1 + αu2 + β u3

That is, the vectors in u1 + V are exactly the set of all affine combinations of u1, u2, and u3.

The set of all affine combinations of a collection of vectors is called the affine hull of that
collection.

Example 3.5.5: What is the affine hull of {[0.5, 1], [3.5, 3]}? We saw in Section 2.6.4 that the
set of affine combinations,

{α [3.5, 3] + β [0.5, 1] : α ∈ R,β ∈ R,α + β = 1}

is the line through [0.5, 1] and [3.5, 3].

Example 3.5.6: What is the affine hull of {[1, 2, 3]}? It is the set of linear combinations
α [1, 2, 3] where the coefficients sum to one—but there is only one coefficient, α, so we require
α = 1. Thus the affine hull consists of a single vector, [1, 2, 3].

In the examples, we have seen,

• the affine hull of a one-vector collection is a single point (the one vector in the collection),
i.e. a 0-dimensional object;

• the affine hull of a two-vector collection is a line (the line through the two vectors), i.e. a
1-dimensional object;

• the affine hull of a three-vector collection is a plane (the plane through the three vectors),
i.e. a 2-dimensional object.

However, let’s not jump to conclusions.
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Example 3.5.7: What is the affine hull of {[2, 3], [3, 4], [4, 5]}?

These points all lie on a line. The affine hull is therefore that line, rather than a plane.

Like the span of vectors, the affine hull of vectors can end up being a lower-dimensional object
than you would predict just from the number of vectors. Just as we asked in Question 3.3.6 about
spans, we might ask a new question: how can we predict the dimensionality of an affine hull? In
Example 3.5.1 (Page 165), the affine hull of u1,u2,u3 is the translation of Span {u2−u1,u3−u1},
so, our intuition tell us, the dimensionality of the affine hull is the same as that of Span {u2 −
u1,u3 − u1}. Thus, in this case, the question about affine hull is not really a new question.

More generally, we will see in in Section 3.5.3 every affine hull of some vectors is the translation
of the span of some other vectors, so questions about the dimensionality of the former can be
replaced with questions about the dimensionality of the latter.

3.5.3 Affine spaces

Definition 3.5.8: An affine space is the result of translating a vector space. That is, a set A
is an affine space if there is a vector a and a vector space V such that

A = {a + v : v ∈ V}

i.e. A = a + V.

A flat, it can now be told, is just an affine space that is a subset of Rn for some n.

Example 3.5.9: We saw in Example 3.5.1 (Page 165) that the plane through the points u1 =
[1, 0, 4.4], u2 = [0, 1, 4], and u3 = [0, 0, 3] can be written as the result of adding u1 to each
point in the span of u2 −u1 and u3 −u1. Since Span {u2 −u1,u3 −u1} is a vector space, it
follows that the plane through u1, u2, and u3 is an affine space.
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We also saw in Section 3.5.2 that the plane is the set of affine combinations of u1, u2, and u3.
Thus, in this case at least, the affine combination of the vectors is an affine space. Is this true
generally?

Lemma 3.5.10: For any vectors u1, . . . ,un,

{α1 u1 + · · · + αn un :
n
∑

i=1

αi = 1} = {u1 + v : v ∈ Span {u2 − u1, . . . ,un − u1}} (3.2)

In words, the affine hull of u1, . . . ,un equals the set obtained by adding u1 to each vector in
the span of u2 − u1, . . . ,un − u1.

The lemma shows that the affine hull of vectors is an affine space. Knowing this will help us, for
example, learn how to find the intersection of a plane with a line.

The proof follows the calculations in Example 3.5.4 (Page 166).

Proof

Every vector in Span {u2 − u1, . . . ,un − u1} can be written in the form

α2 (u2 − u1) + · · · + αn (un − u1)

so every vector in the right-hand side of Equation 3.2 can be written in the form

u1 + α2 (u2 − u1) + · · · + αn (un − u1)

which can be rewritten (using homogeneity and distributivity as in Example 3.5.1 (Page
165)) as

(1 − α2 − · · · − αn)u1 + α2 u2 + · · · + αn un (3.3)

which is an affine combination of u1,u2, . . . ,un since the coefficients sum to one. Thus
every vector in the right-hand side of Equation 3.2 is in the left-hand side.

Conversely, for every vector α1 u1 + α2 u2 + · · · + αn un in the left-hand side, since
∑n

i=1 αi = 1, we infer α1 = 1 − α2 − · · · − αn, so the vector can be written as in Line 3.3,
which shows that the vector is in the right-hand side. !

We now have two representations of an affine space:

• as a + V where V is the span of some vectors, and

• as the affine hull of some vectors.

These representations are not fundamentally different; as we have seen, it is easy to convert be-
tween one representation and the other. Next, we discuss a representation that is quite different.
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3.5.4 Representing an affine space as the solution set of a linear system

In Section 3.3.2, we saw examples in which a flat containing the origin could be represented as
the solution set of a homogeneous linear system. Here we represent a flat not containing the
origin as the solution set of a linear system that is not homogeneous.

Example 3.5.11: We saw in Example 3.5.1 (Page 165) that the plane through the points
[1, 0, 4.4], [0, 1, 4], and [0, 0, 3] is the affine hull of those points. However, the plane is also the
solution set of the equation 1.4x + y − z = −3, i.e. the plane is

{[x, y, z] ∈ R3 : [1.4, 1,−1] · [x, y, z] = −3}

Example 3.5.12: We saw in Section 2.6.4 (see also Example 3.5.5 (Page 167)) that the line

through [0.5, 1] and [3.5, 3] consists of the set of all affine combinations of [0.5, 1] and [3.5, 3].
This line is also the solution set of the equation 2x − 3y = −2, i.e. the set

{[x, y] ∈ R2 : [2,−3] · [x, y] = −2}

Example 3.5.13: The line

can be represented as the set of all affine combinations of [1, 2, 1] and [1, 2,−2]. The line is also
the solution set of the linear system consisting of the equations 4x − y + z = 3 and y + z = 3,
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i.e. the set
{[x, y, z] ∈ R3 : [4,−1, 1] · [x, y, z] = 3, [0, 1, 1] · [x, y, z] = 3}

3.5.5 The two representations, revisited

As we saw in Section 3.3.3 in the context of flats containing the origin, having two representations
can be useful.

Example 3.5.14: Suppose you are given two lines

and want to find the plane containing the two lines.
The first line is Span {[4,−1, 1]}. The second line is Span {[0, 1, 1]}. Therefore the plane

containing these two lines is Span {[4,−1, 1], [0, 1, 1]}:

Next we give an example using the second kind of representation.

Example 3.5.15: Now you are given two planes through the origin:

and your goal is to find the the intersection.
The first plane is {[x, y, z] : [4,−1, 1] · [x, y, z] = 0}. The second plane is {[x, y, z] :

[0, 1, 1] · [x, y, z] = 0}. We are representing each plane as the solution set of a linear system with
right-hand sides zero. The set of points comprising the intersection is exactly the set of points
that satisfy both equations,

{[x, y, z] : [4,−1, 1] · [x, y, z] = 0, [0, 1, 1] · [x, y, z] = 0}

This set of points forms a line, but to draw the line it is helpful to find its representation as the
span of a vector. We will learn later how to go from a linear system with zero right-hand sides
to a set of generators for the solution set. It turns out the solution set is Span {[1, 2,−2]}.
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Because different representations facilitate different operations, it is useful to be able to
convert between different representations of the same geometric object. We’ll illustrate this
using an example that arises in computer graphics. A scene is often constructed of thousands of
triangles. How can we test whether a beam of light strikes a particular triangle, and, if so, where
on that triangle?

Let’s say the triangle’s corners are located at the vectors v0, v1, and v2. Then the plane
containing the triangle is the affine hull of these vectors.

Next, suppose a beam of light originates at a point b, and heads in the direction of the arrow
representing the vector d. The beam of light forms the ray consisting of the set of points

{b + αd : α ∈ R,α ≥ 0}

which in turn forms part of the line

{b + αd : α ∈ R}

So far we are using the first kind of representation for the triangle, for the plane containing
the triangle, for the ray and for the line containing the ray. To find out whether the beam of
light strikes the triangle, we find the intersection of

• the plane containing the triangle, and

• the line containing the ray of light.

Usually, the intersection will consist of a single point. We can then test whether that point lies
in the triangle and whether it belongs to the ray.

But how can we find the intersection of the plane and the line? We use the second kind of
representation:

• we find the representation of the plane as the solution set of one linear system, and

• we find the representation of the line as the solution set of another linear system.

The set of points belonging to both the plane and the line is exactly the set of points in the
solution sets of both linear systems, which is the set of points in the solution set of the new linear
system consisting of all the equations in both of the two original linear systems.

Example 3.5.16: Suppose the vertices of the triangle are the points [1, 1, 1], [2, 2, 3], and
[−1, 3, 0].
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The triangle looks like this:

The ray of light originates at p = [−2.2, 0.8, 3.1] and moves in the direction d = [1.55, 0.65,−0.7].
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We can see from the picture that the ray does indeed intersect the triangle, but how can a
computer discover that?

Here we show the plane containing the triangle:

We will later learn to find a linear equation whose solution space is the plane. One such
equation turns out to be [5, 3,−4] · [x, y, z] = 4.

We will later learn to find a linear system whose solution space is the line containing the ray
of light. One such system, it turns out, is

[0.275...,−0.303..., 0.327...] · [x, y, z] = 0.1659...

[0, 0.536..., 0.498...] · [x, y, z] = 1.975...

To find the intersection of the plane and the line, we put all these linear equations together,
obtaining

[5, 3,−4] · [x, y, z] = 4

[0.275...,−0.303..., 0.327...] · [x, y, z] = 0.1659...

[0, 0.536..., 0.498...] · [x, y, z] = 1.975...

The solution set of this combined linear system consists of the points belonging to both the
plane and the line. We are using the second kind of representation. In this case, the solution set
consists of just one point. To find that point, we convert back to the first kind of representation.
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We will later learn algorithms to solve a linear system. The solution turns out to be w =
[0.9, 2.1, 1.7]. The point w, therefore is the intersection of the plane and the line.

Once we have found the point of intersection of the line and the plane, how do we find out
whether the intersection belongs to the triangle and the ray? For this, we return to the first kind
of representation.

Example 3.5.17: The point of intersection lies in the plane and is therefore an affine combi-
nation of the vertices:

w = α0 [1, 1, 1] + α1 [2, 2, 3] + α2 [−1, 3, 0]

which means that the coefficients sum up to one. The point is in the triangle if it is a convex
combination of the vertices. We will learn that in this case there is only one way to represent
the point as an affine combination, and we will learn how to find the coefficients:

w = 0.2 [1, 1, 1] + 0.5 [2, 2, 3] + 0.3 [−1, 3, 0]

Since the coefficients are nonnegative, we know that the point of intersection is indeed in the
triangle.

There is one more thing to check. We should check that the intersection point lies in the
’half’ of the line that comprises the ray. The ray is the set of points {p+αd : α ∈ R,α ≥ 0}.
The line is the set of points {p + αd : α ∈ R,α ≥ 0}. To see if the intersection point w is in
the ray, we find the unique value of α such that w = p + αd, and we check that this value is
nonnegative.

The vector equation w = p+αd is equivalent to three scalar equations, one for each of the
entries of the vector. To find the value of α, let’s just consider the first entry. The first entry
of w is 0.9, the first entry of p is −2.2, and the first entry of d is 1.55, so α must satisfy the
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equation
0.9 = −2.2 + α 1.55

which we can solve, obtaining α = 2. Since the value of α is nonnegative, the intersection point
does indeed belong to the ray.

In this example, we needed to convert between the two kinds of representations of a flat, (1) as
a set of of linear combinations and (2) as the solution set of a linear system.

3.6 Linear systems, homogeneous and otherwise

In Section 3.4, we saw that the solution set of a homogeneous linear system is a vector space.
What about the solution set of an arbitrary linear system? Is that an affine space? Yes, with an
exception: the case in which the solution set is empty.

3.6.1 The homogeneous linear system corresponding to a general linear
system

In Section 2.9.2, we considered the problem of calculating the rate of power consumption for
hardware components of a sensor node. We formulated this as the problem of finding a solution
to a linear system over R, and we asked (Question 2.9.11): how can we tell if there is only one
solution?

In Section 2.9.7, we considered an attack on a simple authentication scheme. We found a
way in which Eve, an eavesdropper, might calculate the password from observing authentication
trials. We formulated this as the problem of finding a solution to a system of linear equations
over GF (2), and we asked (Question 2.9.18): how many solutions are there to a given linear
system over GF (2)?

We shall see that, in each of these applications, the first question can be addressed by studying
the corresponding system of homogeneous linear equations, i.e. where each right-hand side is
replaced by a zero.

Lemma 3.6.1: Let u1 be a solution to the system of linear equations

a1 · x = β1

... (3.4)

am · x = βm

Then another vector u2 is also a solution if and only if the difference u2 − u1 is a solution to
the system of corresponding homogeneous equations

a1 · x = 0
... (3.5)

am · x = 0
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Proof

For i = 1, . . . , m, we have ai ·u1 = βi, so ai ·u2 = βi iff ai ·u2−ai ·u1 = 0 iff ai ·(u2−u1) = 0.
!

The set of solutions to a homogeneous linear system is a vector space V. We can restate the
assertion of Lemma 3.6.1:

u2 is a solution to the original linear system (3.4) if and only if u2 − u1 is in V
where V is the solution set of the homogeneous linear system (3.5).

Substituting v for u2 − u1 (which implies u2 = u1 + v), we reformulate it as:

u1 + v is a solution to the original linear system if and only if v is in V

which can be reworded as:

{solutions to original linear system} = {u1 + v : v ∈ V} (3.6)

The set on the right-hand side is an affine space!

Theorem 3.6.2: For any linear system, the set of solutions either is empty or is an affine space.

Proof

If the linear system has no solution, the solution set is empty. If it has at least one solution
u1 then the solution set is {u1 + v : v ∈ V}. !

We asked in Question 3.4.16 whether every vector space is the solution space of a homogeneous
system (and indicated that the answer is yes). An analogous question is Is every affine space the
solution set of a linear system? That the answer is yes follows from the fact that the answer to
the previous question is yes.

Example 3.6.3: The solution set of the linear system

[

0 0
]

· x = 1

is the empty set.
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The solution set of the linear system

[

1 0
]

· x = 2
[

0 1
]

· x = 5

is the singleton set

{[

2
5

]}

, which can be written as

{[

2
5

]

+ v : v ∈
{[

0
0

]}}

The solution set of the linear system

[

2 −5
]

· x = 1
[

4 −10
]

· x = 2

is the set

{[

−2
−1

]

+ α

[

1
2.5

]

: α ∈ R

}

, which can be written as

{[

−2
−1

]

+ v : v ∈ Span

{[

1
2.5

]}}

3.6.2 Number of solutions revisited

We can now give a partial answer to Question 2.9.11 (How can we tell if a linear system has only
one solution?):

Corollary 3.6.4: Suppose a linear system has a solution. The solution is unique if and only if
the only solution to the corresponding homogeneous linear system is the zero vector.

The question about uniqueness of solution is therefore replaced with

Question 3.6.5: How can we tell if a homogeneous linear system has only a trivial solution?

Moreover, Question 2.9.18 (How many solutions are there to a given system of linear equations
over GF (2)?) is partially addressed by Equation 3.6, which tells us that the number of solu-
tions equals |V|, the cardinality of the vector space consisting of solutions to the corresponding
homogeneous system.

The question about counting solutions to a linear system over GF (2) thus becomes

Question 3.6.6: How can we find the number of solutions to a homogeneous linear system
over GF (2)?
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In addressing these questions, we will make use of the fact that the solution set for a homogeneous
linear system is a vector space.

3.6.3 Towards intersecting a plane and a line

Here’s an example of how Theorem 3.6.2 could help us: an approach to compute the intersection
of a plane and a line:

Step 1: Since the plane is an affine space, we hope to represent it as the solution set of a linear
system.

Step 2: Since the line is an affine space, we hope to represent it as the solution set of a second
linear system.

Step 3: Combine the two linear systems to form a single linear system consisting of all the linear
equations from the two. The solutions to the combined linear system are the points that
are on both the plane and the line.

The solution set of the combined linear system might consist of many vectors (if the line lies
within the plane) or just one (the point at which the line intersects the plane).

This approach sounds promising—but so far we don’t know how to carry it out. Stay tuned.

3.6.4 Checksum functions

This section gives another application of homogeneous linear equations.
A checksum for a big chunk of data or program is a small chunk of data used to verify that

the big chunk has not been altered. For example, here is a fragment of the download page for
Python:
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With each downloadable Python release is listed the checksum and the size.
A checksum function is a function that maps a large file of data to a small chunk of data, the

checksum. Since the number of possible checksums is much smaller than the number of possible
files, there is no one-to-one checksum function: there will always be pairs of distinct files that map
to the same checksum. The goal of using a checksum function is to detect accidental corruption
of a file during transmission or storage.

Here we seek a function such that a random corruption is likely detectable: for any file F , a
random change to the file probably leads to a change in the checksum.

We describe an impractical but instructive checksum function. The input is a “file” repre-
sented as an n-bit vector over GF (2). The output is a 64-vector. The function is specified by
sixty-four n-vectors a1, . . . ,a64. The function is then defined as follows:

x )→ [a1 · x, . . . ,a64 · x]

Suppose p is a “file”. We model corruption as the addition of a random n-vector e (the error),
so the corrupted version of the file is p + e. We want to find a formula for the probability that
the corrupted file has the same checksum as the original file.

The checksum for the original file is [β1, . . . ,βm], where βi = ai · p for i = 1, . . . , m. For
i = 1, . . . , m, bit i of the checksum of the corrupted file is ai ·(p+e). Since dot-product distributes
over vector addition (Proposition 2.9.25), this is equal to ai ·p+a ·e. Thus bit i of the checksum
of the corrupted file equals that of the original file if and only if ai · p + ai · e = ai · p—that is,
if and only if ai · e = 0.
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Thus the entire checksum of the corrupted file is the same as that of the original if and only
if ai · e = 0 for i = 1, . . . and m, if and only if e belongs to the solution set for the homogeneous
linear system

a1 · x = 0
...

am · x = 0

The probability that a random n-vector e belongs to the solution set is

number of vectors in solution set

number of n-vectors over GF (2)

We know that the number of n-vectors over GF (2) is 2n. To calculate this probability, therefore,
we once again need an answer to Question 3.6.6: How can we find the number of solutions to a
homogeneous linear system over GF (2)?

3.7 Review questions

• What is a linear combination?

• What are coefficients?

• What is the span of vectors?

• What are standard generators?

• What are examples of flats?

• What is a homogeneous linear equation?

• What is a homogeneous linear system?

• What are the two kinds of representations of flats containing the origin?

• What is a vector space?

• What is a subspace?

• What is an affine combination?

• What is the affine hull of vectors?

• What is an affine space?

• What are the two kinds of representations of flats not containing the origin?

• Is the solution set of a linear system always an affine space?
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3.8 Problems

Vec review

Vectors in containers

Problem 3.8.1:

1. Write and test a procedure vec select using a comprehension for the following compu-
tational problem:

• input: a list veclist of vectors over the same domain, and an element k of the
domain

• output: the sublist of veclist consisting of the vectors v in veclist where v[k] is
zero

2. Write and test a procedure vec sum using the built-in procedure sum(·) for the following:

• input: a list veclist of vectors, and a set D that is the common domain of these
vectors

• output: the vector sum of the vectors in veclist.

Your procedure must work even if veclist has length 0.

Hint: Recall from the Python Lab that sum(·) optionally takes a second argument, which
is the element to start the sum with. This can be a vector.

Disclaimer: The Vec class is defined in such a way that, for a vector v, the expression 0 +
v evaluates to v. This was done precisely so that sum([v1,v2,... vk]) will correctly
evaluate to the sum of the vectors when the number of vectors is nonzero. However, this
won’t work when the number of vectors is zero.

3. Put your procedures together to obtain a procedure vec select sum for the following:

• input: a set D, a list veclist of vectors with domain D, and an element k of the
domain

• output: the sum of all vectors v in veclist where v[k] is zero

Problem 3.8.2: Write and test a procedure scale vecs(vecdict) for the following:

• input: A dictionary vecdict mapping positive numbers to vectors (instances of Vec)

• output: a list of vectors, one for each item in vecdict. If vecdict contains a key k
mapping to a vector v, the output should contain the vector (1/k)v
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Linear combinations

Constructing the span of given vectors over GF (2)

Problem 3.8.3: Write a procedure GF2_span with the following spec:

• input: a set D of labels and a list L of vectors over GF (2) with label-set D

• output: the list of all linear combinations of the vectors in L

(Hint: use a loop (or recursion) and a comprehension. Be sure to test your procedure on examples
where L is an empty list.)

Problem 3.8.4: Let a, b be real numbers. Consider the equation z = ax+by. Prove that there
are two 3-vectors v1,v2 such that the set of points [x, y, z] satisfying the equation is exactly
the set of linear combinations of v1 and v2. (Hint: Specify the vectors using formulas involving
a, b.)

Problem 3.8.5: Let a, b, c be real numbers. Consider the equation z = ax+by+c. Prove that
there are three 3-vectors v0,v1,v2 such that the set of points [x, y, z] satisfying the equation is
exactly

{v0 + α1 v1 + α2 v2 : α1 ∈ R,α2 ∈ R}

(Hint: Specify the vectors using formulas involving a, b, c.)
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Sets of linear combinations and geometry

(a) (b)

Figure 3.1: Figures for Problem 3.8.6.

Problem 3.8.6: Express the line segment in Figure 3.1(a) using a set of linear combinations.
Do the same for the plane containing the triangle in Figure 3.1(b).

Vector spaces

Problem 3.8.7: Prove or give a counterexample: “{[x, y, z] : x, y, z ∈ R, x + y + z = 1} is
a vector space.”

Problem 3.8.8: Prove or give a counterexample: “{[x, y, z] : x, y, z ∈ R and x+ y + z = 0}
is a vector space.”

Problem 3.8.9: Prove or give a counterexample: “{[x1, x2, x3, x4, x5] : x1, x2, x3, x4, x5 ∈
R, x2 = 0 or x5 = 0} is a vector space.”

Problem 3.8.10: Explain your answers.

1. Let V be the set of 5-vectors over GF (2) that have an even number of 1’s. Is V a vector
space?

2. Let V be the set of 5-vectors over GF (2) that have an odd number of 1’s. Is V a vector
space?
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The Matrix

Neo: What is the Matrix?
Trinity: The answer is out there, Neo,
and it’s looking for you, and it will find
you if you want it to.

The Matrix, 1999

4.1 What is a matrix?

4.1.1 Traditional matrices

Traditionally, a matrix over F is a two-dimensional array whose entries are elements of F. Here
is a matrix over R: [

1 2 3
10 20 30

]

This matrix has two rows and three columns, so we call it a 2 × 3 matrix. It is traditional to
refer to the rows and columns by numbers. Row 1 is

[

1 2 3
]

and row 2 is
[

10 20 30
]

;

column 1 is

[

1
10

]

, column 2 is

[

2
20

]

, and column 3 is

[

3
30

]

.

In general, a matrix with m rows and n columns is called an m × n matrix. For a matrix A,
the i, j element is defined to be the element in the ith row and the jth column, and is traditionally
written Ai,j or Aij . We will often use the Pythonese notation, A[i, j].

Row i is the vector

[

A[i, 0], A[i, 1], A[i, 2], · · · , A[i, m − 1]
]

and column j is the vector

[

A[0, j], A[1, j], A[2, j], · · · , A[n − 1, j]
]

185



CHAPTER 4. THE MATRIX 186

Representing a traditional matrix by a list of row-lists

How can we represent a matrix? Perhaps the first representation that comes to mind is a list
of row-lists: each row of the matrix A is represented by a list of numbers, and the matrix is
represented by a list L of these lists. That is, a list L such that

A[i, j] = L[i][j] for every 0 ≤ i < m and 0 ≤ j < n

For example, the matrix

[

1 2 3
10 20 30

]

would be represented by [[1,2,3],[10,20,30]].

Quiz 4.1.1: Write a nested comprehension whose value is list-of-row-list representation of a
3 × 4 matrix all of whose elements are zero:

⎡

⎣

0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎦

Hint: first write a comprehension for a typical row, then use that expression in a comprehension
for the list of lists.

Answer

>>> [[0 for j in range(4)] for i in range(3)]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

Representing a traditional matrix by a list of column-lists

As you will see, one aspect of matrices that makes them so convenient and beautiful is the duality
between rows and columns. Anything you can do with columns, you can do with rows. Thus we
can represent a matrix A by a list of column-lists; that is, a list L such that

A[i, j] = L[j][i] for every 0 ≤ i < m and 0 ≤ j < n

For example, the matrix

[

1 2 3
10 20 30

]

would be represented by [[1,10],[2,20],[3,30]].

Quiz 4.1.2: Write a nested comprehension whose value is list-of-column-lists representation of
a 3 × 4 matrix whose i, j element is i − j:

⎡

⎣

0 −1 −2 −3
1 0 −1 −2
2 1 0 −1

⎤

⎦
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Figure 4.1: The Matrix Revisited (excerpt) http://xkcd.com/566/

Hint: First write a comprension for column j, assuming j is bound to an integer. Then use that
expression in a comprehension in which j is the control variable.

Answer

>>> [[i-j for i in range(3)] for j in range(4)]
[[0, 1, 2], [-1, 0, 1], [-2, -1, 0], [-3, -2, -1]]

4.1.2 The matrix revealed

We will often use the traditional notation in examples. However, just as we find it helpful to
define vectors whose entries are identified by elements of an arbitrary finite set, we would like to
be able to refer to a matrix’s rows and columns using arbitrary finite sets,

As we have defined a D-vector over F to be a function from a set D to F, so we define a R×C
matrix over F to be a function from the Cartesian product R × C. We refer to the elements of
R as row labels and we refer to the elements of C as column labels.

Example 4.1.3: Here is an example in which R = {'a', 'b'} and C = {'#', '@', '?'}:

@ # ?

a 1 2 3
b 10 20 30

The column labels are given atop the columns, and the row labels are listed to the left of the
rows.

Formally, this matrix is a function from R × C to R. We can represent the function using
Python’s dictionary notation:

{('a','@'):1, ('a','#'):2, ('a', '?'):3, ('b', '@'):10, ('b', '#'):20,
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('b','?'):30}

4.1.3 Rows, columns, and entries

Much of the power of matrices comes from our ability to interpret the rows and columns of a
matrix as vectors. For the matrix of Example 4.1.3 (Page 187):

• row 'a' is the vector Vec({'@', '#', '?'}, {'@':1, '#':2, '?':3})

• row 'b' is the vector Vec({'@', '#', '?'}, {'@':10, '#':20, '?':30})

• column '#' is the vector Vec({'a','b'}, {'a':2, 'b':20})

• column '@' is the vector Vec({'a','b'}, {'a':1, 'b':10})

Quiz 4.1.4: Give a Python expression using Vec for column '?'.

Answer

Vec({'a','b'}, {'a':3, 'b':30})

For a R × C matrix M , and for r ∈ R and c ∈ C, the r, c element of M is defined to be
whatever the pair (r, c) maps to, and is written Mr,c or M [r, c]. The rows and columns are
defined as follows:

• For r ∈ R, row r is the C-vector such that, for each element c ∈ C, entry c is M [r, c], and

• for c ∈ C, column c is the R-vector such that, for each element r ∈ R, entry r is M [r, c].

We denote row r of M by M [r, :] or Mr,: and we denote column c of M by M [:, c] or M:,c.

Dict-of-rows representation

Since I have said that each row of a matrix is a vector, we can represent each row by an instance
of Vec. To map row-labels to the rows, we use a dictionary. I call this representation a rowdict.
For example, the rowdict representation of the matrix of Example 4.1.3 (Page 187) is:

{'a': Vec({'#', '@', '?'}, {'@':1, '#':2, '?':3}),
'b': Vec({'#', '@', '?'}, {'@':10, '#':20, '?':30})}

Dict-of-columns representation

The duality of rows and colums suggests a representation consisting of a dictionary mapping
column-labels to the columns represented as instances of Vec. I call this representation a coldict.



CHAPTER 4. THE MATRIX 189

Quiz 4.1.5: Give a Python expression whose value is the coldict representation of the matrix
of Example 4.1.3 (Page 187).

Answer

{'#': Vec({'a','b'}, {'a':2, 'b':20}),
'@': Vec({'a','b'}, {'a':1, 'b':10}),
'?': Vec({'a','b'}, {'a':3, 'b':30})}

4.1.4 Our Python implementation of matrices

We have defined several different representations of matrices, and will later define still more. It
is convenient, however, to define a class Mat, analogous to our vector class Vec, for representing
matrices. An instance of Mat will have two fields:

• D, which will be bound to a pair (R, C) of sets (unlike Vec, in which D is a single set);

• f, which will be bound to a dictionary representing the function that maps pairs (r, c) ∈
R × C to field elements.

We will follow the sparsity convention we used in representing vectors: entries of the matrix
whose values are zero need not be represented in the dictionary. Sparsity for matrices is more
important than for vectors since matrices tend to be much bigger: a C-vector has |C| entries but
an R × C matrix has |R| · |C| entries.

One key difference between our representations of vectors and matrices is the use of the D
field. In a vector, the value of D is a set, and the keys of the dictionary are elements of this set.
In a matrix, the value of D is a pair (R, C) of sets, and the keys of the dictionary are elements
of the Cartesian product R × C. The reason for this choice is that storing the entire set R × C
would require too much space for large sparse matrices.

The Python code required to define the class Mat is

class Mat:
def __init__(self, labels, function):

self.D = labels
self.f = function

Once Python has processed this definition, you can create an instance of Mat like so:

>>> M=Mat(({'a','b'}, {'@', '#', '?'}), {('a','@'):1, ('a','#'):2,
('a','?'):3, ('b','@'):10, ('b','#'):20, ('b','?'):30})

As with Vec, the first argument is assigned to the new instance’s D field, and the second is
assigned to the f field.

As with Vec, we will write procedures to manipulate instances of Mat, and eventually give
a more elaborate class definition for Mat, one that allows use of operators such as * and that
includes pretty printing as in
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>>> print(M)
# @ ?

---------
a | 2 1 3
b | 20 10 30

4.1.5 Identity matrix

Definition 4.1.6: For a finite set D, the D ×D identity matrix is the matrix whose row-label
set and column-label set are both D, and in which entry (d, d) is a 1 for every d ∈ D (and all
other entries are zero). We denote it by 1D. Usually the set D is clear from the context, and
the identity matrix is written 1, without the subscript.

For example, here is the {'a','b','c'}×{'a','b','c'} identity matrix:

a b c
-------

a | 1 0 0
b | 0 1 0
c | 0 0 1

Quiz 4.1.7: Write an expression for the {'a','b','c'}×{'a','b','c'} identity matrix rep-
resented as an instance of Mat.

Answer

Mat(({'a','b','c'},{'a','b','c'}),{('a','a'):1,('b','b'):1,('c','c'):1})

Quiz 4.1.8: Write a one-line procedure identity(D) that, given a finite set D, returns the
D × D identity matrix represented as an instance of Mat.

Answer

def identity(D): return Mat((D,D), {(d,d):1 for d in D})

4.1.6 Converting between matrix representations

Since we will be using different matrix representations, it is convenient to be able to convert
between them.
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Quiz 4.1.9: Write a one-line procedure mat2rowdict(A) that, given an instance of Mat, re-
turns the rowdict representation of the same matrix. Use dictionary comprehensions.

>>> mat2rowdict(M)
{'a': Vec({'@', '#', '?'},{'@': 1, '#': 2, '?': 3}),
'b': Vec({'@', '#', '?'},{'@': 10, '#': 20, '?': 30})}

Hint: First write the expression whose value is the row r Vec; the F field’s value is defined by
a dictionary comprehension. Second, use that expression in a dictionary comprehension in which
r is the control variable.

Answer

Assuming r is bound to one of M’s row-labels, row r is the value of the expression

Vec(A.D[1],{c:A[r,c] for c in A.D[1]})

We want to use this expression as the value corresponding to key r in a dictionary compre-
hension:

{r:... for r in A.D[0]}

Putting these two expressions together, we define the procedure as follows:

def mat2rowdict(A):
return {r:Vec(A.D[1],{c:A[r,c] for c in A.D[1]}) for r in A.D[0]}

Quiz 4.1.10: Write a one-line procedure mat2coldict(A) that, given an instance of Mat,
returns the coldict representation of the same matrix. Use dictionary comprehensions.

>>> mat2coldict(M)
{'@': Vec({'a', 'b'},{'a': 1, 'b': 10}),
'#': Vec({'a', 'b'},{'a': 2, 'b': 20}),
'?': Vec({'a', 'b'},{'a': 3, 'b': 30})}

Answer

def mat2coldict(A):
return {c:Vec(A.D[0],{r:A[r,c] for r in A.D[0]}) for c in A.D[1]}

4.1.7 matutil.py

The file matutil.py is provided. We will be using this module in the future. It contains the
procedure identity(D) from Quiz 4.1.8 and the conversion procedures from Section 4.1.6. It
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also contains the procedures rowdict2mat(rowdict) and coldict2mat(coldict), which are the
inverses, respectively, of mat2rowdict(A) and mat2coldict(A). 1 It also contains the procedure
listlist2mat(L) that, given a list L of lists of field elements, returns an instance of Mat whose
rows correspond to the lists that are elements of L. This procedure is convenient for easily creating
small example matrices:

>>> A=listlist2mat([[10,20,30,40],[50,60,70,80]])
>>> print(A)

0 1 2 3
-------------

0 | 10 20 30 40
1 | 50 60 70 80

4.2 Column space and row space

Matrices serve many roles, but one is a way of packing together vectors. There are two ways of
interpreting a matrix as a bunch of vectors: a bunch of columns and a bunch of rows.

Correspondingly, there are two vector spaces associated with a matrix:

Definition 4.2.1: For a matrix M ,

• the column space of M , written Col M , is the vector space spanned by the columns of M ,
and

• row space of M , written Row M , is the vector space spanned by the rows of M .

Example 4.2.2: The column space of

[

1 2 3
10 20 30

]

is Span {[1, 10], [2, 20], [3, 30]}. In this

case, the column space is equal to Span {[1, 10]} since [2, 20] and [3, 30] are scalar multiples of
[1, 10].

The row space of the same matrix is Span {[1, 2, 3], [10, 20, 30]}. In this case, the span is
equal to Span {[1, 2, 3]} since [10, 20, 30] is a scalar multiple of [1, 2, 3].

We will get a deeper understanding of the significance of the column space and row space in
Sections 4.5.1, 4.5.2 and 4.10.6. In Section 4.7, we will learn about one more important vector
space associated with a matrix.

1For each of the procedures rowdict2mat(rowdict), the argument can be either a dictionary of vectors or a
list of vectors.
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4.3 Matrices as vectors

Presently we will describe the operations that make matrices useful. First, we observe that a
matrix can be interpreted as a vector. In particular, an R × S matrix over F is a function
from R × S to F, so it can be interpreted as an R × S-vector over F. Using this interpretation,
we can perform the usual vector operations on matrices, scalar-vector multiplication and vector
addition. Our full implementation of the Mat class will include these operations. (We won’t be
using dot-product with matrices).

Quiz 4.3.1: Write the procedure mat2vec(M) that, given an instance of Mat, returns the cor-
responding instance of Vec. As an example, we show the result of applying this procedure to the
matrix M given in Example 4.1.3 (Page 187):

>>> print(mat2vec(M))
('a', '#') ('a', '?') ('a', '@') ('b', '#') ('b', '?') ('b', '@')
------------------------------------------------------------------

2 3 1 20 30 10

Answer

def mat2vec(M):
return Vec({(r,s) for r in M.D[0] for s in M.D[1]}, M.f)

We won’t need mat2vec(M) since Mat will include vector operations.

4.4 Transpose

Transposing a matrix means swapping its rows and columns.

Definition 4.4.1: The transpose of an P × Q matrix, written MT , is a Q × P matrix such
that (MT )j,i = Mi,j for every i ∈ P, j ∈ Q.

Quiz 4.4.2: Write the procedure transpose(M) that, given an instance of Mat representing a
matrix, returns the representation of the transpose of that matrix.

>>> print(transpose(M))
a b

------
# | 2 20
@ | 1 10
? | 3 30
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Answer

def transpose(M):
return Mat((M.D[1], M.D[0]), {(q,p):v for (p,q),v in M.F.items()})

We say a matrix M is a symmetric matrix if MT = M .

Example 4.4.3: The matrix

[

1 2
3 4

]

is not symmetric but the matrix

[

1 2
2 4

]

is symmetric.

4.5 Matrix-vector and vector-matrix multiplication in terms
of linear combinations

What do we do with matrices? Mostly we multiply them by vectors. There are two ways to
multiply a matrix by a vector: matrix-vector multiplication and vector-matrix multiplication. For
each, I will give two equivalent definitions of multiplication: one in terms of linear combinations
and one in terms of dot-products. The reader needs to absorb all these definitions because
different contexts call for different interpretations.

4.5.1 Matrix-vector multiplication in terms of linear combinations

Definition 4.5.1 (Linear-combinations definition of matrix-vector multiplication):
Let M be an R ×C matrix over F. Let v be a C-vector over F. Then M ∗ v is the linear com-
bination ∑

c∈C

v[c] (column c of M)

If M is an R × C matrix but v is not a C-vector then the product M ∗ v is illegal.
In the traditional-matrix case, if M is an m × n matrix over F then M ∗ v is legal only if v

is an n-vector over F. That is, the number of columns of the matrix must match the number of
entries of the vector.

Example 4.5.2: Let’s consider an example using a traditional matrix:

[

1 2 3
10 20 30

]

∗ [7, 0, 4] = 7 [1, 10] + 0 [2, 20] + 4 [3, 30]

= [7, 70] + [0, 0] + [12, 120] = [19, 190]

Example 4.5.3: What about

[

1 2 3
10 20 30

]

times the vector [7, 0]? This is illegal: you
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can’t multiply a 2 × 3 matrix with a 2-vector. The matrix has three columns but the vector has
two entries.

Example 4.5.4: Now we do an example with a matrix with more interesting row and column

labels:
@ # ? @ # ? a b

a 2 1 3 * 0.5 5 -1 = 3.0 30.0
b 20 10 30

Example 4.5.5: Lights Out: In Example 3.1.9 (Page 147), we saw that a solution to a Lights
Out puzzle (which buttons to press to turn out the lights) is a linear combination of “button
vectors.” Now we can write such a linear combination as a matrix-vector product where the
columns of the matrix are button vectors.

For example, the linear combination

1
• •
• + 0

• •
• + 0

•
• • + 1

•
• •

can be written as
⎡

⎢
⎢
⎣

• •
•

• •
•

•
• •

•
• •

⎤

⎥
⎥
⎦
∗ [1, 0, 0, 1]

4.5.2 Vector-matrix multiplication in terms of linear combinations

We have seen a definition of matrix-vector multiplication in terms of linear combinations of
columns of a matrix. We now define vector-matrix multiplication in terms of linear combinations
of the rows of a matrix.

Definition 4.5.6 (Linear-combinations definition of vector-matrix multiplication):
Let M be an R × C matrix. Let w be an R-vector. Then w ∗ M is the linear combination

∑

r∈R

w[r] (row r of M)

If M is an R × C matrix but w is not an R-vector then the product w ∗ M is illegal.
This is a good moment to point out that matrix-vector multiplication is different from vector-

matrix multiplication; in fact, often M ∗v is a legal product but v∗M is not or vice versa. Because
we are used to assuming commutativity when we multiply numbers, the noncommutativity of
multiplication between matrices and vectors can take some getting used to.
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Example 4.5.7:

[3, 4] ∗
[

1 2 3
10 20 30

]

= 3 [1, 2, 3] + 4 [10, 20, 30]

= [3, 6, 9] + [40, 80, 120] = [43, 86, 129]

Example 4.5.8: What about [3, 4, 5] ∗
[

1 2 3
10 20 30

]

? This is illegal: you can’t multiply a

3-vector and a 2 × 3 matrix. The number of entries of the vector must match the number of
rows of the matrix.

Remark 4.5.9: Transpose swaps rows and columns. The rows of M are the columns of MT .
We could therefore define w ∗ M as MT ∗w. However, implementing it that way would be a
mistake—transpose creates a completely new matrix, and, if the matrix is big, it is inefficient to
do that just for the sake of computing a vector-matrix product.

Example 4.5.10: In Section 3.1.2, we gave examples of applications of linear combinations.
Recall the JunkCo factory data table from Example 3.1.6 (Page 145):

metal concrete plastic water electricity
garden gnome 0 1.3 .2 .8 .4
hula hoop 0 0 1.5 .4 .3
slinky .25 0 0 .2 .7

silly putty 0 0 .3 .7 .5
salad shooter .15 0 .5 .4 .8

Corresponding to each product is a vector. In Example 3.1.6 (Page 145), we defined the
vectors

v gnome, v hoop, v slinky, v putty, and v shooter,
each with domain

{’metal’,’concrete’,’plastic’,’water’,’electricity’}
We can construct a matrix M whose rows are these vectors:

>>> rowdict = {'gnome':v_gnome, 'hoop':v_hoop, 'slinky':v_slinky,
'putty':v_putty, 'shooter':v_shooter}

>>> M = rowdict2mat(rowdict)
>>> print(M)

plastic metal concrete water electricity
------------------------------------------

putty | 0.3 0 0 0.7 0.5
gnome | 0.2 0 1.3 0.8 0.4
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slinky | 0 0.25 0 0.2 0.7
hoop | 1.5 0 0 0.4 0.3

shooter | 0.5 0.15 0 0.4 0.8

In that example, JunkCo decided on quantities αgnome,αhoop,αslinky,αputty,αshooter for the prod-
ucts. We saw that the the vector giving the total utilization of each resource, a vector whose
domain is {metal, concrete, plastic, water, electricity}, is a linear combination of the rows of
the table where the coefficient for product p is αp.

We can obtain the total-utilization vector as a vector-matrix product

[αgnome,αhoop,αslinky,αputty,αshooter] ∗ M (4.1)

Here’s how we can compute the total utilization in Python using vector-matrix multiplication.
Note the use of the asterisk * as the multiplication operator.

>>> R = {'gnome', 'hoop', 'slinky', 'putty', 'shooter'}
>>> u = Vec(R, {'putty':133, 'gnome':240, 'slinky':150, 'hoop':55,

'shooter':90})
>>> print(u*M)

plastic metal concrete water electricity
-----------------------------------------

215 51 312 373 356

4.5.3 Formulating expressing a given vector as a linear-combination as a matrix-
vector equation

We have learned that a linear combination can be expressed as a matrix-vector or vector-matrix
product. We now use that idea to reformulate the problem of expressing a given vector as a
linear-combination.

Example 4.5.11: Recall the industrial espionage problem of Section 3.1.4: given the JunkCo
factory data table, and given the amount of resources consumed, compute the quantity of the
products produced. Let b be the vector of resources consumed. Define x to be a vector variable.
In view of 4.1, we obtain a matrix-vector equation:

x ∗ M = b

Solving the industrial espionage problem amounts to solving this equation.

Example 4.5.12: In Example 3.1.9 (Page 147), we said that, for a given initial state s of
Lights Out, the problem of figuring out which buttons to push to turn all lights out could be
expressed as the problem of expressing s as a linear combination (over GF (2)) of the button



CHAPTER 4. THE MATRIX 198

vectors. In Example 4.5.5 (Page 195), we further pointed out that the linear combination of
button vectors could be written as a matrix-vector product B ∗ x where B is a matrix whose
columns are the the button vectors. Thus the problem of finding the correct coefficients can be
expressed as the problem of finding a vector x such that B ∗ x = s.

Here we give a Python procedure to create a dictionary of button-vectors for n × n Lights
Out. Note that we use the value one defined in the module GF2.

def button_vectors(n):
D = {(i,j) for i in range(n) for j in range(n)}
vecdict={(i,j):Vec(D,dict([((x,j),one) for x in range(max(i-1,0), min(i+2,n))]

+[((i,y),one) for y in range(max(j-1,0), min(j+2,n))]))
for (i,j) in D}

return vecdict

Entry (i, j) of the returned dictionary is the button-vector corresponding to button (i, j).
Now we can construct the matrix B whose columns are button-vectors for 5× 5 Lights Out:

>>> B = coldict2mat(button_vectors(5))

Suppose we want to find out which button vectors to press when the puzzle starts from a
particular configuration, e.g. when only the middle light is on. We create a vector s representing
that configuration:

>>> s = Vec(b.D, {(2,2):one})

Now we need to solve the equation B ∗ x = s.

4.5.4 Solving a matrix-vector equation

In each of the above examples—and in many more applications—we face the following compu-
tational problem.

Computational Problem 4.5.13: Solving a matrix-vector equation

• input: an R × C matrix A and an R-vector b

• output: the C-vector x̂ such that A ∗ x̂ = b

Though we have specified the computational problem as solving an equation of the form A∗x = b,
an algorithm for this problem would also suffice to solve a matrix-vector equation of the form
x ∗ A = b since we could apply the algorithm to the transpose AT of A.

Example 4.5.14: In Example 3.4.13 (Page 162), we considered Span {[a, b], [c, d]} where
a, b, c, d ∈ R.

1. We showed that, if [c, d] is not in Span {[a, b]} then ad ̸= bc.



CHAPTER 4. THE MATRIX 199

2. If that is the case, we showed that, for every vector [p, q] in R2, there are coefficients α
and β such that

[p, q] = α [a, b] + β [c, d] (4.2)

In Part 2, we actually gave formulas for α and β in terms of p, q, a, b, c, d: α = dp−cq
ad−bc and

β = aq−bp
ad−bc .

Note that Equation 4.2 can be rewritten as a matrix vector equation:

[

a c
b d

]

∗ [α,β] = [p, q]

Thus the formulas for α and β give an algorithm for solving a matrix-vector equation in which
the matrix is 2 × 2 and the second column is not in the span of the first.

For example, to solve the matrix equation

[

1 2
3 4

]

∗ [α,β] = [−1, 1],

we set α = 4·−1−2·1
1·4−2·3 = −6

−2 = 3 and β = 1·1−3·−1
1·4−2·3 = 4

−2 = −2

In later chapters, we will study algorithms for this computational problem. For now, I have
provided a module solver that implements these algorithms. It contains a procedure
solve(A, b) with the following spec:

• input: an instance A of Mat, and an instance v of Vec

• output: a vector u such that A ∗u = v (to within some error tolerance) if there is any such
vector u

Note that the output vector might not be a solution to the matrix-vector equation. In particular,
if there is no solution to the matrix-vector equation, the vector returned by solve(A,b) is not
a solution. You should therefore check each answer u you get from solver(A,b) by comparing
A*u to b.

Moreover, if the matrix and vector are over R, the calculations use Python’s limited-precision
arithmetic operations. Even if the equation A∗x = b has a solution, the vector u returned might
not be an exact solution.

Example 4.5.15: We use solve(A,b) to solve the industrial espionage problem. Suppose
we observe that JunkCo uses 51 units of metal, 312 units of concrete, 215 units of plastic,
373.1 units of water, and 356 units of electricity. We represent these observations by a vector b:

>>> C = {'metal','concrete','plastic','water','electricity'}
>>> b = Vec(C, {'water':373.1,'concrete':312.0,'plastic':215.4,

'metal':51.0,'electricity':356.0})

We want to solve the vector-matrix equation x ∗ M = b where M is the matrix defined in
Example 4.5.10 (Page 196). Since solve(A,b) solves a matrix-vector equation, we supply the
transpose of M as the first argument A:

>>> solution = solve(M.transpose(), b)
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>>> print(solution)

putty gnome slinky hoop shooter
--------------------------------

133 240 150 55 90

Does this vector solve the equation? We can test it by computing the residual vector (often
called the residual):

>>> residual = b - solution*M

If the solution were exact, the residual would be the zero vector. An easy way to see if the
residual is almost the zero vector is to calculate the sum of squares of its entries, which is just
its dot-product with itself:

>>> residual * residual
1.819555009546577e-25

About 10−25, so zero for our purposes!
However, we cannot yet truly be confident we have penetrated the secrets of JunkCo. Perhaps

the solution we have computed is not the only solution to the equation! More on this topic later.

Example 4.5.16: Continuing with Example 4.5.12 (Page 197), we use solve(A,b) to solve
5 × 5 Lights Out starting from a state in which only the middle light is on:

>>> s = Vec(b.D, {(2,2):one})
>>> sol = solve(B, s)

You can check that this is indeed a solution:

>>> B*sol == s
True

Here there is no issue of accuracy since elements of GF (2) are represented precisely. Moreover,
for this problem we don’t care if there are multiple solutions to the equation. This solution tells
us one collection of buttons to press:

>>> [(i,j) for (i,j) in sol.D if sol[i,j] == one]
[(4,0),(2,2),(4,1),(3,2),(0,4),(1,4),(2,3),(1,0),(0,1),(2,0),(0,2)]

4.6 Matrix-vector multiplication in terms of dot-products

We will also define matrix-vector product in terms of dot-products.

4.6.1 Definitions
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Definition 4.6.1 (Dot-Product Definition of Matrix-Vector Multiplication): If M
is an R × C matrix and u is a C-vector then M ∗ u is the R-vector v such that v[r] is the
dot-product of row r of M with u.

Example 4.6.2: Consider the matrix-vector product

⎡

⎣

1 2
3 4
10 0

⎤

⎦ ∗ [3,−1]

The product is a 3-vector. The first entry is the dot-product of the first row, [1, 2], with [3,−1],
which is 1 · 3 + 2 · (−1) = 1. The second entry is the dot-product of the second row, [3, 4], with
[3,−1], which is 3 · 3 + 4 · (−1) = 5. The third entry is 10 · 3 + 0 · (−1) = 30. Thus the product
is [1, 5, 30].

⎡

⎣

1 2
3 4
10 0

⎤

⎦ ∗ [3,−1] = [ [1, 2] · [3,−1], [3, 4] · [3,−1], [10, 0] · [3,−1] ] = [1, 5, 30]

Vector-matrix multiplication is defined in terms of dot-products with the columns.

Definition 4.6.3 (Dot-Product Definition of Vector-Matrix Multiplication): If M
is an R × C matrix and u is a R-vector then u ∗ M is the C-vector v such that v[c] is the
dot-product of u with column c of M .

4.6.2 Example applications

Example 4.6.4: You are given a high-resolution image. You would like a lower-resolution
version to put on your web page so the page will load more quickly.
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You therefore seek to downsample the image.

Each pixel of the low-res image (represented as a solid rectangle) corresponds to a little grid of
pixels of the high-res image (represented as dotted rectangles). The intensity value of a pixel of
the low-res image is the average of the intensity values of the corresponding pixels of the high-res
image.

Let’s represent the high-res image as a vector u. We saw in Quiz 2.9.3 that averaging can
be expressed as a dot-product. In downsampling, for each pixel of the low-res image to be
created, the intensity is computed as the average of a subset of the entries of u; this, too, can
be expressed as a dot-product. Computing the low-res image thus requires one dot-product for
each pixel of that image.

Employing the dot-product definition of matrix-vector multiplication, we can construct a
matrix M whose rows are the vectors that must be dotted with u. The column-labels of M are
the pixel coordinates of the high-res image. The row-labels of M are the pixel coordinates of the
low-res image. We write v = M ∗ u where v is a vector representing the low-res image.

Suppose the high-res image has dimensions 3000 × 2000 and our goal is to create a low-res
image with dimensions 750×500. The high-res image is represented by a vector u whose domain
is {0, 1, . . . , 2999} × {0, 1, . . . , 1999} and the low-res image is represented by a vector v whose
domain is {0, 1, . . . , 749} × {0, 1, . . . , 499}.

The matrix M has column-label set {0, 1, . . . , 2999} × {0, 1, . . . , 1999} and row-label set
{0, 1, . . . , 749}× {0, 1, . . . , 499}. For each low-res pixel coordinate pair (i, j), the corresponding
row of M is the vector that is all zeroes except for the 4 × 4 grid of high-res pixel coordinates

(4i, 4j), (4i, 4j + 1), (4i, 4j + 2), (4i, 4j + 3), (4i + 1, 4j), (4i + 1, 4j + 1), . . . , (4i + 3, 4j + 3)

where the values are 1
16 .

Here is the Python code to construct the matrix M .

D_high = {(i,j) for i in range(3000) for j in range(2000)}
D_low ={(i,j) for i in range(750) for j in range(500)}
M = Mat((D_low, D_high),

{((i,j), (4*i+m, 4*j+n)):1./16 for m in range(4) for n in range(4)
for i in range(750) for j in range(500)})

However, you would never actually want to create this matrix! I provide the code just for
illustration.
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Example 4.6.5: You are given an image and a set of pixel-coordinate pairs forming regions in
the image, and you wish to produce a version of the image in which the regions are blurry.

Perhaps the regions are faces, and
you want to blur them to protect
the subjects’ privacy. Once again,
the transformation can be formu-
lated as matrix-vector multiplica-
tion M ∗ v. (Once again, there is
no reason you would actually want
to construct the matrix explicitly,
but the existence of such a matrix
is useful in quickly computing the
transformation, as we will discuss
in Chapter 10.)
This time, the input image and
output image have the same di-
mensions. For each pixel that
needs to be blurred, the inten-
sity is computed as an average of
the intensities of many nearby pix-
els. Once again, we use the fact
that average can be computed as
a dot-product and that matrix-
vector multiplication can be inter-
preted as carrying out many dot-
products, one for each row of the
matrix.

Averaging treats all nearby pixels equally. This tends to produce undesirable visual artifacts
and is not a faithful analogue of the kind of blur we see with our eyes. A Gaussian blur more
heavily weights very nearby pixels; the weights go down (according to a specific formula) with
distance from the center.

Whether blurring is done using simple averaging or weighted averaging, the transformation is an
example of a linear filter, as mentioned in Section 2.9.3.

Example 4.6.6: As in Section 2.9.3, searching for an audio clip within an audio segment can
be formulated as finding many dot-products, one for each of the possible locations of the audio
clip or subimage. It is convenient to formulate finding these dot-products as a matrix-vector
product.

Supppose we are trying to find the sequence [0, 1,−1] in the longer sequence

[0, 0,−1, 2, 3,−1, 0, 1,−1,−1]
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We need to compute one dot-product for each of the possible positions of the short sequence
within the long sequence. The long sequence has ten entries, so there are ten possible positions
for the short sequence, hence ten dot-products to compute.

You might think a couple of these positions are not allowed since
these positions do not leave enough room for matching all the entries
of the short sequence. However, we adopt a wrap-around conven-
tion: we look for the short sequence starting at the end of the long
sequence, and wrapping around to the beginning. It is exactly as if
the long sequence were written on a circular strip.

0
0

-1

2

3
-1

0

1

-1

-1

We formulate computing the ten dot-products as a product of a ten-row matrix with the ten-
element long sequence:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 1 −1
−1 0 0 0 0 0 0 0 0 1
1 −1 0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∗ [0, 0,−1, 2, 3,−1, 0, 1,−1,−1]

The product is the vector [1,−3,−1, 4,−1,−1, 2, 0,−1, 0]. The second-biggest dot-product,
2, indeed occurs at the best-matching position, though the biggest dot-product, 5, occurs at a
not-so-great match.

Why adopt the wrap-around convention? It allows us to use a remarkable algorithm to
compute the matrix-vector product much more quickly than would seem possible. The Fast
Fourier Transform (FFT) algorithm, described in Chapter 10, makes use of the fact that the
matrix has a special form.

4.6.3 Formulating a system of linear equations as a matrix-vector equa-
tion

In Section 2.9.2, we defined a linear equation as an equation of the form a ·x = β, and we defined
a system of linear equations as a collection of such equations:

a1 · x = β1

a2 · x = β2

...

am · x = βm

Using the dot-product definition of matrix-vector multiplication, we can rewrite this system of
equations as a single matrix-vector equation. Let A be the matrix whose rows are a1,a2, . . . ,am.
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Let b be the vector [β1,β2, . . . ,βm]. Then the system of linear equations is equivalent to the
matrix-vector equation A ∗ x = b.

Example 4.6.7: Recall that in Example 2.9.7 (Page 113) we studied current consumption of
hardware components in sensor nodes. Define D = {’radio’, ’sensor’, ’memory’, ’CPU’}.
Our goal was to compute a D-vector that, for each hardware component, gives the current drawn
by that component.

We have five test periods. For i = 0, 1, 2, 3, 4, there is a vector durationi giving the amount
of time each hardware component is on during test period i.

>>> D = {'radio', 'sensor', 'memory', 'CPU'}
>>> v0 = Vec(D, {'radio':.1, 'CPU':.3})
>>> v1 = Vec(D, {'sensor':.2, 'CPU':.4})
>>> v2 = Vec(D, {'memory':.3, 'CPU':.1})
>>> v3 = Vec(D, {'memory':.5, 'CPU':.4})
>>> v4 = Vec(D, {'radio':.2, 'CPU':.5})

We are trying to compute a D-vector rate such that
v0*rate = 140, v1*rate = 170, v2*rate = 60, v3*rate = 170, and v4*rate = 250

We can formulate this system of equations as a matrix-vector equation:

⎡

⎢
⎢
⎢
⎢
⎣

v0

v1

v2

v3

v4

⎤

⎥
⎥
⎥
⎥
⎦

∗ [x0, x1, x2, x3, x4] = [140, 170, 60, 170, 250]

To carry out the computation in Python, we construct the vector

>>> b = Vec({0, 1, 2, 3, 4},{0: 140.0, 1: 170.0, 2: 60.0, 3: 170.0, 4: 250.0})

and construct a matrix A whose rows are v0, v1, v2, v3, and v4:

>>> A = rowdict2mat([v0,v1,v2,v3,v4])

Next we solve the matrix-vector equation A*x=b:

>>> rate = solve(A, b)

obtaining the vector
Vec(D, {’radio’:500, ’sensor’:250, ’memory’:100, ’CPU’:300})

Now that we recognize that systems of linear equations can be formulated as matrix-vector
equations, we can reformulate problems and questions involving linear equations as problems
involving matrix-vector equations:

• Solving a linear system (Computational Problem 2.9.12) becomes solving a matrix equation
(Computational Problem 4.5.13).
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• The question how many solutions are there to a linear system over GF (2) (Question 2.9.18),
which came up in connection with attacking the authentication scheme (Section 2.9.7),
becomes the question how many solutions are there to a matrix-vector equation over GF (2).

• Computational Problem 2.9.19, computing all solutions to a linear system over GF (2),
becomes computing all solutions to a matrix-vector equation over GF (2).

4.6.4 Triangular systems and triangular matrices

In Section 2.11, we described an algorithm to solve a triangular system of linear equations. We
have just seen that a system of linear equations can be formulated as a matrix-vector equation.
Let’s see what happens when we start with a triangular system.

Example 4.6.8: Reformulating the triangular system of Example 2.11.1 (Page 130) as a
matrix-vector equation, we obtain

⎡

⎢
⎢
⎣

1 0.5 −2 4
0 3 3 2
0 0 1 5
0 0 0 2

⎤

⎥
⎥
⎦
∗ x = [− 8, 3,−4, 6]

Because we started with a triangular system, the resulting matrix has a special form: the first
entry of the second row is zero, the first and second entries of the third row are zero, and the
first and second and third entries of the fourth row are zero. Since the nonzero entries form a
triangle, the matrix itself is called a triangular matrix.

Definition 4.6.9: An n × n upper-triangular matrix A is a matrix with the property that
Aij = 0 for i > j.

Note that the entries forming the triangle can be be zero or nonzero.
The definition applies to traditional matrices. To generalize to our matrices with arbitrary

row- and column-label sets, we specify orderings of the label-sets.

Definition 4.6.10: Let R and C be finite sets. Let LR be a list of the elements of R, and let
LC be a list of the elements of C. An R×C matrix A is triangular with respect to LR and LC

if
A[LR[i], LC [j]] = 0

for j > i.
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Example 4.6.11: The {a, b c}× {@, #, ?} matrix

@ # ?

a 0 2 3
b 10 20 30
c 0 35 0

is triangular with respect to [a, b c] and [@, ?, #]. We can see this by reordering the rows

and columns according to the list orders:

@ ? #

b 10 30 20
a 0 3 2
c 0 0 35

To facilitate viewing a matrix with reordered rows and columns, the class Mat will provide a
pretty-printing method that takes two arguments, the lists LR and LC :

>>> A = Mat(({'a','b','c'}, {'#', '@', '?'}),
... {('a','#'):2, ('a','?'):3,
... ('b','@'):10, ('b','#'):20, ('b','?'):30,
... ('c','#'):35})
>>>
>>> print(A)

# ? @
----------

a | 2 3 0
b | 20 30 10
c | 35 0 0

>>> A.pp(['b','a','c'], ['@','?','#'])

@ ? #
----------

b | 10 30 20
a | 0 3 2
c | 0 0 35

Problem 4.6.12: (For the student with knowledge of graph algorithms) Design an algorithm
that, for a given matrix, finds a list of a row-labels and a list of column-labels with respect to
which the matrix is triangular (or report that no such lists exist).

4.6.5 Algebraic properties of matrix-vector multiplication

We use the dot-product interpretation of matrix-vector multiplication to derive two crucial prop-
erties. We will use the first property in the next section, in characterizing the solutions to a
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matrix-vector equation and in error-correcting codes.

Proposition 4.6.13: Let M be an R × C matrix.

• For any C-vector v and any scalar α,

M ∗ (α v) = α (M ∗ v) (4.3)

• For any C-vectors u and v,

M ∗ (u + v) = M ∗ u + M ∗ v (4.4)

Proof

To show Equation 4.3 holds, we need only show that, for each r ∈ R, entry r of the left-hand
side equals entry r of the right-hand side. By the dot-product interpretation of matrix-vector
multiplication,

• entry r of the left-hand side equals the dot-product of row r of M with αv, and

• entry r of the right-hand side equals α times the dot-product of row r of M with v.

These two quantities are equal by the homogeneity of dot-product, Proposition 2.9.22.

The proof of Equation 4.4 is similar; we leave it as an exercise. !

Problem 4.6.14: Prove Equation 4.4.

4.7 Null space

4.7.1 Homogeneous linear systems and matrix equations

In Section 3.6, we introduced homogeneous linear systems, i.e. systems of linear equations in
which all right-hand side values were zero. Such a system can of course be formulated as a
matrix-vector equation A ∗ x = 0 where the right-hand side is a zero vector.

Definition 4.7.1: The null space of a matrix A is the set {v : A ∗ v = 0}. It is written
Null A.

Since Null A is the solution set of a homogeneous linear system, it is a vector space (Sec-
tion 3.4.1).
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Example 4.7.2: Let A =

⎡

⎣

1 4 5
2 5 7
3 6 9

⎤

⎦. Since the sum of the first two columns equals the

third column, A ∗ [1, 1,−1] is the zero vector. Thus [1, 1,−1] is in Null A. By Equation 4.3,
for any scalar α, A ∗ (α [1, 1,−1]) is also the zero vector, so α [1, 1,−1] is also in Null A. For
example, [2, 2,−2] is in Null A.

Problem 4.7.3: For each of the given matrices, find a nonzero vector in the null space of the
matrix.

1.
[

1 0 1
]

2.

[

2 0 0
0 1 1

]

3.

⎡

⎣

1 0 0
0 0 0
0 0 1

⎤

⎦

Here we make use of Equation 4.4:

Lemma 4.7.4: For any R × C matrix A and C-vector v, a vector z is in the null space of A
if and only if A ∗ (v + z) = A ∗ v.

Proof

The statement is equivalent to the following statements:

1. if the vector z is in the null space of A then A ∗ (v + z) = A ∗ v;

2. if A ∗ (v + z) = A ∗ v then z is in the null space of A.

For simplicity, we prove these two statements separately.

1. Suppose z is in the null space of A. Then

A ∗ (v + z) = A ∗ v + A ∗ z = A ∗ v + 0 = A ∗ v

2. Suppose A ∗ (v + z) = A ∗ v. Then

A ∗ (v + z) = A ∗ v
A ∗ v + A ∗ z = A ∗ v

A ∗ z = 0
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!

4.7.2 The solution space of a matrix-vector equation

In Lemma 3.6.1 (Section 3.6.1), we saw that two solutions to a system of linear equations differ
by a vector that solves the corresponding system of homogeneous equations. We restate and
reprove the result in terms of matrix-vector equations:

Corollary 4.7.5: Suppose u1 is a solution to the matrix equation A ∗x = b. Then u2 is also
a solution if and only if u1 − u2 belongs to the null space of A.

Proof

Since A ∗ u1 = b, we know that

A ∗ u2 = b if and only if A ∗ u2 = A ∗ u1.

Applying Lemma 4.7.4 with v = u2 and z = u1 − u2, we infer:

A ∗ u2 = A ∗ u1 if and only if u1 − u2 is in the null space of A.

Combining these two statements proves the corollary. !

While studying a method for calculating the rate of power consumption for hardware components
(Section 2.9.2), we asked about uniqueness of a solution to a system of linear equations. We saw
in Corollary 3.6.4 that uniqueness depended on whether the corresponding homogeneous system
have only the trivial solution. Here is the same corollary, stated in matrix terminology:

Corollary 4.7.6: Suppose a matrix-vector equation Ax = b has a solution. The solution is
unique if and only if the null space of A consists solely of the zero vector.

Thus uniqueness of a solution comes down to the following question:

Question 4.7.7: How can we tell if the null space of a matrix consist solely of the zero vector?

This is just a restatement using matrix terminology, of Question 3.6.5, How can we tell if a
homogeneous linear system has only the trivial solution?

While studying an attack on an authentication scheme in Section 2.9.7, we became interested
in counting the solutions to a system of linear equations over GF (2) (Question 2.9.18). In
Section 3.6.1 we saw that this was equivalent to counting the solutions to a homogeneous system
(Question 3.6.6). Here we restate this problem in terms of matrices:

Question 4.7.8: How can we find the cardinality of the null space of a matrix over GF (2)?
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4.7.3 Introduction to error-correcting codes

Richard Hamming was getting, he later recalled, “very an-
noyed.” He worked for Bell Laboratories in New Jersey but
needed to use a computer located in New York. This was a
very early computer, built using electromechanical relays, and
it was somewhat unreliable. However, the computer could de-
tect when an error occured, and when it did, it would restart
the current computation. After three tries, however, it would
go on to the next computation.

Hamming was, in his words, “low man on the totem pole”,
so he didn’t get much use of the computer during the work
week. However, nobody else was using it during the weekend.
Hamming was allowed to submit a bunch of computations on
Friday afternoon; the computer would run them during the
weekend, and Hamming would be able to collect the results.

However, he came in one Monday to collect his results, and
found that something went wrong, and all the computations
failed. He tried again the following weekend—the same thing happened. Peeved, he asked himself:
if the computer can detect that its input has an error, why can’t it tell me where the error is?

Hamming had long known one solution to this problem: replication. if you are worried about
occasional bit errors, write your bit string three times: for each bit position, if the three bit
strings differ in that position, choose the bit that occurs twice. However, this solution uses more
bits than necessary.

As a result of this experience, Hamming invented error-correcting codes. The first code he
invented is now called the Hamming code and is still used, e.g. in flash memory. He and other
researchers subsequently discovered many other error-correcting codes. Error-correcting codes
are ubiquitious today; they are used in many kinds of transmission (including WiFi, cell phones,
communication with satellites and spacecraft, and digital television) and storage (RAM, disk
drives, flash memory, CDs, and DVDs).

The Hamming code is what we now call a linear binary block code:

• linear because it is based on linear algebra,

• binary because the input and output are assumed to be in binary, and

• block because the code involves a fixed-length sequence of bits.

The transmission or storage of data is modeled by a noisy channel, a tube through which you
can push vectors but which sometimes flips bits. A block of bits is represented by a vector over
GF (2). A binary block code defines a function f : GF (2)m −→ GF (2)n. (In the Hamming code,
m is 4 and n is 7.)

encode0101 1101101 1111101

transmission over 
noisy channel

decode 0101
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When you have a block of m bits you want to be reliably received at the other end, you first use
f to transform it to an n-vector, which you then push through the noisy channel. At the other
end of the noisy channel, the recipient gets an n-vector that might differ from the original in
some bit positions; the recipient must somehow figure out which bits were changed as the vector
passed through the noisy channel.

We denote by C the set of encodings, the image of f—the set of n-vectors that can be injected
into the noisy channel. The vectors of C are called codewords.

4.7.4 Linear codes

Let c denote the codeword injected into the noisy channel, and let c̃ denote the vector (not
necessarily a codeword) that comes out the other end. Ordinarily, c̃ differs from c only in a small
number of bit positions, the positions in which the noisy channel introduced errors. We write

c̃ = c + e

where e is the vector with 1’s in the error positions. We refer to e as the error vector.
The recipient gets c̃ and needs to figure out e in order to figure out c. How?
In a linear code, the set C of codewords is the null space of a matrix H. This simplifies the

job of the recipient. Using Equation 4.4, we see

H ∗ c̃ = H ∗ (c + e) = H ∗ c + H ∗ e = 0 + H ∗ e = H ∗ e

because c is in the null space of H.
Thus the recipient knows something useful about e: she knows H ∗ e (because it is the same

as H ∗ c̃, which she can compute). The vector H ∗ e is called the error syndrome. If the error
syndrome is the zero vector then the recipient assumes that e is all zeroes, i.e. that no error
has been introduced. If the error syndrome is a nonzero vector then the recipient knows that
an error has occured, i.e. that e is not all zeroes. The recipient needs to figure out e from the
vector H ∗ e. The method for doing this depends on the particular code being used.

4.7.5 The Hamming Code

In the Hamming code, the codewords are 7-vectors, and

H =

⎡

⎣

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤

⎦

Notice anything special about the columns and their order?
Now suppose that the noisy channel introduces at most one bit error. Then e has only one 1.

Can you determine the position of the bit error from the matrix-vector product H ∗ e?

Example 4.7.9: Suppose e has a 1 in its third position, e = [0, 0, 1, 0, 0, 0, 0]. Then H ∗ e is
the third column of H, which is [0, 1, 1].

As long as e has at most one bit error, the position of the bit can be determined from H ∗ e.
This shows that the Hamming code allows the recipient to correct one-bit errors.
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Quiz 4.7.10: Suppose H ∗ e is [1, 1, 0]. What is e?

Answer

[0, 0, 0, 0, 0, 1, 0].

Quiz 4.7.11: Show that the Hamming code does not allow the recipient to correct two-bit
errors: give two different error vectors, e1 and e2, each with at most two 1’s, such that H ∗e1 =
H ∗ e2.

Answer

There are many acceptable answers, e.g. e1 = [1, 1, 0, 0, 0, 0, 0] and e2 = [0, 0, 1, 0, 0, 0, 0] or
e1 = [0, 0, 1, 0, 0, 1, 0] and e2 = [0, 1, 0, 0, 0, 0, 1].

Next we show that the Hamming code allows detection of errors as long as the number of
errors is no more than two. Remember that the recipient assumes that no error has occured if
H ∗ e is the zero vector. Is there a way to set exactly two 1’s in e so as to achieve H ∗ e = 0?

When e has two 1’s, H ∗ e is the sum of the two corresponding columns of H. If the sum of
two columns is 0 then (by GF (2) arithmetic) the two columns must be equal.

Example 4.7.12: Suppose e = [0, 0, 1, 0, 0, 0, 1]. Then H ∗ e = [0, 1, 1] + [1, 1, 1] = [1, 0, 0]

Note, however, that a two-bit error can get misinterpreted as a one-bit error. In the example, if the
recipient assumes at most one error, she will conclude that the error vector is e = [0, 0, 0, 1, 0, 0, 0].

In Lab 4.14, we will implement the Hamming code and try it out.

4.8 Computing sparse matrix-vector product

For computing products of matrices with vectors, we could use the linear-combinations or dot-
products definitions but they are not very convenient for exploiting sparsity.

By combining the definition of dot-product with the dot-product definition of matrix-vector
multiplication, we obtain the following equivalent definition.

Definition 4.8.1 (Ordinary Definition of Matrix-Vector Multiplication:): If M is an
R × C matrix and u is a C-vector then M ∗ u is the R-vector v such that, for each r ∈ R,

v[r] =
∑

c∈C

M [r, c]u[c] (4.5)



CHAPTER 4. THE MATRIX 214

The most straightforward way to implement matrix-vector multiplication based on this defi-
nition is:

1 for each i in R:
2 v[i] :=

∑

j∈C M [i, j]u[j]

However, this doesn’t take advantage of the fact that many entries of M are zero and do not
even appear in our sparse representation of M . We could try implementing the sum in Line 2
in a clever way, omitting those terms corresponding to entries of M that do not appear in our
sparse representation. However, our representation does not support doing this efficiently. The
more general idea is sound, however: iterate over the entries of M that are actually represented.

The trick is to initialize the output vector v to the zero vector, and then iterate over the
nonzero entries of M , adding terms as specified by Equation 4.5.

1 initialize v to zero vector
2 for each pair (i, j) such that the sparse representation specifies M [i, j],
3 v[i] = v[i] + M [i, j]u[j]

A similar algorithm can be used to compute a vector-matrix product.

Remark 4.8.2: This algorithm makes no effort to exploit sparsity in the vector. When doing
matrix-vector or vector-matrix multiplication, it is not generally worthwhile to try to exploit
sparsity in the vector.

Remark 4.8.3: There could be zeroes in the output vector but such zeroes are considered
“accidental” and are so rare that it is not worth trying to notice their occurence.

4.9 The matrix meets the function

4.9.1 From matrix to function

For every matrix M , we can use matrix-vector multiplication to define a function x )→ M ∗ x.
The study of the matrix M is in part the study of this function, and vice versa. It is convenient
to have a name by which we can refer to this function. There is no traditional name for this
function; just in this section, we will refer to it by fM . Formally, we define it as follows: if M is
an R × C matrix over a field F then the function fM : FC −→ FR is defined by fM (x) = M ∗ x

This is not a traditional definition in linear algebra; I introduce it here for pedagogical pur-
poses.

Example 4.9.1: Let M be the matrix
# @ ?

a 1 2 3
b 10 20 30

Then the domain of the function fM is R{#,@,?} and the co-domain is R{a,b}. The image, for
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example, of the vector
# @ ?

2 2 -2
is the vector

a b

0 0

Problem 4.9.2: Recall that MT is the transpose of M . The function corresponding to MT is
fMT

1. What is the domain of fMT ?

2. What is the co-domain?

3. Give a vector in the domain of fMT whose image is the all-zeroes vector.

4.9.2 From function to matrix

Suppose we have a function fM : FA −→ FB corresponding to some matrix M but we don’t
happen to know the matrix M . We want to compute the matrix M such that fM (x) = M ∗ x.

Let’s first figure out the column-label set for M . Since the domain of fM is FA, we know that
x is an A-vector. For the product M ∗ x to even be legal, we need the column-label set of M to
be A.

Since the co-domain of fM is FB , we know that the result of multiplying M by x must be a
B-vector. In order for that to be the case, we need the row-label set of M to be B.

So far, so good. We know M must be a B × A matrix. But what should its entries be? To
find them, we use the linear-combinations definition of matrix-vector product.

Remember the standard generators for FA: for each element a ∈ A, there is a generator ea
that maps a to one and maps every other element of A to zero. By the linear-combinations
definition, M ∗ ea is column a of M . This shows that column a of M must equal fM (ea).

4.9.3 Examples of deriving the matrix

In this section, we give some examples illustrating how one derives the matrix from a function,
assuming that there is some matrix M such that the function is x )→ M ∗ x. Warning: In at
least one of these examples, that assumption is not true.

Example 4.9.3: Let s(·) be the function from R2 to R2 that scales the x-coordinate by 2.
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Assume that s([x, y]) = M ∗ [x, y] for some matrix M . The image of [1, 0] is [2, 0] and the image

of [0, 1] is [0, 1], so M =

[

2 0
0 1

]

.

Example 4.9.4: Let r90(·) be the function from R2 to R2 that rotates points in 2D by ninety
degrees counterclockwise around the origin.

Let’s assume for now that r90([x, y]) = M ∗ [x, y] for some matrix M . To find M , we find the
image under this function of the two standard generators [1, 0] and [0, 1].

Rotating the point [1, 0] by ninety degrees about the origin yields [0, 1], so this must be the
first column of M .

Rotating the point [0, 1] by ninety degrees yields [−1, 0], so this must be the second column

of M . Therefore M =

[

0 −1
1 0

]

.

Example 4.9.5: For an angle θ, let rθ(·) be the function from R2 to R2 that rotates points
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around the origin counterclockwise by θ. Assume rθ([x, y]) = M ∗ [x, y] for some matrix M .
Rotating the point [1, 0] by θ gives us the point [cos θ, sin θ], which must therefore be the

first column of M .

!

cos !

sin !

r! ([1,0]) = [cos ! ,sin ! ] 

(cos ! ,sin ! )

(1,0)

Rotating the point [0, 1] by θ gives us the point [− sin θ, cos θ], so this must be the second
column of M .

!

co
s !

r! ([0,1]) = [-sin ! , cos ! ] 

sin !

(1,0)

(-sin ! ,cos ! )

Thus M =

[

cos θ − sin θ
sin θ cos θ

]

.

For example, for rotating by thirty degrees, the matrix is

[ √
3
2 − 1

2
1
2

√
3
2

]

. Finally, we have

caught up with complex numbers, for which rotation by a given angle is simply multiplication
(Section 1.4.10).
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Matrix Transform (http://xkcd.com/824)

Example 4.9.6: Let t(·) be the function from R2 to R2 that translates a point one unit to the
right and two units up.

Assume that t([x, y]) = M ∗ [x, y] for some matrix M . The image of [1, 0] is [2, 2] and the

image of [0, 1] is [1, 3], so M =

[

2 1
2 3

]

.

4.10 Linear functions

In each of the examples, we assumed that the function could be expressed in terms of matrix-
vector multiplication, but this assumption turns out not to be valid in all these examples. How
can we tell whether a function can be so expressed?

4.10.1 Which functions can be expressed as a matrix-vector product

In Section 3.4, we identified three properties, Property V1, Property V2, and Property V3, that
hold of

• the span of some vectors, and
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• the solution set of a homogeneous linear system.

We called any set of vectors satisfying Properties V1, V2, and V3 a vector space.
Here we take a similar approach. In Section 4.6.5, we proved two algebraic properties of

matrix-vector multiplication. We now use those algebraic properties to define a special kind of
function, linear functions.

4.10.2 Definition and simple examples

Definition 4.10.1: Let U and V be vector spaces over a field F. A function f : U −→ V is
called a linear function if it satisfies the following two properties:

Property L1: For any vector u in the domain of f and any scalar α in F,

f(αu) = α f(u)

Property L2: For any two vectors u and v in the domain of f ,

f(u + v) = f(u) + f(v)

(A synonym for linear function is linear transformation.)
Let M be an R × C matrix over a field F, and define

f : FC −→ FR

by f(x) = M ∗ x. The domain and co-domain are vector spaces. By Proposition 4.6.13, the
function f satisfies Properties L1 and L2. Thus f is a linear function. We have proved:

Proposition 4.10.2: For any matrix M , the function x )→ M ∗ x is a linear function.

Here is a special case.

Lemma 4.10.3: For any C-vector a over F, the function f : FC −→ F defined by f(x) = a ·x
is a linear function.

Proof

Let A be the {0}×C matrix whose only row is a. Then f(x) = A ∗x, so the lemma follows
from Proposition 4.10.2. !

Bilinearity of dot-product Lemma 4.10.3 states that, for any vector w, the function x )→
w · x is a linear function of x. Thus the dot-product function f(x,y) = x · y is linear in its
first argument (i.e. if we plug in a vector for the second argument). By the symmetry of the
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dot-product (Proposition 2.9.21), the dot-product function is also linear in its second argument.
We say that the dot-product function is bilinear to mean that it is linear in each of its arguments.

Example 4.10.4: Let F be any field. The function from F2 to F defined by (x, y) )→ x + y is
a linear function. You can prove this using bilinearity of dot-product.

Quiz 4.10.5: Show that the function with domain R2 defined by [x, y] )→ xy is not a linear
function by giving inputs for which the function violates either Property L1 or Property L2.

Answer

f([1, 1] + [1, 1]) = f([2, 2]) = 4

f([1, 1]) + f([1, 1]) = 1 + 1

Quiz 4.10.6: Show that rotation by ninety degrees, r90(·), is a linear function.

Answer

The scalar-multiplication property, Property L1, is proved as follows:

α f([x, y]) = α [−y, x]

= [−αy,αx]

= f([αx,αy])

= f(α [x, y])

The vector-addition property, Property L2, is proved similiarly:

f([x1, y1]) + f([x2, y2]) = [−y1, x1] + [−y2, x2]

= [−(y1 + y2), x1 + x2]

= f([x1 + x2, y1 + y2])

Exercise 4.10.7: Define g : R2 −→ R3 by g([x, y]) = [x, y, 1]. Is g a linear function? If so,
prove it. If not, give a counterexample.
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Exercise 4.10.8: Define h : R2 −→ R2 to be the function that takes a point [x, y] to its
reflection about the y-axis. Give an explicit (i.e. algebraic) definition of h. Is it a linear
function? Explain your answer.

Problem 4.10.9: In at least one of the examples in Section 4.9.3, the function cannot be
written as f(x) = M ∗ x. Which one? Demonstrate using a numerical example that the
function does not satisfy the Properties L1 and L2 that define linear functions.

4.10.3 Linear functions and zero vectors

Lemma 4.10.10: If f : U −→ V is a linear function then f maps the zero vector of U to the
zero vector of V.

Proof

Let 0 denote the zero vector of U , and let 0V denote the zero vector of V.

f(0) = f(0 + 0) = f(0) + f(0)

Subtracting f(0) from both sides, we obtain

0V = f(0)

!

Definition 4.10.11: Analogous to the null space of a matrix (Definition 4.7.1), we define the
kernel of a linear function f to be {v : f(v) = 0}. We denote the kernel of f by Ker f .

Lemma 4.10.12: The kernel of a linear function is a vector space.

Problem 4.10.13: Prove Lemma 4.10.12 by showing that Ker f satisfies Properties V1, V2,
and V3 of vector spaces (Section 3.4).

4.10.4 What do linear functions have to do with lines?

Suppose f : U −→ V is a linear function. Let u1 and u2 be two vectors in U , and consider a
linear combination α1 u1 + α2 u2 and its image under f .
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f(α1 v1 + α2 v2) = f(α1 v1) + f(α2 v2) by Property L2

= α1 f(v1) + α2 f(v2) by Property L1

We interpret this as follows: the image of a linear combination of u1 and u2 is the corresponding
linear combination of f(u1) and f(u2).

What are the geometric implications?
Let’s focus on the case where the domain U is Rn. The line through the points u1 and u2 is

the affine hull of u1 and u2, i.e. the set of all affine combinations:

{α1 u1 + α2 u2 : α1,α2 ∈ R,α1 + α2 = 1}

What is the set of images under f of all these affine combinations? It is

{f(α1 u1 + α2 u2) : α1,α2 ∈ R,α1 + α2 = 1}

which is equal to
{α1 f(u1) + α2 f(u2) : α1,α2 ∈ R,α1 + α2 = 1}

which is the set of all affine combinations of f(u1) and f(u2).
This shows:

The image under f of the line through u1 and u2 is the “line” through f(u1) and f(u2).

The reason for the scare-quotes is that f might map u1 and u2 to the same point! The set of
affine combinations of two identical points is the set consisting just of that one point.

The argument we have given about the image of a linear combination can of course be extended
to handle a linear combination of more than two vectors.

Proposition 4.10.14: For a linear function f , for any vectors u1, . . . ,un in the domain of f
and any scalars α1, . . . ,αn,

f(α1 u1 + · · · + αn un) = α1 f(u1) + · · · + αn f(un)

Therefore the image under a linear function of any flat is another flat.

4.10.5 Linear functions that are one-to-one

Using the notion of kernel, we can give a nice criterion for whether a linear function is one-to-one.

Lemma 4.10.15 (One-to-One Lemma): A linear function is one-to-one if and only if its
kernel is a trivial vector space.
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Proof

Let f : V −→ W be a linear function. We prove two directions.
Suppose Ker f contains some nonzero vector v, so f(v) = 0V . By Lemma 4.10.10,

f(0) = 0V as well, so f is not one-to-one.
Suppose Ker f = {0}. Let v1,v2 be any vectors such that f(v1) = f(v2). Then

f(v1) − f(v2) = 0V so, by linearity, f(v1 − v2) = 0V , so v1 − v2 ∈ Ker f . Since Ker f
consists solely of 0, it follows that v1 − v2 = 0, so v1 = v2. !

This simple lemma gives us a fresh perspective on the question of uniqueness of solution to
a linear system. Consider the function f(x) = A ∗ x. Solving a linear system A ∗ x = b can
be interpreted as finding a pre-image of b under f . If a pre-image exists, it is guaranteed to be
unique if f is one-to-one.

4.10.6 Linear functions that are onto?

The One-to-One Lemma gives us a nice criterion for determining whether a linear function is
one-to-one. What about onto?

Recall that the image of a function f with domain V is the set {f(v) : v ∈ V}. Recall that
a function f being onto means that the image of the function equals the co-domain.

Question 4.10.16: How can we tell if a linear function is onto?

When f : V −→ W is a linear function, we denote the image of f by Im f . Thus asking
whether f is onto is asking whether Im f = W.

Example 4.10.17: (Solvability of Lights Out) Can 3× 3 Lights Out be solved from any initial
configuration? (Question 2.8.5).

As we saw in Example 4.5.5 (Page 195), we can use a matrix to address Lights Out. We
construct a matrix M whose columns are the button vectors:

M =

⎡

⎣

• •
•

• • •
•

• •
•

•
• •
•

•
• • •

•
. . . •

• •

⎤

⎦

The set of solvable initial configurations (those from which it is possible to turn out all lights) is
the set of all linear combinations of these columns, the column space of the matrix. We saw in
Example 3.2.14 (Page 154) that, in the case of 2 × 2 Lights Out, every initial configuration is
solvable in this case. What about 3 × 3 Lights Out?

Let D = {(0, 0), . . . , (2, 2)}. Let f : GF (2)D −→ GF (2)D be defined by f(x) = M ∗ x.
The set of solvable initial configurations is the image of f . The set of all initial configurations is
the co-domain of f . Therefore, the question of whether every position is solvable is exactly the
question of whether f is onto.
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We can make one step towards answering Question 4.10.16.

Lemma 4.10.18: The image of a linear function is a subspace of the function’s co-domain.

Proof

Let f : V −→ W be a linear function. Clearly Im f is a subset of W. To show that Im f is
a subspace of W, we must show that Im f satisfies Properties V1, V2, and V3 of a vector
space.

• V1: We saw in Lemma 4.10.10 that f maps the zero vector of V to the zero vector of
W, so the zero vector of W belongs to Im f .

• V2: Let w be a vector in Im f . By definition of Im f , there must be a vector v in V
such that f(v) = w. For any scalar α,

αw = α f(v) = f(α v)

so αw is in Im f .

• V3: Let w1 and w2 be vectors in Im f . By definition of Im f , there must be vectors
v1 and v2 in V such that f(v1) = w1 and f(v2) = w2. By Property L1 of linear
functions, w1 + w2 = f(v1) + f(v2) = f(v1 + v2), so w1 + w2 is in Im f .

!

The complete answer to Question 4.10.16 must wait until Chapter 6.

4.10.7 A linear function from FC to FR can be represented by a matrix

Suppose f : FC −→ FR is a linear function. We can use the method of Section 4.9.2 to obtain a
matrix M : for each c ∈ C, column c of M is the image under f of the standard generator ec.

How do we know the resulting matrix M satisfies f(x) = M ∗ x? Linearity! For any vector
x ∈ FC , for each c ∈ C, let αc be the value of entry c of x. Then x =

∑

c∈C αc ec. Because f is
linear, f(x) =

∑

c∈C αcf(ec).
On the other hand, by the linear-combinations definition of matrix-vector multiplication,

M ∗ x is the linear combination of M ’s columns where the coefficients are the scalars αc (for
c ∈ C). We defined M to be the matrix whose column c is f(ec) for each c ∈ C, so M ∗ x also
equals

∑

c∈C αcf(ec). This shows that f(x) = M ∗ x for every vector x ∈ FC .
We summarize this result in a lemma.

Lemma 4.10.19: If f : FC −→ FR is a linear function then there is an R ×C matrix M over
F such that f(x) = M ∗ x for every vector x ∈ FC .
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4.10.8 Diagonal matrices

Let d1, . . . , dn be real numbers. Let f : Rn −→ Rn be the function such that f([x1, . . . , xn]) =
[d1x1, . . . , dnxn]. The matrix corresponding to this function is

⎡

⎢
⎣

d1
. . .

dn

⎤

⎥
⎦

Such a matrix is called a diagonal matrix because the only entries allowed to be nonzero form a
diagonal.

Definition 4.10.20: For a domain D, a D × D matrix M is a diagonal matrix if M [r, c] = 0
for every pair r, c ∈ D such that r ̸= c.

Diagonal matrices are very important in Chapters 11 and 12.

Quiz 4.10.21: Write a procedure diag(D, entries) with the following spec:

• input: a set D and a dictionary entries mapping D to elements of a field

• output: a diagonal matrix such that entry (d,d) is entries[d]

Answer

def diag(D, entries):
return Mat((D,D), {(d,d):entries[d] for d in D})

A particularly simple and useful diagonal matrix is the identity matrix, defined in Sec-
tion 4.1.5. For example, here is the {a, b, c} × {a, b, c} identity matrix:

a b c
-------

a | 1 0 0
b | 0 1 0
c | 0 0 1

Recall that we refer to it as 1D or just 1.
Why is it called the identity matrix? Consider the function f : FD −→ FD defined by

f(x) = 1 ∗ x. Since 1 ∗ x = x, the function f is the identity function on FD.

4.11 Matrix-matrix multiplication

We can also multiply a pair of matrices. Suppose A is an R×S matrix and B is an S×T matrix.
Then it is legal to multiply A times B, and the result is a R× T matrix. The traditional way of
writing “A times B” is simply AB, with no operator in between the matrices.
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(In our Mat class implementing matrices, however, we will use the * operator to signify
matrix-matrix multiplication.)

Note that the product AB is different from the product BA, and in fact one product might
be legal while the other is illegal. Matrix multiplication is not commutative.

4.11.1 Matrix-matrix multiplication in terms of matrix-vector and vector-
matrix multiplication

We give two equivalent definitions of matrix-matrix multiplication, one in terms of matrix-vector
multiplication and one in terms of vector-matrix multiplication.

Definition 4.11.1 (Vector-matrix definition of matrix-matrix multiplication): For
each row-label r of A,

row r of AB = (row r of A) ∗ B (4.6)

Example 4.11.2: Here is a matrix A that differs only slightly from the 3 × 3 identity matrix:

A =

⎡

⎣

1 0 0
2 1 0
0 0 1

⎤

⎦

Consider the product AB where B is a 3×n matrix. In order to use the vector-matrix definition
of matrix-matrix multiplication, we think of A as consisting of three rows:

A =

⎡

⎣

1 0 0
2 1 0
0 0 1

⎤

⎦

Row i of the matrix-matrix product AB is the vector-matrix product

(row i of A) ∗ B

This product, according to the linear-combinations definition of vector-matrix multiplication, is
the linear combination of the rows of B in which the coefficients are the entries of row i of A.

Writing B in terms of its rows,

B =

⎡

⎣

b1
b2
b3

⎤

⎦

Then
row 1 of AB = 1 b1 + 0 b2 + 0 b3 = b1
row 2 of AB = 2 b1 + 1 b2 + 0 b3 = 2b1 + b2
row 3 of AB = 0 b1 + 0 b2 + 1 b3 = b3
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The effect of left-multiplication by A is adding twice row 1 to row 2.

Matrix A in Example 4.11.2 (Page 226) is an elementary row-addition matrix, a matrix that
is an identity matrix plus at most one off-diagonal nonzero entry. Multiplying on the left by an
elementary row-addition matrix adds a multiple of one row to another. We make use of these
matrices in an algorithm in Chapter 7.

Definition 4.11.3 (Matrix-vector definition of matrix-matrix multiplication): For
each column-label s of B,

column s of AB = A ∗ (column s of B) (4.7)

Example 4.11.4: Let A =

[

1 2
−1 1

]

and let B be the matrix whose columns are [4, 3], [2, 1],

and [0,−1], i.e.

B =

[

4 2 0
3 1 −1

]

Now AB is the matrix whose column i is the result of multiplying A by column i of B. Since
A ∗ [4, 3] = [10,−1], A ∗ [2, 1] = [4,−1], and A ∗ [0,−1] = [−2,−1],

AB =

[

10 4 −2
−1 −1 −1

]

Example 4.11.5: The matrix from Example 4.9.5 (Page 216) that rotates points in R2 by
thirty degrees is

A =

[

cos θ − sin θ
sin θ cos θ

]

=

[ √
3
2 − 1

2
1
2

√
3
2

]

We form a matrix B whose columns are the points in R2 belonging to the list L in Task 2.3.2:

B =

[

2 3 1.75 2 2.25 2.5 2.75 3 3.25
2 2 1 1 1 1 1 1 1

]

Now AB is the matrix whose column i is the result of multiplying column i of B on the left by
A, i.e. rotating the ith point in L by thirty degrees.
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Example 4.11.6: In Example 3.2.11 (Page 151), I state equations showing that the “old”
vectors [3, 0, 0], [0, 2, 0], and [0, 0, 1] can each be written as a linear combination of “new”
vectors [1, 0, 0], [1, 1, 0], and [1, 1, 1]:

[3, 0, 0] = 3 [1, 0, 0] + 0, [1, 1, 0] + 0 [1, 1, 1]

[0, 2, 0] = −2 [1, 0, 0] + 2 [1, 1, 0] + 0 [1, 1, 1]

[0, 0, 1] = 0 [1, 0, 0] − 1 [1, 1, 0] + 1 [1, 1, 1]

We rewrite these equations using the the linear-combinations definition of matrix-vector multi-
plication:

[3, 0, 0] =

⎡

⎣

1 1 1
0 1 1
0 0 1

⎤

⎦ ∗ [3, 0, 0]

[0, 2, 0] =

⎡

⎣

1 1 1
0 1 1
0 0 1

⎤

⎦ ∗ [−2, 2, 0]

[0, 0, 1] =

⎡

⎣

1 1 1
0 1 1
0 0 1

⎤

⎦ ∗ [0,−1, 1]

We combine these three equations to form one equation, using the matrix-vector definition of
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matrix-matrix multiplication:

⎡

⎣

3 0 0
0 2 0
0 0 1

⎤

⎦ =

⎡

⎣

1 1 1
0 1 1
0 0 1

⎤

⎦

⎡

⎣

3 −2 0
0 2 −1
0 0 1

⎤

⎦

The matrix-vector and vector-matrix definitions suggest that matrix-matrix multiplication
exists simply as a convenient notation for a collection of matrix-vector products or vector-matrix
products. However, matrix-matrix multiplication has a deeper meaning, which we discuss in
Section 4.11.3.

Meanwhile, note that by combining a definition of matrix-matrix multiplication with a def-
inition of matrix-vector or vector-matrix multiplication, you can get finer-grained definitions of
matrix-matrix multiplication. For example, by combining the matrix-vector definition of matrix-
matrix multiplication with the dot-product definition of matrix-vector multiplication, we get:

Definition 4.11.7 (Dot-product definition of matrix-matrix multiplication): Entry rc
of AB is the dot-product of row r of A with column c of B.

In Problem 4.17.19, you will work with United Nations (UN) voting data. You will build
a matrix A, each row of which is the voting record of a different country in the UN. You will
use matrix-matrix multiplication to find the dot-product of the voting records of every pair of
countries. Using these data, you can find out which pairs of countries are in greatest disagreement.

You will find that matrix-matrix multiplication can take quite a long time! Researchers have
discovered faster algorithms for matrix-matrix multiplication that are especially helpful when the
matrices are very large and dense and roughly square. (Strassen’s algorithm was the first and is
still the most practical.)

There is an even faster algorithm to compute all the dot-products approximately (but accu-
rately enough to find the top few pairs of countries in greatest disagreement).

4.11.2 Graphs, incidence matrices, and counting paths

In the movie Good Will Hunting, at the end of class the professor announces,

“I also put an advanced Fourier system on the main hallway chalkboard. I’m hoping
that one of you might prove it by the end of the semester. Now the person to do so will
not only be in my good graces but will also go on to fame and fortune, having their
accomplishment recorded and their name printed in the auspicious MIT Tech. Former
winners include Nobel laureates, Fields Medal winners, renowned astrophysicists, and
lowly MIT professors.”

Must be a tough problem, eh?
The hero, Will Hunting, who works as a janitor at MIT, sees the problem and surreptitiously

writes down the solution.
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The class is abuzz over the weekend—who is the mysterious student who cracked this problem?
The problem has nothing to do with Fourier systems. It has to do with representing and

manipulating a graph using a matrix.

Graphs

Informally, a graph has points, called vertices or nodes, and links, called edges. Here is a diagram
of the graph appearing in Will’s problem, but keep in mind that the graph doesn’t specify the
geometric positions of the nodes or edges—just which edges connect which nodes.

The nodes of this graph are labeled 1, 2, 3, and 4. There are two edges with endpoints 2 and 3,
one edge with endpoints 1 and 2, and so on.

Adjacency matrix

The first part of Will’s problem is to find the adjacency matrix of the graph. The adjacency
matrix A of a graph G is the D × D matrix where D is the set of node labels. In Will’s graph,
D = {1, 2, 3, 4}. For any pair i, j of nodes, A[i, j] is the number of edges with endpoints i and j.
Therefore the adjacency matrix of Will’s graph is

1 2 3 4
1 0 1 0 1
2 1 0 2 1
3 0 2 0 0
4 1 1 0 0

Note that this matrix is symmetric. This reflects the fact that if an edge has endpoints i and
j then it has endpoints j and i. Much later we discuss directed graphs, for which things are a bit
more complicated.

Note also that the diagonal elements of the matrix are zeroes. This reflects the fact that
Will’s graph has no self-loops. A self-loop is an edge whose two endpoints are the same node.
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Walks

The second part of the problem addresses walks in the graph. A walk is a sequence of alternating
nodes and edges

v0 e0 v1 e1 · · · ek−1 vk

in which each edge is immediately between its two endpoints.
Here is a diagram of Will’s graph with the edges labeled:

and here is the same diagram with the walk 3 c 2 e 4 e 2 shown:

Note that a walk can use an edge multiple times. Also, a walk need not visit all the nodes of
a graph. (A walk that visits all nodes is a traveling-salesperson tour; finding the shortest such
tour is a famous example of a computationally difficult problem.)

Will’s problem concerns three-step walks, by which is meant walks consisting of three edges.
For example, here are all the three-step walks from node 3 to node 2:

3 c 2 e 4 e 2, 3 b 2 e 4 e 2, 3 c 2 c 3 c 2, 3 c 2 c 3 b 2, 3 c 2 b 3 c 2,
3 c 2 b 3 b 2, 3 b 2 c 3 c 2, 3 b 2 c 3 b 2, 3 b 2 b 3 c 2, 3 b 2 b 3 b 2

for a total of ten. Or, wait.... Did I miss any?

Computing the number of walks

Matrix-matrix multiplication can be used to compute, for every pair i, j of nodes, the number of
two-step walks from i to j, the number of three-steps from i to j, and so on.
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First, note that the adjacency matrix A itself encodes the number of one-step walks. For each
pair i, j of nodes, A[i, j] is the number of edges with endpoints i and j, and therefore the number
of one-step walks from i-to-j.

What about two-step walks? A two-step walk from i to j consists of a one-step walk from
i to some node k, followed by a one-step walk from k to j. Thus the number of two-step walks
from i to j equals

number of one-step walks from i to 1 × number of one-step walks from 1 to j
+ number of one-step walks from i to 2 × number of one-step walks from 2 to j
+ number of one-step walks from i to 3 × number of one-step walks from 3 to j
+ number of one-step walks from i to 4 × number of one-step walks from 4 to j

This has the form of a dot-product! Row i of A is a vector u such that u[k] is the number of
one-step walks from i to k. Column j of A is a vector v such that v[k] is the number of one-step
walks from k to j. Therefore the dot-product of row i with column j is the number of two-step
walks from i to j. By the dot-product definition of matrix-matrix multiplication, therefore, the
product AA encodes the number of two-step walks.

>>> D = {1,2,3,4}
>>> A = Mat((D,D), {(1,2):1, (1,4):1, (2,1):1, (2,3):2, (2,4):1, (3,2):2,

(4,1):1, (4,2):1})
>>> print(A*A)

1 2 3 4
---------

1 | 2 1 2 1
2 | 1 6 0 1
3 | 2 0 4 2
4 | 1 1 2 2

Now we consider three-step walks. A three-step walk from i to j consists of a two-step walk from
i to some node k, followed by a one-step walk from k to j. Thus the number of three-step walks
from i to j equals

number of two-step walks from i to 1 × number of one-step walks from 1 to j
+ number of two-step walks from i to 2 × number of one-step walks from 2 to j
+ number of two-step walks from i to 3 × number of one-step walks from 3 to j
+ number of two-step walks from i to 4 × number of one-step walks from 4 to j

We already know that AA gives the number of two-step walks. Again using the dot-product
definition of matrix-matrix multiplication, the product (AA)A gives the number of three-step
walks:

>>> print((A*A)*A)

1 2 3 4
-----------

1 | 2 7 2 3
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2 | 7 2 12 7
3 | 2 12 0 2
4 | 3 7 2 2

Oops, there are not ten but twelve three-step walks from 3 to 2. I missed the walks 3 c 2 a 1 a 2
and 3 b 2 a 1 a 2. Anyway, we’re half the way towards solving Will’s problem. The problems
about generating functions are not much harder; they make use of polynomials (Chapter 10) and
determinants (Chapter 12). We will not be able to cover generating functions in this book, but
rest assured that they are not beyond your ability and are quite elegant.

Why (apart from undying fame) would you want to compute the number of k-step walks
between pairs of nodes in a graph? These numbers can serve as a crude way to measure how
closely coupled a pair of nodes are in a graph modeling a social network, although there are
assuredly better and faster ways to do so.

4.11.3 Matrix-matrix multiplication and function composition

The matrices A and B define functions via matrix-vector multiplication: fA(y) = A ∗ y and
fB(x) = B ∗ x. Naturally, the matrix AB resulting from multiplying the two also defines a
function fAB(x) = (AB) ∗ x. There’s something interesting about this function:

Lemma 4.11.8 (Matrix-Multiplication Lemma): fAB = fA ◦ fB

Proof

For notational convenience, we assume traditional row- and column-labels.
Write B in terms of columns.

B =

⎡

⎢
⎢
⎢
⎢
⎣

b1 · · · bn

⎤

⎥
⎥
⎥
⎥
⎦

By the matrix-vector definition of matrix-matrix multiplication, column j of AB is A ∗
(column j of B).

For any n-vector x = [x1, . . . , xn],

fB(x) = B ∗ x by definition of fB

= x1b1 + · · · + xnbn by the linear combinations def. of matrix-vector multiplication
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Therefore

fA(fB(x)) = fA(x1b1 + · · · xnbn)

= x1(fA(b1)) + · · · + xn(fA(bn)) by linearity of fA

= x1(Ab1) + · · · + xn(Abn) by definition of fA

= x1(column 1 of AB) + · · · + xn(column n of AB) by matrix-vector def. of AB

= (AB) ∗ x by linear-comb. def. of

matrix-vector multiplication

= fAB(x) by definition of fAB

!

Example 4.11.9: Because function composition is not commutative, it should not be surprising
that matrix-matrix multiplication is also not commutative. Consider the functions f([x1, x2]) =
[x1 + x2, x2] and g([x1, x2]) = [x1, x1 + x2]. These correspond to the matrices

A =

[

1 1
0 1

]

and B =

[

1 0
1 1

]

which are both elementary row-addition matrices. Let’s look at the composition of the functions

f ◦ g([x1, x2]) = f([x1, x1 + x2])= [2x1 + x2, x1 + x2]

g ◦ f([x1, x2]) = g([x1 + x2, x2])= [x1 + x2, x1 + 2x2]

The corresponding matrix-matrix products are:

AB =

[

1 1
0 1

] [

1 0
1 1

]

=

[

2 1
1 1

]

BA =

[

1 0
1 1

] [

1 1
0 1

]

=

[

1 1
1 2

]

illustrating that matrix-matrix multiplication is not commutative.

Example 4.11.10: However, often the product of specific matrices does not depend on their
order. The matrices A and B of Example 4.11.9 (Page 234) are both elementary row-addition
matrices, but one adds row 1 to row 2 and the other adds row 2 to row 1

Consider instead three elementary row-addition matrices, each of which adds a multiple of
row 1 to another row.
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• The matrix B =

⎡

⎢
⎢
⎣

1 0 0 0
2 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦
adds two times row 1 to row 2.

• The matrix C =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
3 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦
adds three times row 1 to row 3.

• The matrix D =

⎡

⎢
⎢
⎣

1 0 0 0
2 1 0 0
0 0 1 0
4 0 0 1

⎤

⎥
⎥
⎦
adds four times row 1 to row 4.

Consider the matrix A =

⎡

⎢
⎢
⎣

1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1

⎤

⎥
⎥
⎦

that performs all these additions at once. The

additions can be performed one at a time in any order, suggesting that the product of B, C,
and D is always A, regardless of order.

Because function composition is associative, the Matrix-Multiplication Lemma (Lemma 4.11.8)
implies the following: corollary.

Corollary 4.11.11: Matrix-matrix multiplication is associative.

Example 4.11.12:

[

1 0
1 1

]([

1 1
0 1

] [

−1 3
1 2

])

=

[

1 0
1 1

] [

0 5
1 2

]

=

[

0 5
1 7

]

([

1 0
1 1

] [

1 1
0 1

])[

−1 3
1 2

]

=

[

1 1
1 2

] [

−1 3
1 2

]

=

[

0 5
1 7

]

Example 4.11.13: Recall from Section 4.11.2 that, for a graph G and its adjacency matrix
A, the product (AA)A gives, for each pair i, j of nodes, the number of three-step walks from
i to j. The same reasoning shows that((AA)A)A gives the number of four-step walks, and so
on. Because matrix-matrix multiplication is associative, the parentheses don’t matter, and we
can write this product as AAAA.
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The k-fold product of a matrix A with itself,

AA · · · A
︸ ︷︷ ︸

k times

is written Ak, and spoken “A to the power of k”.

4.11.4 Transpose of matrix-matrix product

Transpose interacts in a predictable way with matrix-matrix multiplication.

Proposition 4.11.14: For matrices A and B,

(AB)T = BTAT

Example 4.11.15:

[

1 2
3 4

] [

5 0
1 2

]

=

[

7 4
19 8

]

[

5 0
1 2

]T [
1 2
3 4

]T

=

[

5 1
0 2

] [

1 3
2 4

]

=

[

7 19
4 8

]

Proof

Suppose A is an R×S matrix and B is an S×T matrix. Then, by the dot-product definition
of matrix-matrix multiplication, for every r ∈ R and t ∈ T ,

entry t, r of (AB)T = entry r, t of AB = (row r of A) · (column t of B)

entry t, r of BTAT = (row t of BT ) · (column r of AT )
= (column t of B) · (row r of A)

Finally, unlike matrix-matrix multiplication, vector dot-product is commutative, so

(row r of A) · (column t of B) = (column t of B) · (row r of A)

!

Note that the order of multiplication is reversed. You might expect the equation “(AB)T =
ATBT ” to be true instead but row- and column-labels can show that this equation doesn’t make
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sense. Suppose A is an R × S matrix and B is an S × T matrix:

• Since the column-label set of A matches the row-label set of B, the product AB is defined.

• However, AT is an S × R matrix and B is a T × S matrix, so the column-label set of AT

does not match the row-label set of BT , so ATBT is not defined.

• On the other hand, the column-label set of BT does match the row-label set of AT , so
BTAT is defined.

Example 4.11.16: This example shows that, even if both BTAT and ATBT are legal, only
the former equals (AB)T .

[

1 2
3 4

]T [
5 0
1 2

]T

=

[

1 3
2 4

] [

5 1
0 2

]

=

[

5 7
10 10

]

Compare this result to Example 4.11.15 (Page 236).

4.11.5 Column vector and row vector

Column Vector An m× 1 matrix is called a column vector because it acts like a vector when
multiplied from its left. Consider the matrix-matrix product

⎡

⎣ M

⎤

⎦

⎡

⎢
⎣

u1
...

un

⎤

⎥
⎦

By the matrix-vector definition of matrix-matrix multiplication, the result of multiplying M by
a matrix with only one column u is in turn a matrix with only one column:

⎡

⎣ M

⎤

⎦

⎡

⎢
⎣

u1
...

un

⎤

⎥
⎦ =

⎡

⎢
⎣

v1
...

vm

⎤

⎥
⎦ (4.8)

By interpreting

⎡

⎢
⎣

u1
...

un

⎤

⎥
⎦ as a vector u and interpreting

⎡

⎢
⎣

v1
...

vm

⎤

⎥
⎦ as a vector v, we reinterpret

Equation (4.8) as the matrix-vector equation M ∗ u = v.

Row vector There is an alternative way to interpret a vector as a matrix: a matrix with only
one row. Such a matrix is called a row vector. Multiplying a row vector on its right by a matrix
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M acts like vector-matrix multiplication.

[

v1 . . . vm
]

⎡

⎣ M

⎤

⎦ =
[

u1 · · · un

]

4.11.6 Every vector is interpreted as a column vector

The convention in linear algebra when writing expressions involving matrices and vectors is to
interpret every vector as a column vector. Thus a matrix-vector product is traditionally written
Mv.

The corresponding notation for a vector-matrix product is vTM . This might seem odd—it
doesn’t make sense to take the transpose of a vector—but remember that v is to be interpreted
as a one-column matrix, and the transpose of a one-column matrix is a one-row matrix.

The reason for interpreting a vector as a column vector instead of as a row vector is that
matrix-vector multiplication is more common than vector-matrix multiplication.

Example 4.11.17: According to the column-vector convention, the matrix-vector product
[

1 2 3
10 20 30

]

∗ [7, 0, 4] from Example 4.5.2 (Page 194) is written as

[

1 2 3
10 20 30

]
⎡

⎣

7
0
4

⎤

⎦

Example 4.11.18: According to the column-vector convention, the vector-matrix product

[3, 4] ∗
[

1 2 3
10 20 30

]

is written as

[

3
4

]T [
1 2 3
10 20 30

]

By interpreting vectors as matrices in expressions, we can make use of associativity of matrix-
matrix multiplication. We will see this used, for example, in the next section but also in algo-
rithms for solving matrix-vector equations, in Chapters 7 and 9.

From now on, we will employ the vector-as-column-vector convention, so we will eschew the
use of * in matrix-vector or vector-matrix multiplication—except in Python code, where we use
* for matrix-vector, vector-matrix, and matrix-matrix multiplication.

4.11.7 Linear combinations of linear combinations revisited

In Example 3.2.11 (Page 151), I expressed each of three “old” vectors [3, 0, 0], [0, 2, 0], and [0, 0, 1]
as a linear combination of three “new” vectors [1, 0, 0], [1, 1, 0], and [1, 1, 1]. I then illustrated
that a linear combination of the old vectors could be transformed into a linear combination of the
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new vectors. In this section, we show that this transformation is a consequence of associativity
of matrix-matrix multiplication.

As we saw in Example 4.11.6 (Page 228), we can use a matrix equation to express the
statement that each of the old vectors is a linear combination of the new vectors:

⎡

⎣

3 0 0
0 2 0
0 0 1

⎤

⎦ =

⎡

⎣

1 1 1
0 1 1
0 0 1

⎤

⎦

⎡

⎣

3 −2 0
0 2 −1
0 0 1

⎤

⎦ (4.9)

We express a linear combination of the old vectors as a matrix-vector product:
⎡

⎣

x
y
z

⎤

⎦ =

⎡

⎣

3 0 0
0 2 0
0 0 1

⎤

⎦

⎡

⎣

x/3
y/2
z

⎤

⎦

Now we use Equation 4.9 to substitute for the matrix:
⎡

⎣

x
y
z

⎤

⎦ =

⎛

⎝

⎡

⎣

1 1 1
0 1 1
0 0 1

⎤

⎦

⎡

⎣

3 −2 0
0 2 −1
0 0 1

⎤

⎦

⎞

⎠

⎡

⎣

x/3
y/2
z

⎤

⎦

By associativity, we can rewrite this as
⎡

⎣

x
y
z

⎤

⎦ =

⎡

⎣

1 1 1
0 1 1
0 0 1

⎤

⎦

⎛

⎝

⎡

⎣

3 −2 0
0 2 −1
0 0 1

⎤

⎦

⎡

⎣

x/3
y/2
z

⎤

⎦

⎞

⎠

We simplify the expression in parentheses,

⎡

⎣

3 −2 0
0 2 −1
0 0 1

⎤

⎦

⎡

⎣

x/3
y/2
z

⎤

⎦, obtaining

⎡

⎣

x − y
y − z

z

⎤

⎦, and

substitute: ⎡

⎣

x
y
z

⎤

⎦ =

⎡

⎣

1 1 1
0 1 1
0 0 1

⎤

⎦

⎡

⎣

x − y
y − z

z

⎤

⎦

which shows that [x, y, z] can be written as a linear combination of the new vectors.
As this example illustrates, the fact that linear combinations of linear combinations are linear

combinations is a consequence of the associativity of matrix-matrix multiplication.

4.12 Inner product and outer product

Now that we can interpret vectors as matrices, we will see what happens when we multiply
together two such vectors masquerading as matrices. There are two ways to do this.

4.12.1 Inner product

Let u and v be two D-vectors. Consider the “matrix-matrix” product uTv. The first “matrix”
has one row and the second matrix has one column. By the dot-product definition of matrix-
matrix multiplication, the product consists of a single entry whose value is u · v.



CHAPTER 4. THE MATRIX 240

Example 4.12.1:

[

1 2 3
]

⎡

⎣

3
2
1

⎤

⎦ =
[

10
]

For this reason, the dot-product of u and v is often written uTv. This product is often called
an inner product. However, the term “inner product” has taken on another, related meaning,
which we will discuss in Chapter 8.

4.12.2 Outer product

Now let u and v be any vectors (not necessarily sharing the same domain), and consider uvT .
For each element s of the domain of u and each element t of the domain of v, the s, t element of
uvT is u[s] v[t].

Example 4.12.2:

⎡

⎣

u1

u2

u3

⎤

⎦
[

v1 v2 v3 v4
]

=

⎡

⎣

u1v1 u1v2 u1v3 u1v4
u2v1 u2v2 u2v3 u2v4
u3v1 u3v2 u3v3 u3v4

⎤

⎦

This kind of product is called the outer product of vectors u and v.

4.13 From function inverse to matrix inverse

Let us return to the idea of a matrix defining a function. Recall that a matrix M gives rise to
a function f(x) = Mx. We study the case in which f has a functional inverse. Recall that g is
the functional inverse of f if f ◦ g and g ◦ f are the identity functions on their domains.

4.13.1 The inverse of a linear function is linear

Lemma 4.13.1: If f is a linear function and g is its inverse then g is also a linear function.

Proof

We need to prove that

1. for every pair of vectors y1,y2 in the domain of g, g(y1 + y2) = g(y1) + g(y2), and

2. for every scalar α and vector y in the domain of g, g(αy) = α g(y).

We prove Part 1. Let y1 and y2 be vectors in the domain of g. Let x1 = g(y1) and
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x2 = g(y2). By definition of inverse, f(x1) = y1 and f(x2) = y2.

g(y1 + y2) = g(f(x1) + f(x2))

= g(f(x1 + x2)) by the linearity of f

= x1 + x2 because g is the inverse of f

= g(y1) + g(y1) because g is the inverse of f

The proof of Part 2 is similar and is left for the reader. !

Problem 4.13.2: Complete the proof of Lemma 4.13.1 by proving Part 2.

4.13.2 The matrix inverse

Definition 4.13.3: Let A be an R × C matrix over F, and let B be a C × R matrix over F.
Define the function f : FC −→ FR by fA(x) = Ax and define the function g : FR −→ FC

by g(y) = By. If f and g are functional inverses of each other, we say the matrices A and
B are inverses of each other. If A has an inverse, we say A is an invertible matrix. It can be
shown using the uniqueness of a functional inverse (Lemma 0.3.19) that a matrix has at most
one inverse; we denote the inverse of an invertible matrix A by A−1.

A matrix that is not invertible is often called a singular matrix. We don’t use that term in
this book.

Example 4.13.4: The 3 × 3 identity matrix 1 =

⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦ corresponds to the identity

function on R3. The inverse of the identity function is itself, so 1 is its own inverse.

Example 4.13.5: What is the inverse of the 3×3 diagonal matrix

⎡

⎣

2 0 0
0 3 0
0 0 4

⎤

⎦? This matrix

corresponds to the function f : R3 −→ R3 defined by f([x, y, z]) = [2x, 3y, 4z]. The inverse
of this function is the function g([x, y, z]) = [ 12x, 1

3y, 1
4z], which corresponds to the matrix

⎡

⎣

1
2 0 0
0 1

3 0
0 0 1

4

⎤

⎦
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Example 4.13.6: The 3 × 3 diagonal matrix

⎡

⎣

2 0 0
0 0 0
0 0 4

⎤

⎦ corresponds to the function

f([x, y, z]) = [2x, 0, 4z], which is not an invertible function, so this matrix does not have an
inverse.

Example 4.13.7: Consider the following elementary row-addition matrix from Example 4.11.2
(Page 226):

A =

⎡

⎣

1 0 0
2 1 0
0 0 1

⎤

⎦

This matrix corresponds to the function f([x1, x2, x3]) = [x1, x2+2x1, x3]). That is, the function
adds twice the first entry to the second entry. The inverse is the function that subtracts the
twice the first entry from the second entry: f−1([x1, x2, x3]) = [x1, x2 − 2x1, x3]. Thus the
inverse of A is

A−1 =

⎡

⎣

1 0 0
−2 1 0
0 0 1

⎤

⎦

This matrix is also a row-addition matrix.

Example 4.13.8: Here is another elementary row-addition matrix:

B =

⎡

⎣

1 0 5
0 1 0
0 0 1

⎤

⎦

This matrix corresponds to the function f([x1, x2, x3]) that adds five times the third entry to the
first entry. That is, f([x1, x2, x3]) = [x1+5x3, x2, x3]. The The inverse of f is the function that
subtracts five times the third entry from the first entry, f−1([x1, x2, x3]) = [x1 − 5x3, x2, x3].
The matrix corresponding to f−1, the inverse of B, is

B−1 =

⎡

⎣

1 0 −5
0 1 0
0 0 1

⎤

⎦

which is another elementary row-addition matrix.

It should be apparent that every elementary row-addition matrix is invertible, and that its
inverse is also an elementary row-addition matrix. What about a matrix that adds different
multiples of a single row to all the other rows?
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Example 4.13.9: Consider the matrix from Example 4.11.10 (Page 234):

A =

⎡

⎢
⎢
⎣

1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1

⎤

⎥
⎥
⎦

This matrix adds two times the first row to the second row, three times the first row to the third
row, and four times the first row to the fourth row: The inverse of this matrix is the matrix that
subtracts two times the first row from the second row, three times the first row from the third
row, and four times the first row from the fourth row:

A−1 =

⎡

⎢
⎢
⎣

1 0 0 0
−2 1 0 0
−3 0 1 0
−4 0 0 1

⎤

⎥
⎥
⎦

Example 4.13.10: What about the matrix

[

1 1
1 1

]

, which corresponds to the function

f([x1, x2]) = [x1 + x2, x1 + x2]? The function maps both [1,−1] and [0, 0] to [0, 0], so is
not invertible. Therefore the matrix is not invertible.

4.13.3 Uses of matrix inverse

Lemma 4.13.11: If the R×C matrix A has an inverse A−1 then AA−1 is the R×R identity
matrix.

Proof

Let B = A−1. Define fA(x) = Ax and fB(y) = By. By the Matrix-Multiplication Lemma
(Lemma 4.11.8), the function fA ◦ fB satisfies (fA ◦ fB)(x) = ABx for every R-vector x.
On the other hand, fA ◦ fB is the identity function, so AB is the R ×R identity matrix. !

Consider a matrix-vector equation
Ax = b

If A has an inverse A−1 then by multiplying both sides of the equation on the left by A−1, we
obtain the equation

A−1Ax = A−1b

Since A−1A is the identity matrix, we get

1x = A−1b
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Since multiplication by the identity matrix is the identity function, we obtain

x = A−1b (4.10)

This tells us that, if the equation Ax = b has a solution, the solution must be A−1b. Conversely,
if we let x̂ = A−1b then Ax̂ = AA−1b = 1b = b, which shows that A−1b is indeed a solution to
Ax = b.

Summarizing,

Proposition 4.13.12: if A is invertible then, for any vector b with domain equal to the row-
label set of A, the matrix-vector equation Ax = b has exactly one solution, namely A−1b.

This result turns out to be mathematically very useful. For example, the following proposition
is used in our study of eigenvalues, in Chapter 12. Consider an upper-triangular matrix A.

Lemma 4.13.13: Suppose A is an upper-triangular matrix. Then A is invertible if and only if
none of its diagonal elements is zero.

Proof

Suppose none of A’s diagonal elements is zero. By Proposition 2.11.5, for any right-hand side
vector b, there is exactly one solution to Ax = b. Thus the function x )→ Ax is one-to-one
and onto.

On the other hand, suppose at least one of A’s diagonal elements is zero. By Proposi-
tion 2.11.6, there is a vector b such that the equation Ax = b has no solution. If A had an
inverse then by Proposition 4.13.12, A−1b would be a solution. !

We will use Proposition 4.13.12 repeatedly in what is to come, culminating in the design of
an algorithm to solve linear programs (Chapter 13).

In order to apply this result, however, we must develop a useful criterion for when a matrix
is invertible. In the next section, we begin that process. We don’t finish it until Chapter 6.

Equation 4.10 might lead one to think that the way to solve the matrix-vector equation
Ax = b is to find the inverse of A and multiply it by b. Indeed, this is traditionally suggested to
math students. However, this turns out not to be a good idea when working with real numbers
represented in a computer by floating-point numbers, since it can lead to much less accurate
answers than can be computed by other methods.

4.13.4 The product of invertible matrices is an invertible matrix

Proposition 4.13.14: If A and B are invertible matrices and the matrix product AB is defined
then AB is an invertible matrix, and (AB)−1 = B−1A−1.
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Proof

Define the functions f and g by f(x) = Ax and g(x) = Bx.
Suppose A and B are invertible matrices. Then the corresponding functions f and g are

invertible. Therefore, by Lemma 0.3.20, f ◦ g is invertible and its inverse is g−1 ◦ f−1, so
the matrix corresponding to f ◦ g (which is AB) is an invertible matrix, and its inverse is
B−1A−1. !

Example 4.13.15: A =

[

1 1
0 1

]

and B =

[

1 0
1 1

]

correspond to functions

f : R2 −→ R2 and g : R2 −→ R2

f

([

x1

x2

])

=

[

1 1
0 1

] [

x1

x2

]

=

[

x1 + x2

x2

]

f is an invertible function.

g

([

x1

x2

])

=

[

1 0
1 1

] [

x1

x2

]

=

[

x1

x1 + x2

]

g is an invertible function.
The functions f and g are invertible so the function f ◦ g is invertible.
By the Matrix-Multiplication Lemma, the function f ◦ g corresponds to the matrix product

AB =

[

1 1
0 1

] [

1 0
1 1

]

=

[

2 1
1 1

]

so that matrix is invertible.

Example 4.13.16: A =

⎡

⎣

1 0 0
4 1 0
0 0 1

⎤

⎦ and B =

⎡

⎣

1 0 0
0 1 0
5 0 1

⎤

⎦

Multiplication by the matrix A adds four times the first element to the second element:

f([x1, x2, x3]) = [x1, x2 + 4x1, x3])
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This function is invertible.
Multiplication by the matrix B adds five times the first element to the third element:

g([x1, x2, x3]) = [x1, x2, x3 + 5x1]

This function is invertible.
By the Matrix Multiplication Lemma, multiplication by matrix AB corresponds to composi-

tion of functions f ◦ g:

(f ◦ g)([x1, x2, x3]) = [x1, x2 + 4x1, x3 + 5x1]

The function f ◦ g is also an invertible function, so AB is an invertible matrix.

Example 4.13.17: A =

⎡

⎣

1 2 3
4 5 6
7 8 9

⎤

⎦ and B =

⎡

⎣

1 0 1
0 1 0
1 1 0

⎤

⎦

The product is AB =

⎡

⎣

4 5 1
10 11 4
16 17 7

⎤

⎦ which is not invertible, so at least one of A and B is

not invertible, and in fact

⎡

⎣

1 2 3
4 5 6
7 8 9

⎤

⎦ is not invertible.

4.13.5 More about matrix inverse

We saw that AA−1 is an identity matrix. It is tempting to conjecture that, conversely, for any
matrix A, if B is a matrix such that AB is an identity matrix 1 then B is the inverse of A. This
is not true.

Example 4.13.18: A simple counterexample is

A =

[

1 0 0
0 1 0

]

, B =

⎡

⎣

1 0
0 1
0 0

⎤

⎦

since

AB =

[

1 0 0
0 1 0

]
⎡

⎣

1 0
0 1
0 0

⎤

⎦ =

[

1 0
0 1

]

but the function fA : F3 −→ F2 defined by fA(x) = Ax and the function fB : F2 −→ F3

defined by fB(y) = By are not inverses of each other. Indeed, A

⎡

⎣

0
0
1

⎤

⎦ and A

⎡

⎣

0
0
0

⎤

⎦ are
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both

[

0
0

]

, which demonstrates that the function fA is not one-to-one, so is not an invertible

function.

So AB = I is not sufficient to ensure that A and B are inverses. However,

Corollary 4.13.19: Matrices A and B are inverses of each other if and only if both AB and
BA are identity matrices.

Proof

• Suppose A and B are inverses of each other. Because B is the inverse of A, Lemma 4.13.11
implies that AB is an identity matrix. Because A is the inverse of B, the same lemma
implies that BA is an identity matrix.

• Conversely, suppose AB and BA are both identity matrices. By the Matrix-Multiplication
Lemma (Lemma 4.11.8), the functions corresponding to A and B are therefore func-
tional inverses of each other, and therefore A and B are inverses of each other.

!

We finish with a Question:

Question 4.13.20: How can we tell if a matrix M is invertible?

We can relate this Question to others. By definition, M is an invertible matrix if the function
f(x) = Mx is an invertible function, i.e. if the function is one-to-one and onto.

• One-to-one: Since the function is linear, we know by the One-to-One Lemma that the
function is one-to-one if its kernel is trivial, i.e. if the null space of M is trivial.

• Onto: Question 4.10.16 asks: how we can tell if a linear function is onto?

If we knew how to tell if a linear function is onto, therefore, we would know how to tell if a
matrix is invertible.

In the next two chapters, we will discover the tools to answer these Questions.

4.14 Lab: Error-correcting codes

In this lab, we work with vectors and matrices over GF (2). So when you see 1’s and 0’s in
this description, remember that each 1 is really the value one from the module GF2.
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4.14.1 The check matrix

In Section 4.7.3, I introduced error-correcting codes. As we have seen, in a linear binary
code, the set C of codewords is a vector space over GF (2). In such a code, there is a matrix
H, called the check matrix, such that C is the null space of H. When the Receiver receives
the vector c̃, she can check whether the received vector is a codeword by multiplying it by
H and checking whether the resulting vector (called the error syndrome) is the zero vector.

4.14.2 The generator matrix

We have characterized the vector space C as the null space of the check matrix H. There is
another way to specify a vector space: in terms of generators. The generator matrix for a
linear code is a matrix G whose columns are generators for the set C of codewords.a

By the linear-combinations definition of matrix-vector multiplication, every matrix-vector
product G ∗ p is a linear combination of the columns of G, and is therefore a codeword.

4.14.3 Hamming’s code

Hamming discovered a code in which a four-bit message is represented by a seven-bit code-
word. The generator matrix is

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 1
1 1 0 1
0 0 0 1
1 1 1 0
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A four-bit message is represented by a 4-vector p over GF (2). The encoding of p is the
7-vector resulting from the matrix-vector product G ∗ p.

Let fG be the encoding function, the function defined by fG(x) = G ∗ p. The image of
fG, the set of all codewords, is the row space of G.

Task 4.14.1: Create an instance of Mat representing the generator matrix G. You can use
the procedure listlist2mat in the matutil module. Since we are working over GF (2),
you should use the value one from the GF2 module to represent 1.

aIt is traditional to define the generator matrix so that its rows are generators for C. We diverge from
this tradition for the sake of simplicity of presentation.

Task 4.14.2: What is the encoding of the message [1, 0, 0, 1]?
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4.14.4 Decoding

Note that four of the rows of G are the standard basis vectors e1, e2, e3, e4 of GF (2)4. What
does that imply about the relation between words and codewords? Can you easily decode
the codeword [0, 1, 1, 1, 1, 0, 0] without using a computer?

Task 4.14.3: Think about the manual decoding process you just did. Construct a 4 × 7
matrix R such that, for any codeword c, the matrix-vector product R∗c equals the 4-vector
whose encoding is c. What should the matrix-matrix product RG be? Compute the matrix
and check it against your prediction.

4.14.5 Error syndrome

Suppose Alice sends the codeword c across the noisy channel. Let c̃ be the vector received
by Bob. To reflect the fact that c̃ might differ from c, we write

c̃ = c + e

where e is the error vector, the vector with ones in the corrupted positions.
If Bob can figure out the error vector e, he can recover the codeword c and therefore the

original message. To figure out the error vector e, Bob uses the check matrix, which for the
Hamming code is

H =

⎡

⎣

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤

⎦

As a first step towards figuring out the error vector, Bob computes the error syndrome, the
vector H ∗ c̃, which equals H ∗ e.

Examine the matrix H carefully. What is special about the order of its columns?
Define the function fH by fH(y) = H ∗ y. The image under fH of any codeword is the

zero vector. Now consider the function fH ◦ fG that is the composition of fH with fG. For
any vector p, fG(p) is a codeword c, and for any codeword c, fH(c) = 0. This implies that,
for any vector p, (fH ◦ fG)(p) = 0.

The matrix HG corresponds to the function fH ◦ fG. Based on this fact, predict the
entries of the matrix HG.

Task 4.14.4: Create an instance of Mat representing the check matrix H. Calculate the
matrix-matrix product HG. Is the result consistent with your prediction?

4.14.6 Finding the error

Bob assumes that at most one bit of the codeword is corrupted, so at most one bit of e is
nonzero, say the bit in position i ∈ {1, 2, . . . , 7}. In this case, what is the value of H ∗ e?
(Hint: this uses the special property of the order of H’s columns.)



CHAPTER 4. THE MATRIX 250

Task 4.14.5: Write a procedure find_error that takes an error syndrome and returns
the corresponding error vector e.

Task 4.14.6: Imagine that you are Bob, and you have received the non-codeword c̃ =
[1, 0, 1, 1, 0, 1, 1]. Your goal is to derive the original 4-bit message that Alice intended to
send. To do this, use find_error to figure out the corresponding error vector e, and then
add e to c̃ to obtain the correct codeword. Finally, use the matrix R from Task 4.14.3 to
derive the original 4-vector.

Task 4.14.7: Write a one-line procedure find_error_matrix with the following spec:

• input: a matrix S whose columns are error syndromes

• output: a matrix whose cth column is the error corresponding to the cth column of S.

This procedure consists of a comprehension that uses the procedure find_error together
with some procedures from the matutil module.

Test your procedure on a matrix whose columns are [1, 1, 1] and [0, 0, 1].

4.14.7 Putting it all together

We will now encode an entire string and will try to protect it against errors. We first have
to learn a little about representing a text as a matrix of bits. Characters are represented
using a variable-length encoding scheme called UTF-8. Each character is represented by
some number of bytes. You can find the value of a character c using ord(c). What are the
numeric values of of the characters ‘a’, ‘A’ and space?

You can obtain the character from a numerical value using chr(i). To see the string of
characters numbered 0 through 255, you can use the following:

>>> s = ''.join([chr(i) for i in range(256)])
>>> print(s)

We have provided a module bitutil that defines some procedures for converting be-
tween lists of GF (2) values, matrices over GF (2), and strings. Two such procedures are
str2bits(str) and bits2str(L):

The procedure str2bits(str) has the following spec:

• input: a string

• output: a list of GF (2) values (0 and one) representing the string

The procedure bits2str(L) is the inverse procedure:

• input: a list of GF (2) values
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• output: the corresponding string

Task 4.14.8: Try out str2bits(str) on the string s defined above, and verify that
bits2str(L) gets you back the original string.

The Hamming code operates on four bits at a time. A four-bit sequence is called a nibble
(sometimes nybble). To encode a list of bits (such as that produced by str2bits), we break
the list into nibbles and encode each nibble separately.

To transform each nibble, we interpret the nibble as a 4-vector and we multiply it by the
generating matrix G. One strategy is to convert the list of bits into a list of 4-vectors, and
then use, say, a comprehension to multiply each vector in that list by G. In keeping with
our current interest in matrices, we will instead convert the list of bits into a matrix B each
column of which is a 4-vector representing a nibble. Thus a sequence of 4n bits is represented
by a 4 × n matrix P . The module bitutil defines a procedure bits2mat(bits) that
transforms a list of bits into such a matrix, and a procedure mat2bits(A) that transforms
such a matrix A back into a list of bits.

Task 4.14.9: Try converting a string to a list of bits to a matrix P and back to a string,
and verify that you get the string you started with.

Task 4.14.10: Putting these procedures together, compute the matrix P which represents
the string ”I’m trying to free your mind, Neo. But I can only show you the door. You’re
the one that has to walk through it.”

Imagine that you are transmitting the above message over a noisy communication chan-
nel. This channel transmits bits, but occasionally sends the wrong bit, so one becomes 0
and vice versa.

The module bitutil provides a procedure noise(A, s) that, given a matrix A and a
probability parameter s, returns a matrix with the same row- and column-labels as A but
with entries chosen from GF (2) according the probability distribution {one:s, 0:1-s}.
For example, each entry of noise(A, 0.02) will be one with probability 0.02 and zero with
probability 0.98

Task 4.14.11: To simulate the effects of the noisy channel when transmitting your matrix
P , use noise(P, 0.02) to create a random matrix E. The matrix E + P will introduce
some errors. To see the effect of the noise, convert the perturbed matrix back to text.

Looks pretty bad, huh? Let’s try to use the Hamming code to fix that. Recall that to encode
a word represented by the row vector p, we compute G ∗ p.
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Task 4.14.12: Encode the words represented by the columns of the matrix P , obtaining
a matrix C. You should not use any loops or comprehensions to compute C from P . How
many bits represented the text before the encoding? How many after?

Task 4.14.13: Imagine that you send the encoded data over the noisy channel. Use noise
to construct a noise matrix of the appropriate dimensions with error probability 0.02, and
add it to C to obtain a perturbed matrix CTILDE. Without correcting the errors, decode
CTILDE and convert it to text to see how garbled the received information is.

Task 4.14.14: In this task, you are to write a one-line procedure correct(A) with the
following spec:

• input: a matrix A each column of which differs from a codeword in at most one bit

• output: a matrix whose columns are the corresponding valid codewords.

The procedure should contain no loops or comprehensions. Just use matrix-matrix
multiplications and matrix-matrix additions together with a procedure you have written in
this lab.

Task 4.14.15: Apply your procedure correct(A) to CTILDE to get a matrix of codewords.
Decode this matrix of codewords using the matrix R from Task 4.14.3, obtaining a matrix
whose columns are 4-vectors. Then derive the string corresponding to these 4-vectors.

Did the Hamming code succeed in fixing all of the corrupted characters? If not, can you
explain why?

Task 4.14.16: Repeat this process with different error probabilities to see how well the
Hamming code does under different circumstances.

4.15 Lab: Transformations in 2D geometry

4.15.1 Our representation for points in the plane

You are familiar with representing a point (x, y) in the plane by a {'x','y'}-vector

[

x
y

]

.

In this lab, for a reason that will become apparent, we will use an {'x','y','u'}-vector
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⎡

⎣

x
y
u

⎤

⎦. This representation is called homogeneous coordinates. We will not be making use

of homogeneous coordinates in their full generality; here, the u coordinate will always be 1.

4.15.2 Transformations

A geometric transformation will be represented by a matrix M . To apply the transformation
to the location of a single point, use matrix-vector multiplication to multiply the matrix by
the location vector representing the point.

For example, let’s say you want to scale the point by two in the vertical direction.

If we were representing points in the plane by 2-vectors

[

x
y

]

, we would represent the

transformation by the matrix
[

1 0
0 2

]

You could apply the transformation to the vector by using matrix-vector multiplication:

[

1 0
0 2

] [

x
y

]

For example, if the point were located at (12, 15), you would calculate

[

1 0
0 2

] [

12
15

]

=

[

12
30

]

However, since here we instead represent points in the plane by 3-vectors

⎡

⎣

x
y
u

⎤

⎦ (with

u = 1), you would instead represent the transformation by the matrix

⎡

⎣

1 0 0
0 2 0
0 0 1

⎤

⎦

You would apply it to a point (x, y) by matrix-vector multiplication:

⎡

⎣

1 0 0
0 2 0
0 0 1

⎤

⎦

⎡

⎣

x
y
1

⎤

⎦
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For example, to apply it to the point (12, 15), you would calculate

⎡

⎣

1 0 0
0 2 0
0 0 1

⎤

⎦

⎡

⎣

12
15
1

⎤

⎦ =

⎡

⎣

12
30
1

⎤

⎦

Note that the resulting vector also has a 1 in the u entry.
Suppose we want to apply such a transformation to many points at the same time.

As illustrated in Examples 4.11.4 and 4.11.5, according to the matrix-vector definition of
matrix-matrix multiplication, to apply the transformation to many points, we put the points
together to form a location matrix and left-multiply that location matrix by the matrix
representing the transformation:

⎡

⎣

3 0 0
0 3 0
0 0 1

⎤

⎦

⎡

⎣

2 2 −2 −2
2 −2 2 2
1 1 1 1

⎤

⎦ =

⎡

⎣

6 6 −6 −6
6 −6 6 6
1 1 1 1

⎤

⎦

4.15.3 Image representation

In this lab, we will be manipulating images using matrices in Python. In order to do this,
we need to represent images as matrices. We represent an image by a set of colored points
in the plane.

Colored points

To represent a colored point, we need to specify its location and its color. We will therefore
represent a point using two vectors; the location vector with labels {′x′,′ y′,′ u′} and the
color vector with labels {′r′,′ g′,′ b′}. The location vector represents the location of the
point in the usual way—as an (x, y) pair. The u entry is always 1 for now; later you will
see how this is used. For example, the point (12, 15) would be represented by the vector
Vec({'x','y','u'}, {'x':12, 'y':15, 'u':1}).

The color vector represents the color of the point: the ′r′, ′g′, and ′b′ entries give the in-
tensities for the color channels red, green, and blue. For example, the color red is represented
by the function {′r′ : 1}.

Our scheme for representing images

Ordinarily, an image is a regular rectangular grid of rectangular pixels, where each pixel is
assigned a color. Because we will be transforming images, we will use a slightly more general
representation.

A generalized image consists of a grid of generalized pixels, where each generalized pixel
is a quadrilateral (not necessarily a rectangle).
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(0,0)

(5,4)

(1,0)

The points at the corners of the generalized pixels are identified by pairs (x, y) of integers,
which are called pixel coordinates. The top-left corner has pixel coordinates (0,0), the corner
directly to its right has pixel coordinates (1,0), and so on. For example, the pixel coordinates
of the four corners of the top-left generalized pixel are (0,0), (0,1), (1,0), and (1,1).

Each corner is assigned a location in the plane, and each generalized pixel is assigned a
color. The mapping of corners to points in the plane is given by a matrix, the location matrix.
Each corner corresponds to a column of the location matrix, and the label of that column
is the pair (x, y) of pixel coordinates of the corner. The column is a {'x','y','u'}-vector
giving the location of the corner. Thus the row labels of the location matrix are ’x’, ’y’,
and ’u’.

The mapping of generalized pixels to colors is given by another matrix, the color matrix.
Each generalized pixel corresponds to a column of the color matrix, and the label of that
column is the pair of pixel coordinates of the top-left corner of that generalized pixel. The
column is a {'r','g','b'}-vector giving the color of that generalized pixel.

For example, the image consists of four generalized pixels, comprising a total of
nine corners. This image is represented by the location matrix

(0, 0) (0, 1) (0, 2) (1, 2) (1, 1) (1, 0) (2, 2) (2, 0) (2, 1)
----------------------------------------------------------------

x | 0 0 0 1 1 1 2 2 2
y | 0 1 2 2 1 0 2 0 1
u | 1 1 1 1 1 1 1 1 1

and the color matrix

(0, 0) (0, 1) (1, 1) (1, 0)
-----------------------------

b | 225 125 75 175
g | 225 125 75 175
r | 225 125 75 175

By applying a suitable transformation to the location matrix, we can obtain

(0, 0) (0, 1) (0, 2) (1, 2) (1, 1) (1, 0) (2, 2) (2, 0) (2, 1)
----------------------------------------------------------------

x | 0 2 4 14 12 10 24 20 22
y | 0 10 20 22 12 2 24 4 14
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u | 1 1 1 1 1 1 1 1 1

which, combined with the unchanged color matrix, looks like this:

4.15.4 Loading and displaying images

We provide a module, image_mat_util, with some helpful procedures:

• file2mat

– input: string giving the pathname of a .png image file

– output: a 2-tuple (location matrix, color matrix) representing the image

• mat2display

– input: a location matrix and a color matrix (two arguments)

– output: Displays the image in a web browser

Task 4.15.1: Download a .png image file, then use file2mat to load it and mat2display
to display it on the screen.

4.15.5 Linear transformations

You will be writing a module named transform that provides a number of simple linear
transformations. Instead of writing procedures that operate on images, your methods will
return the transformation matrix and you can apply it to a specific image using matrix
multiplication. For each task, we want you to not just write the procedure but also test it
on some of the images provided in matrix_resources/images.

Task 4.15.2: Write a procedure identity() which takes no arguments and returns an
identity matrix for location vectors. Verify that this matrix works by applying it first to some
points and then to an image, making sure that nothing changes. (Hint: Think about the
correct row and column labels.)

4.15.6 Translation

Recall that a translation is a transformation that moves a point (x, y) to (x + α, y + β),
where α and β are parameters of the transformation. Can you come up with a 2× 2 matrix
that represents a translation? That is, is there a matrix M such that x′ = Mx, where x and
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x′ are the coordinates of a point before and after the translation, respectively? (Hint: How
does a translation act on the origin, which is the zero vector?)

Now consider a representation of points in two dimensions by 3-dimensional vectors whose
third coordinate is fixed to be 1. This is a special case of a representation known as homo-
geneous coordinates. Can you come up with a 3 × 3 matrix that describes a translation?

Task 4.15.3: Write a procedure translation(alpha, beta) that takes two translation
parameters and returns the corresponding 3× 3 translation matrix. Test it on some images.

4.15.7 Scaling

A scaling transformation transforms a point (x, y) into (αx,βy), where α and β are the
x− and y-scaling parameters, respectively. Can scaling be represented by a 2 × 2 matrix

multiplying a vector

[

x
y

]

? Can it be represented by a 3 × 3 matrix multiplying a vector
⎡

⎣

x
y
1

⎤

⎦?

Task 4.15.4: Write a procedure scale(alpha, beta) that takes x− and y−scaling pa-

rameters and returns the corresponding 3×3 scaling matrix that multiplies a vector

⎡

⎣

x
y
1

⎤

⎦.

4.15.8 Rotation

• What point does the vector (1, 0, 1) represent in homogeneous coordinates? What are
the homogeneous coordinates of this point after rotating it about the origin by 30
degrees counterclockwise?

• Answer the same question for the vectors (0, 1, 1) and (0, 0, 1).

• What is the 3 × 3 matrix M that describes a counterclockwise rotation of 30 degrees
about the origin? That is, a matrix M such that x′ = Mx, where x and x′ are the
coordinates of a point before and after the rotation, respectively.

• What is the general matrix form for a counterclockwise rotation of θ radians about the
origin? Compare this to the 2 × 2 rotation matrix derived in the book.

Task 4.15.5: Write a procedure rotation(theta) that takes an angle in radians and
returns the corresponding rotation matrix. Hint: Both sin(·) and cos(·) are available in
the math module.
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4.15.9 Rotation about a center other than the origin

Task 4.15.6: Write a procedure rotation_about(theta, x, y) that takes three parameters—
an angle theta in radians, an x coordinate, and a y coordinate—and returns the matrix
that rotates counterclockwise about (x, y) by theta. Hint: Use procedures you’ve already
written.

4.15.10 Reflection

A reflection about the y-axis transforms a point (x, y) into a point (−x, y).

Task 4.15.7: Write a procedure reflect_y() that takes no parameters and returns the
matrix which corresponds to a reflection about the y axis.

Task 4.15.8: Write a procedure reflect_x() which that takes no parameters and returns
the matrix which corresponds to a reflection about the x axis.

4.15.11 Color transformations

Our image representation supports transformations on colors as well as locations. Such a
transformation would be applied by multiplying the corresponding matrix times the color
matrix.

Task 4.15.9: Write a procedure scale_color that takes r, g, and b scaling parameters
and returns the corresponding scaling matrix.

Task 4.15.10: Write a procedure grayscale() that returns a matrix that converts a color
image to a grayscale image. Note that both images are still represented in RGB. If a pixel in
the original image had the values r, g, b in each of the color channels, then in the grayscale
image it has the value 77r

256 + 151g
256 + 28b

256 in all three color channels.

4.15.12 Reflection more generally

Task 4.15.11: Write a procedure reflect_about(x1,y1,x2,y2) that takes two points
and returns the matrix that reflects about the line defined by the two points. (Hint: Use
rotations, translations, and a simple reflection).

4.16 Review questions

• What is the transpose of a matrix?
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• What is the sparsity of a matrix and why is it important in computation?

• What is the linear-combination definition of matrix-vector multiplication?

• What is the linear-combinations definition of vector-matrix multiplication?

• What is the dot-product definition of matrix-vector multiplication?

• What is the dot-product definition of vector-matrix multiplication?

• What is an identity matrix?

• What is an upper-triangular matrix?

• What is a diagonal matrix?

• What is a linear function?

• What are two ways that a linear function f : Fn −→ Fm can be represented by a matrix?

• What are the kernel and image of a linear function?

• What are the null space, column space, and row space of a matrix?

• What is the matrix-vector definition of matrix-matrix multiplication?

• What is the vector-matrix definition of matrix-matrix multiplication?

• What is the dot-product definition of matrix-matrix multiplication?

• What is associativity of matrix-matrix multiplication?

• How can matrix-vector and vector-matrix multiplication be represented using matrix-
matrix multiplication?

• What is an outer product?

• How can dot-product be represented using matrix-matrix multiplication?

• What is the inverse of a matrix?

• What is one criterion for whether two matrices are inverses of each other?

4.17 Problems

Matrix-Vector Multiplication

Problem 4.17.1: Compute the following matrix-vector products (I recommend you not use the
computer to compute these):

1.

[

1 1
1 −1

]

∗ [0.5, 0.5]
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2.

[

0 0
0 1

]

∗ [1.2, 4.44]

3.

⎡

⎣

1 2 3
2 3 4
3 4 5

⎤

⎦ ∗ [1, 2, 3]

Problem 4.17.2: What 2 × 2 matrix M satisfies M ∗ [x, y] = [y, x] for all vectors [x, y]?

Problem 4.17.3: What 3 × 3 matrix M satisfies M ∗ [x, y, z] = [z + x, y, x] for all vectors
[x, y, z]?

Problem 4.17.4: What 3 × 3 matrix M satisfies M ∗ [x, y, z] = [2x, 4y, 3z] for all vectors
[x, y, z]?

Matrix-matrix multiplication: dimensions of matrices

Problem 4.17.5: For each of the following problems, answer whether the given matrix-matrix
product is valid or not. If it is valid, give the number of rows and the number of columns of the
resulting matrix (you need not provide the matrix itself).

1.

[

1 1 0
1 0 1

] [

2 1 1
3 1 2

]

2.
[

3 3 0
]
[

1 4 1
1 7 2

]

3.
[

3 3 0
]
[

1 4 1
1 7 2

]T

4.

[

1 4 1
1 7 2

]
[

3 3 0
]T

5.

[

1 4 1
1 7 2

]
[

3 3 0
]

6.
[

2 1 5
] [

1 6 2
]T

7.
[

2 1 5
]T [

1 6 2
]
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Matrix-matrix multiplication practice

Problem 4.17.6: Compute:

1.

[

2 3
4 2

] [

1 2
2 3

]

2.

[

2 4 1
3 0 −1

]
⎡

⎣

1 2 0
5 1 1
2 3 0

⎤

⎦

3.
[

2 2 1
]

⎡

⎣

3 1
−2 6
1 −1

⎤

⎦

4.
[

1 2 3
]

⎡

⎣

1
2
3

⎤

⎦

5.

⎡

⎣

1
2
3

⎤

⎦
[

1 2 3
]

6.

[

4 1 −3
2 2 −2

]T [ −1 1
1 0

]

(Remember the superscript T means “transpose”.)

Problem 4.17.7: Let

A =

⎡

⎢
⎢
⎣

2 0 1 5
1 −4 6 2
3 0 −4 2
3 4 0 −2

⎤

⎥
⎥
⎦

For each of the following values of the matrix B, compute AB and BA. (I recommend you not
use the computer to compute these.)

1. B =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤

⎥
⎥
⎦
2. B =

⎡

⎢
⎢
⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥
⎥
⎦
3. B =

⎡

⎢
⎢
⎣

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

⎤

⎥
⎥
⎦

Problem 4.17.8: Let a, b be numbers and let A =

[

1 a
0 1

]

and B =

[

1 b
0 1

]

.

1. What is AB? Write it in terms of a and b.
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2. Recall that, for a matrix M and a nonnegative integer k, we denote by Mk the k-fold
product of M with itself, i.e.

MMM . . . M
︸ ︷︷ ︸

k times

Plug in 1 for a in A. What is A2, A3? What is An where n is a positive integer?

Problem 4.17.9: Let

A =

⎡

⎢
⎢
⎣

4 2 1 −1
1 5 −2 3
4 4 4 0
−1 6 2 −5

⎤

⎥
⎥
⎦

For each of the following values of the matrix B, compute AB and BA without using a computer.
(To think about: Which definition of matrix-matrix multiplication is most useful here? What
does a nonzero entry at position (i, j) in B contribute to the jth column of AB? What does it
contribute to the ith row of BA?)

(a)

⎡

⎢
⎢
⎣

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

(b)

⎡

⎢
⎢
⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0

⎤

⎥
⎥
⎦

(c)

⎡

⎢
⎢
⎣

1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

(d)

⎡

⎢
⎢
⎣

0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦

(e)

⎡

⎢
⎢
⎣

0 0 0 2
0 0 0 0
0 0 0 0
0 −3 0 0

⎤

⎥
⎥
⎦

(f)

⎡

⎢
⎢
⎣

−1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 3

⎤

⎥
⎥
⎦

Matrix-matrix multiplication: dimensions of matrices (revisited)

Problem 4.17.10: For each of the following problems, answer whether the given matrix-matrix
product is valid or not. If it is valid, give the number of rows and the number of columns of the
resulting matrix (you need not provide the matrix itself).

1.

[

1 1 0
1 0 1

] [

2 1 1
3 1 2

]

2.
[

3 3 0
]
[

1 4 1
1 7 2

]

3.
[

3 3 0
]
[

1 4 1
1 7 2

]T
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4.

[

1 4 1
1 7 2

]
[

3 3 0
]T

5.

[

1 4 1
1 7 2

]
[

3 3 0
]

6.
[

2 1 5
] [

1 6 2
]T

7.
[

2 1 5
]T [

1 6 2
]

Column-vector and row-vector matrix multiplication

Problem 4.17.11: Compute the result of the following matrix multiplications.

(a)

[

2 3 1
1 3 4

]
⎡

⎣

2
2
3

⎤

⎦

(b)
[

2 4 1
]

⎡

⎣

1 2 0
5 1 1
2 3 0

⎤

⎦

(c)
[

2 1
]
[

3 1 5 2
−2 6 1 −1

]

(d)

[

1 2 3 4
1 1 3 1

]

⎡

⎢
⎢
⎣

1
2
3
4

⎤

⎥
⎥
⎦

(e)

⎡

⎣

4
1
−3

⎤

⎦

T ⎡

⎣

−1 1 1
1 0 2
0 1 −1

⎤

⎦ (Remember the superscript T means “transpose”.)

Matrix Class

Problem 4.17.12: You will write a module mat implementing a matrix class Mat. The data
structure used for instances of Mat resembles that used for instances of Vec. The only difference
is that the domain D will now store a pair (i.e., a 2-tuple) of sets instead of a single set. The
keys of the dictionary f are pairs of elements of the Cartesian product of the two sets in D.

The operations defined for Mat include entry setters and getters, an equality test, addition
and subtraction and negative, multiplication by a scalar, transpose, vector-matrix and matrix-
vector multiplication, and matrix-matrix multiplication. Like Vec, the class Mat is defined to
enable use of operators such as + and *. The syntax for using instances of Mat is as follows,
where A and B are matrices, v is a vector, alpha is a scalar, r is a row label, and c is a column
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label:

operation syntax
Matrix addition and subtraction A+B and A-B

Matrix negative -A
Scalar-matrix multiplication alpha*A

Matrix equality test A == B
Matrix transpose A.transpose()

Getting and setting a matrix entry A[r,c] and A[r,c] = alpha
Matrix-vector and vector-matrix multiplication v*A and A*v

Matrix-matrix multiplication A*B

You are required to write the procedures equal, getitem, setitem, mat_add, mat_scalar_mul,
transpose, vector_matrix_mul, matrix_vector_mul, and matrix_matrix_mul. You should
start by getting equal working since == is used in the doctests for other procedures.

Note: You are encouraged to use operator syntax (e.g. M [r, c]) in your procedures. (Of
course, you can’t, for example, use the syntax M [r, c] in your getitem procedure.)

Put the file mat.py in your working directory, and, for each procedure, replace the pass
statement with a working version. Test your implementation using doctest as you did with
vec.py in Problem 2.14.10. Make sure your implementation works with matrices whose row-
label sets differ from their column-label sets.
Note: Use the sparse matrix-vector multiplication algorithm described in Section 4.8 (the one
based on the “ordinary” definition”) for matrix-vector multiplication. Use the analogous algo-
rithm for vector-matrix multiplication. Do not use transpose in your multiplication algorithms.
Do not use any external procedures or modules other than vec. In particular, do not use proce-
dures from matutil. If you do, your Mat implementation is likely not to be efficient enough for
use with large sparse matrices.

Matrix-vector and vector-matrix multiplication definitions in Python

You will write several procedures, each implementing matrix-vector multiplication using a spec-
ified definition of matrix-vector multiplication or vector-matrix multiplication.

• These procedures can be written and run after you write getitem(M, k) but before you
make any other additions to Mat.

• These procedures must not be designed to exploit sparsity.

• Your code must not use the matrix-vector and vector-matrix multiplication operations that
are a part of Mat.

• Your code should use procedures
mat2rowdict, mat2coldict, rowdict2mat(rowdict), and/or coldict2mat(coldict)

from the matutil module.

Try reproducing the results below with the procedures you have written:
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•

⎡

⎣

−1 1 2
1 2 3
2 2 1

⎤

⎦

⎡

⎣

1
2
0

⎤

⎦=

⎡

⎣

1
5
6

⎤

⎦

•
[

4 3 2 1
]

⎡

⎢
⎢
⎣

−5 10
−4 8
−3 6
−2 4

⎤

⎥
⎥
⎦

=
[

−40 80
]

Problem 4.17.13: Write the procedure lin comb mat vec mult(M,v), which multiplies M
times v using the linear-combination definition. For this problem, the only operation on v you
are allowed is getting the value of an entry using brackets: v[k]. The vector returned must be
computed as a linear combination.

Problem 4.17.14: Write lin comb vec mat mult(v,M), which multiply v times M using the
linear-combination definition. For this problem, the only operation on v you are allowed is getting
the value of an entry using brackets: v[k]. The vector returned must be computed as a linear
combination.

Problem 4.17.15: Write dot product mat vec mult(M,v), which multiplies M times v using
the dot-product definition. For this problem, the only operation on v you are allowed is taking
the dot-product of v and another vector and v: u*v or v*u. The entries of the vector returned
must be computed using dot-product.

Problem 4.17.16: Write dot product vec mat mult(v,M), which multiplies v times M using
the dot-product definition. For this problem, the only operation on v you are allowed is taking
the dot-product of v and another vector and v: u*v or v*u. The entries of the vector returned
must be computed using dot-product.

Matrix-matrix multiplication definitions in Python

You will write several procedures, each implementing matrix-matrix multiplication using a spec-
ified definition of matrix-matrix multiplication.

• These procedures can be written and run only after you have written and tested the pro-
cedures in mat.py that perform matrix-vector and vector-matrix multiplication.

• These procedures must not be designed to exploit sparsity.

• Your code must not use the matrix-matrix multiplication that is a part of Mat. For this
reason, you can write these procedures before completing that part of Mat.
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• Your code should use procedures
mat2rowdict, mat2coldict, rowdict2mat(rowdict), and/or coldict2mat(coldict)

from the matutil module.

Problem 4.17.17: Write Mv mat mat mult(A,B) to compute the matrix-matrix product A ∗
B, using the matrix-vector multiplication definition of matrix-matrix multiplication. For this
procedure, the only operation you are allowed to do on A is matrix-vector multiplication, using
the * operator: A*v. Do not use the named procedure matrix vector mul or any of the
procedures defined in the previous problem.

Problem 4.17.18: Write vM mat mat mult(A,B) to compute the matrix-matrix product A∗B,
using the vector-matrix definition. For this procedure, the only operation you are allowed to do
on B is vector-matrix multiplication, using the * operator: v*B. Do not use the named procedure
vector matrix mul or any of the procedures defined in the previous problem.

Dot products via matrix-matrix multiplication

Problem 4.17.19: Let A be a matrix whose column labels are countries and whose row labels
are votes taken in the United Nations (UN), where A[i, j] is +1 or -1 or 0 depending on whether
country j votes in favor of or against or neither in vote i.

As in the politics lab, we can compare countries by comparing their voting records. Let
M = ATA. Then M ’s row and column labels are countries, and M [i, j] is the dot-product of
country i’s voting record with country j’s voting record.

The provided file UN voting data.txt has one line per country. The line consists of the
country name, followed by +1’s, -1’s, and zeroes, separated by spaces. Read in the data and
form the matrix A. Then form the matrix M = ATA. (Note: this will take quite a while—from
fifteen minutes to an hour, depending on your computer.)

Use M to answer the following questions.

1. Which pair of countries are most opposed? (They have the most negative dot-product.)

2. What are the ten most opposed pairs of countries?

3. Which pair of distinct countries are in the greatest agreement (have the most positive
dot-product)?

Hint: the items in M.f are key-value pairs where the value is the dot-product. You can use a
comprehension to obtain a list of value-key pairs, and then sort by the value, using the expression
sorted([(value,key) for key,value in M.f.items()]).

Comprehension practice
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Problem 4.17.20: Write the one-line procedure dictlist helper(dlist, k) with the fol-
lowing spec:

• input: a list dlist of dictionaries which all have the same keys, and a key k

• output: the list whose ith element is the value corresponding to the key k in the ith

dictionary of dlist

• example: With inputs dlist=[{’a’:’apple’, ’b’:’bear’}, {’a’:1, ’b’:2}] and
k=’a’, the output is [’apple’, 1]

The procedure should use a comprehension.

Save your solution to this problem since you will use it later.

The inverse of a 2× 2 matrix

Problem 4.17.21:

1. Use a formula given in the text to solve the linear system

[

3 4
2 1

] [

x1

x2

]

=

[

1
0

]

.

2. Use the formula to solve the linear system

[

3 4
2 1

] [

y1
y2

]

=

[

0
1

]

.

3. Use your solutions to find a 2 × 2 matrix M such that

[

3 4
2 1

]

times M is an identity

matrix.

4. Calculate M times

[

3 4
2 1

]

and calculate

[

3 4
2 1

]

times M , and use Corollary 4.13.19

to decide whether M is the inverse of

[

3 4
2 1

]

. Explain your answer.

Matrix inverse criterion

Problem 4.17.22: For each of the parts below, use Corollary 4.13.19 to demonstrate that
the pair of matrices given are or are not inverse of each other.

1. matrices

[

5 1
9 2

]

,

[

2 −1
−9 5

]

over R

2. matrices

[

2 0
0 1

]

,

[
1
2 0
0 1

]

over R
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3. matrices

[

3 1
0 2

]

,

[
1 1

6

−2 1
2

]

over R

4. matrices

[

1 0 1
0 1 0

]

,

⎡

⎣

0 1
0 1
1 1

⎤

⎦ over GF (2)

Problem 4.17.23: Specify a function f (by domain, co-domain, and rule) that is invertible
but such that there is no matrix A such that f(x) = Ax.



Chapter 5

The Basis

All your bases are belong to us.

Zero Wing, Sega Mega Drive version,
1991, misquoted

5.1 Coordinate systems

5.1.1 René Descartes’ idea

In 1618, the French mathematician René Descartes had an idea that forever transformed the way
mathematicians viewed geometry.

In deference to his father’s wishes, he studied law in college. But something snapped during
this time:

I entirely abandoned the study of letters. Resolving to seek no knowledge other than that of
which could be found in myself or else in the great book of the world, I spent the rest of my
youth traveling, visiting courts and armies, mixing with people of diverse temperaments and
ranks, gathering various experiences, testing myself in the situations which fortune offered
me, and at all times reflecting upon whatever came my way so as to derive some profit from
it.

After tiring of the Paris social scene, he joined the army of Prince Maurice of Nassau one year,
then joined the opposing army of the duke of Bavaria the next year, although he never saw
combat.

He had a practice of lying in bed in the morning, thinking about mathematics. He found
the prevailing approach to geometry—the approach taken since the ancient Greeks—needlessly
cumbersome.

His great idea about geometry came to him, according to one story, while lying in bed and
watching a fly on the ceiling of his room, near a corner of the room. Descartes realized that the
location of the fly could be described in terms of two numbers: its distance from the two walls
it was near. Significantly, Descartes realized that this was true even if the two walls were not
perpendicular. He further realized that geometrical analysis could thereby be reduced to algebra.

269
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5.1.2 Coordinate representation

The two numbers characterizing the fly’s location are what we
now call coordinates. In vector analysis, a coordinate system
for a vector space V is specified by generators a1, . . . ,an of V.
Every vector v in V can be written as a linear combination

v = α1 a1 + · · · + αn an

We can therefore represent v by the vector [α1, . . . ,αn] of
coefficients. In this context, the coefficients are called coor-
dinates, and the vector [α1, . . . ,αn] is called the coordinate
representation of v in terms of a1, . . . ,an.

But assigning coordinates to points is not enough. In
order to avoid confusion, we must ensure that each point
is assigned coordinates in exactly one way. To ensure this,
we must use care in selecting the generators a1, . . . ,an. We
address existence and uniqueness of representation in Sec-
tion 5.7.1.

Example 5.1.1: The vector v = [1, 3, 5, 3] is equal to 1 [1, 1, 0, 0] + 2 [0, 1, 1, 0] + 3 [0, 0, 1, 1],
so the coordinate representation of v in terms of the vectors [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1] is
[1, 2, 3].

Example 5.1.2: What is the coordinate representation of the vector [6, 3, 2, 5] in terms of the
vectors [2, 2, 2, 3], [1, 0,−1, 0], [0, 1, 0, 1]? Since

[6, 3, 2, 5] = 2 [2, 2, 2, 3] + 2 [1, 0,−1, 0] − 1 [0, 1, 0, 1],

the coordinate representation is [2, 2,−1].

Example 5.1.3: Now we do an example with vectors over GF (2). What is the coordinate
representation of the vector [0,0,0,1] in terms of the vectors [1,1,0,1], [0,1,0,1], and [1,1,0,0]?
Since

[0, 0, 0, 1] = 1 [1, 1, 0, 1] + 0 [0, 1, 0, 1] + 1 [1, 1, 0, 0]

the coordinate representation of [0, 0, 0, 1] is [1, 0, 1].

5.1.3 Coordinate representation and matrix-vector multiplication

Why put the coordinates in a vector? This actually makes a lot of sense in view of the linear-
combinations definitions of matrix-vector and vector-matrix multiplication. Suppose the coor-
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dinate axes are a1, . . . ,an. We form a matrix A =

⎡

⎢
⎢
⎢
⎢
⎣

a1 · · · an

⎤

⎥
⎥
⎥
⎥
⎦

whose columns are the

generators.

• We can write the statement “u is the coordinate representation of v in a1, . . . ,an” as the
matrix-vector equation

Au = v

• Therefore, to go from a coordinate representation u to the vector being represented, we
multiply A times u.

• Moreover, to go from a vector v to its coordinate representation, we can solve the matrix-
vector equation Ax = v. Because the columns of A are generators for V and v belongs to
V, the equation must have at least one solution.

We will often use matrix-vector multiplication in the context of coordinate representations.

5.2 First look at lossy compression

In this section, I describe one application of coordinate representation. Suppose we need to store
many 2000 × 1000 grayscale images. Each such image can be represented by a D-vector where
D = {0, 1, . . . , 19999} × {0, 1, . . . , 999}. However, we want to store the images more compactly.
We consider three strategies.

5.2.1 Strategy 1: Replace vector with closest sparse vector

If an image vector has few nonzeroes, it can be stored compactly—but this will happen only
rarely. We therefore consider a strategy that replaces an image with a different image, one that
is sparse but that we hope will be perceptually similar. Such a compression method is said to be
lossy since information in the original image is lost.

Consider replacing the vector with the closest k-sparse vector. This strategy raises a Ques-
tion:

Question 5.2.1: Given a vector v and a positive integer k, what is the k-sparse vector closest
to v?

We are not yet in a position to say what “closest” means because we have not defined a distance
between vectors. The distance between vectors over R is the subject of Chapter 8, where we will
will discover that the closest k-sparse vector is obtained from v by simply replacing all but the
k largest-magnitude entries by zeroes. The resulting vector will be k-sparse—and therefore, for,
say, k = 200, 000, can be represented more compactly. But is this a good way to compress an
image?
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Example 5.2.2: The image consists of a single row of four pixels, with intensities
200, 75, 200, 75. The image is thus represented by four numbers. The closest 2-sparse image,
which has intensities 200, 0, 200, 0, is .

Here is a realistic image:

and here is the result of suppressing all but 10% of the entries:

The result is far from the original image since so many of the pixel intensities have been set
to zero. This approach to compression won’t work well.

5.2.2 Strategy 2: Represent image vector by its coordinate represen-
tation

Here is another strategy, one that will incur no loss of fidelity to the original image.

• Before trying to compress any images, select a collection of vectors a1, . . . ,an.

• Next, for each image vector, find and store its coordinate representation u in terms of
a1, . . . ,an.1

1You could do this by solving a matrix-vector equation, as mentioned in Section 5.1.3.
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• To recover the original image from the coordinate representation, compute the correspond-
ing linear combination.2

Example 5.2.3: We let a1 = (an image with one row of pixels with intensities 255,

0, 255, 0) and a2 = (an image with one row of pixels with intensities 0, 255, 0, 255).

Now suppose we want to represent the image (with intensities 200, 75, 200, 75)
in terms of a1 and a2.

=
200

255
a1 +

75

255
a2

Thus this image is represented in compressed form by the coordinate representation [ 200255 , 75
255 ].

On the other hand, the image (intensities 255, 200, 150, 90) cannot be written as
a linear combination of a1 and a2, and so has no coordinate representation in terms of these
vectors.

As the previous example suggests, for this strategy to work reliably, we need to ensure that
every possible 2, 000×1, 000 image vector can be represented as a linear combination of a1, . . . ,an.
This comes down to asking whether RD = Span {a1, . . . ,an}.

Formulated in greater generality, this is a Fundamental Question:

Question 5.2.4: For a given vector space V, how can we tell if V = Span {a1, . . . ,an}?

Furthermore, the strategy will only be useful in compression if the number n of vectors used
in linear combinations is much smaller than the number of pixels. Is it possible to select such
vectors? What is the minimum number of vectors whose span equals RD?

Formulated in greater generality, this is another Fundamental Question:

Question 5.2.5: For a given vector space V, what is the minimum number of vectors whose
span equals V?

It will turn out that our second strategy for image compression will fail: the minimum number
of vectors required to span the set of all possible 2, 000 × 1, 000 images is not small enough to
achieve any compression at all.

Strategy 3: A hybrid approach

The successful strategy will combine both of the previous two strategies: coordinate representa-
tion and closest k-sparse vector:

Step 1: Select vectors a1, . . . ,an.

2You could do this by matrix-vector multiplication, as mentioned in Section 5.1.3.
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Step 2: For each image you want to compress, take the corresponding vector v and find its
coordinate representation u in terms of a1, . . . ,an.3

Step 3: Next, replace u with the closest k-sparse vector ũ, and store ũ.

Step 4: To recover an image from ũ, calculate the corresponding linear combination of a1, . . .an.4

How well does this method work? It all depends on which vectors we select in Step 1. We need
this collection of vectors to have two properties:

• Step 2 should always succeed. It should be possible to express any vector v in terms of the
vectors in the collection.

• Step 3 should not distort the image much. The image whose coordinate representation is ũ
should not differ much from the original image, the image whose coordinate representation
is u.

How well does this strategy work? Following a well-known approach for selecting the vectors in
Step 1 (described in detail in Chapter 10), we get the following nice result using only 10% of the
numbers:

5.3 Two greedy algorithms for finding a set of generators

In this section, we consider two algorithms to address Question 5.2.5:

For a given vector space V, what is the minimum number of vectors whose span equals
V?

It will turn out that the ideas we discover will eventually help us answer many other questions,
including Question 5.2.4.

3You could do this by solving a matrix-vector equation, as mentioned in Section 5.1.3.
4You could do this by matrix-vector multiplication, as mentioned in Section 5.1.3.
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5.3.1 Grow algorithm

How can we obtain a minimum number of vectors? Two natural approaches come to mind, the
Grow algorithm and the Shrink algorithm. Here we present the Grow algorithm.

def Grow(V)
B = ∅
repeat while possible:

find a vector v in V that is not in Span B, and put it in B.

The algorithm stops when there is no vector to add, at which time B spans all of V. Thus, if the
algorithm stops, it will have found a generating set. The question is: is it bigger than necessary?

Note that this algorithm is not very restrictive: we ordinarily have lots of choices of which
vector to add.

Example 5.3.1: We use the Grow algorithm to select a set of generators for R3. In Sec-
tion 3.2.3, we defined the standard generators for Rn. In the first iteration of the Grow algorithm
we add to our set B the vector [1, 0, 0] It should be apparent that [0, 1, 0] is not in Span {[1, 0, 0]}.
In the second iteration, we therefore add this vector to B. Likewise, in the third iteration we add
[0, 0, 1] to B. We can see that any vector v = (α1,α2,α3) ∈ R3 is in Span (e1, e2, e3) since
we can form the linear combination

v = α1e1 + α2e2 + α3e3

Therefore there is no vector v ∈ R3 to add to B, and the algorithm stops.

5.3.2 Shrink algorithm

In our continuing effort to find a minimum set of vectors that span a given vector space V, we
now present the Shrink algorithm.

def Shrink(V)
B = some finite set of vectors that spans V
repeat while possible:

find a vector v in B such that Span (B − {v}) = V, and remove v from B.

The algorithm stops when there is no vector whose removal would leave a spanning set. At every
point during the algorithm, B spans V, so it spans V at the end. Thus the algorithm certainly
finds a generating set. The question is, again: is it bigger than necessary?
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Example 5.3.2: Consider a simple example where B initially consists of the following vectors:

v1 = [1, 0, 0]

v2 = [0, 1, 0]

v3 = [1, 2, 0]

v4 = [3, 1, 0]

In the first iteration, since v4 = 3v1 + v2, we can remove v4 from B in the first iteration
without changing Span B. After this iteration, B = {v1,v2,v3}. In the second iteration, since
v3 = v1+2v2, we remove v3 from B, resulting in B = {v1,v2}. Finally, note that Span B = R3

and that neither v1 nor v2 alone could generate R3. Therefore the Shrink algorithm stops.

Note: These are not algorithms that you can go and implement. They are abstract algorithms,
algorithmic thought experiments:

• We don’t specify how the input—a vector space—is specified.

• We don’t specify how each step is carried out.

• We don’t specify which vector to choose in each iteration.

In fact we later exploit the last property—the freedom to choose which vector to add or remove—
in our proofs.

5.3.3 When greed fails

Before analyzing the Grow and Shrink algorithms for finding minimum generating set, I want to
look at how similar algorithms perform on a different problem, a problem on graphs.

Dominating set A dominating set is a set of nodes such that every node in the graph is
either in the set or is a neighbor (via a single edge) of some node in the set. The goal of the
minimum-dominating-set problem is to find a dominating set of minimum size.

I like to think of a dominating set as a set of guards posted at intersections. Each intersection
must be guarded by a guard at that intersection or a neighboring intersection.

Consider this graph:

A dominating set is indicated here:
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You might consider finding a dominating set using a Grow algorithm:

Grow Algorithm for Dominating Set:
Initialize B to be empty; while B is not a dominating set, add a node v to B

or a Shrink algorithm:

Shrink Algorithm for Dominating Set:
Initialize B to contain all nodes; while there is a node v such that B − {v} is a
dominating set, remove v from B

but either of these algorithms could, by unfortunate choices, end up selecting the dominating set
shown above, whereas there is a smaller dominating set:

Grow and Shrink algorithms are called greedy algorithms because in each step the algorithm
makes a choice without giving thought to the future. This example illustrates that greedy
algorithms are not reliably good at finding the best solutions.

The Grow and Shrink algorithms for finding a smallest generating set for a vector space are
remarkable: as we will see, they do in fact find the smallest solution.

5.4 Minimum Spanning Forest and GF (2)

I will illustrate the Grow and Shrink algorithms using a graph problem: Minimum Spanning
Forest. Imagine you must replace the hot-water delivery network for the Brown University
campus. You are given a graph with weights on edges:
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Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

2

7

9
5 3

6

8

4

where there is a node for each campus area. An edge represents a possible hot-water pipe between
different areas, and the edge’s weight represents the cost of installing that pipe. Your goal is to
select a set of pipes to install so every pair of areas that are connected in the graph are connected
by the installed pipes, and to do so at minimum cost.

5.4.1 Definitions

Definition 5.4.1: For a graph G, a sequence of edges

[{x1, x2}, {x2, x3}, {x3, x4}, . . . , {xk−1, xk}]

is called an x1-to-xk path (or a path from x1 to xk).

In this graph

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

there is a path from “Main Quad” to “Gregorian Quad” but no path from “Main Quad” to
“Athletic Complex”.

Definition 5.4.2: A set S of edges is spanning for a graph G if, for every edge {x, y} of G,
there is an x-to-y path consisting of edges of S.

For example, the dark edges in the following diagram are spanning for the graph depicted:
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Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

We will soon see a connection between this sense of “spanning” and the sense in which we use
the term in linear algebra.

Definition 5.4.3: A forest is a set of edges containing no cycles (loops possibly consisting of
several edges).

For example, the dark edges in the earlier diagram do not form a forest because there are
three dark edges that form a cycle. On the other hand, the dark edges in the following diagram
do form a forest:

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

A graph-theoretical forest resembles a biological forest, i.e. collection of trees, in that a tree’s
branches do not diverge and then rejoin to form a cycle.

We will give two algorithms for a computational problem, Minimum Spanning Forest,5 ab-
breviated MSF.

• input: a graph G, and an assignment of real-number weights to the edges of G.

• output: a minimum-weight set B of edges that is spanning and a forest.

The reason for the term “forest” is that the solution need not contain any cycles (as we will
see), so the solution resembles a collection of trees. (A tree’s branches do not diverge and then
rejoin to form a cycle.)

5.4.2 The Grow algorithm and the Shrink algorithm for Minimum Span-
ning Forest

There are many algorithms for Minimum Spanning Forest but I will focus on two: a Grow
algorithm and a Shrink algorithm. First, the Grow algorithm:

5The problem is also called minimum-weight spanning forest. The problem maximum-weight spanning forest
can be solved by the same algorithms by just negating the weights.
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def Grow(G)
B := ∅
consider the edges in order, from lowest-weight to highest-weight
for each edge e:

if e’s endpoints are not yet connected via edges in B:
add e to B.

This algorithm exploits the freedom we have in the Grow algorithm to select which vector to
add.

The weights in increasing order are: 2, 3, 4, 5, 6, 7, 8, 9. The solution obtained, which consists
of the edges with weights 2, 3, 4, 6, 7, is this:

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

2

7

9
5 3

6

8

4

Here is the Shrink algorithm:

def Shrink(G)
B = {all edges}
consider the edges in order, from highest-weight to lowest-weight
for each edge e:

if every pair of nodes are connected via B − {e}:
remove e from B.

This algorithm exploits the freedom in the Shrink algorithm to select which vector to remove.
The weights in decreasing order are: 9, 8, 7, 6, 5, 4, 3, 2. The solution consists of the edges with
weights 7, 6, 4, 3, and 2.

The Grow algorithm and the Shrink algorithm came up with the same solution, the correct
solution.

5.4.3 Formulating Minimum Spanning Forest in linear algebra

It is no coincidence that the Grow and Shrink algorithms for minimum spanning forest resemble
those for finding a set of generators for a vector space. In this section, we describe how to model
a graph using vectors over GF (2).

Let D = {Pembroke, Athletic, Bio-Med, MainKeeney, Wriston, Gregorian} be the set of nodes.
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A subset of D is represented by the vector with ones in the corresponding entries and zeroes else-
where. For example, the subset {Pembroke, Main, Gregorian} is represented by the vector
whose dictionary is {Pembroke:one, Main:one, Gregorian:one}, which we can write as

Pembroke Athletic Bio-Med Main Keeney Wriston Gregorian

1 1 1

Each edge is a two-element subset of D, so it is represented by a vector, namely the vector that
has a one at each of the endpoints of e and zeroes elsewhere. For example, the edge connecting
Pembroke and Athletic is represented by the vector {'Pembroke':one, 'Athletic':one}.

Here are the vectors corresponding to all the edges in our graph:

edge vector
Pem. Athletic Bio-Med Main Keeney Wriston Greg.

{Pem., Athletic} 1 1
{Pem., Bio-Med} 1 1

{Athletic, Bio-Med} 1 1
{Main, Keeney} 1 1
{Main, Wriston} 1 1

{Keeney, Wriston} 1 1
{Keeney, Greg.} 1 1
{Wriston, Greg.} 1 1

The vector representing {Keeney, Gregorian},

Pembroke Athletic Bio-Med Main Keeney Wriston Gregorian

1 1

is the sum, for example, of the vectors representing {Keeney, Main}, {Main, Wriston}, and
{Wriston, Gregorian},

Pembroke Athletic Bio-Med Main Keeney Wriston Gregorian

1 1
1 1

1 1

because the 1’s in entries Main and Wriston cancel out, leaving 1’s just in entries Keeney and
Gregorian.

In general, a vector with 1’s in entries x and y is the sum of vectors corresponding to edges
that form an x-to-y path in the graph. Thus, for these vectors, it is easy to tell whether one
vector is in the span of some others.

Example 5.4.4: The span of the vectors representing

{Pembroke, Bio-Med}, {Main, Wriston}, {Keeney, Wriston}, {Wriston, Gregorian}
contains the vector corresponding to {Main, Keeney} but not the vector corresponding to
{Athletic, Bio-Med} or the vector corresponding to {Bio-Med, Main}.
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Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

Example 5.4.5: The span of the vectors representing

{Athletic, Bio-Med}, {Main, Keeney}, {Keeney, Wriston}, {Main, Wriston}
does not contain {Pembroke, Keeney} or {Main, Gregorian} or {Pembroke, Gregorian}:

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

We see that the conditions used in the MSF algorithms to decide whether to add an edge
(in the Grow algorithm) or remove an edge (in the Shrink algorithm) are just testing a span
condition, exactly as in the vector Grow and Shrink algorithms.

5.5 Linear dependence

5.5.1 The Superfluous-Vector Lemma

To better understand the Grow and Shrink algorithms, we need to understand what makes it
possible to omit a vector from a set of generators without changing the span.

Lemma 5.5.1 (Superfluous-Vector Lemma): For any set S and any vector v ∈ S, if v
can be written as a linear combination of the other vectors in S then Span (S − {v}) = Span S

Proof

Let S = {v1, . . . ,vn}, and suppose

vn = α1 v1 + α2 v2 + · · · + αn−1 vn−1 (5.1)

Our goal is to show that every vector in Span S is also in Span (S − {v}). Every vector v
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in Span S can be written as
v = β1 v1 + · · ·βn vn

Using Equation 5.1 to substitute for vn, we obtain

v = β1 v1 + β2 v2 + · · · + βn (α1 v1 + α2 v2 + · · · + αn−1 vn−1)

= (β1 + βnα1)v1 + (β2 + βnα2)v2 + · · · + (βn−1 + βnαn−1)vn−1

which shows that an arbitrary vector in Span S can be written as a linear combination of
vectors in S − {vn} and is therefore in Span (S − {vn}). !

5.5.2 Defining linear dependence

The concept that connects the Grow algorithm and the Shrink algorithm, shows that each algo-
rithm produces an optimal solution, resolves many other questions, and generally saves the world
is. . . linear dependence.

Definition 5.5.2: Vectors v1, . . . ,vn are linearly dependent if the zero vector can be written
as a nontrivial linear combination of the vectors:

0 = α1v1 + · · · + αnvn

In this case, we refer to the linear combination as a linear dependency in v1, . . . ,vn.
On the other hand, if the only linear combination that equals the zero vector is the trivial

linear combination, we say v1, . . . ,vn are linearly independent.

Remember that a nontrivial linear combination is one in which at least one coefficient is nonzero.

Example 5.5.3: The vectors [1, 0, 0], [0, 2, 0], and [2, 4, 0] are linearly dependent, as shown by
the following equation:

2 [1, 0, 0] + 2 [0, 2, 0] − 1 [2, 4, 0] = [0, 0, 0]

Thus 2 [1, 0, 0] + 2 [0, 2, 0] − 1 [2, 4, 0] is a linear dependency in [1, 0, 0], [0, 2, 0], and [2, 4, 0].

Example 5.5.4: The vectors [1, 0, 0], [0, 2, 0], and [0, 0, 4] are linearly independent. This is
easy to see because of the particularly simple form of these vectors: each has a nonzero entry in
a position in which the others have zeroes. Consider any nontrivial linear combination

α1 [1, 0, 0] + α2 [0, 2, 0] + α3 [0, 0, 4]

i.e., one in which at least one of the coefficients is nonzero. Suppose α1 is nonzero. Then the
first entry of α1 [1, 0, 0] is nonzero. Since the first entry of α2 [0, 2, 0] is zero and the first entry
of α3 [0, 0, 4] is zero, adding these other vectors to α1 [1, 0, 0] cannot affect the first entry, so it
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remains nonzero in the sum. This shows that we cannot obtain the zero vector from any linear
combination in which the first coefficient is nonzero. A similar argument applies when the second
coefficient is nonzero and when the third coefficient is nonzero. Thus there is no way to obtain
the zero vector from a nontrivial linear combination.

Example 5.5.3 (Page 283) uses vectors for which it is easy to find an equation showing linear
dependence. Example 5.5.4 (Page 283) uses a very simple argument to show linear independence.
Most of the time, it is not so easy to tell!

Computational Problem 5.5.5: Testing linear dependence

• input: a list [v1, . . . ,vn] of vectors

• output: DEPENDENDENT if the vectors are linearly dependent, and INDEPEN-

DENT otherwise.

This Computational Problem is a restatement of two old Questions:

• Let A =

⎡

⎣ v1 · · · vn

⎤

⎦. The vectors v1, . . . ,vn are linearly dependent if and only if

there is a nonzero vector u such that Au = 0, i.e. if and only if the null space of A contains
a nonzero vector. This is Question 4.7.7: How can we tell if the null space of a matrix
consist solely of the zero vector?

• As noted in Section 4.7.2, that Question is equivalent to Question 3.6.5: How can we tell
if a homogeneous linear system has only the trivial solution?

Problem 5.5.6: Show that no independent set contains the zero vector.

5.5.3 Linear dependence in Minimum Spanning Forest

What about linear dependence in Minimum Spanning Forest? We can get the zero vector by
adding together vectors corresponding to edges that form a cycle: in such a sum, for each entry x,
there are exactly two vectors having 1’s in position x. For example, the vectors corresponding to

{Main, Keeney}, {Keeney, Wriston}, {Main, Wriston}
are as follows:

Pembroke Athletic Bio-Med Main Keeney Wriston Gregorian

1 1
1 1

1 1

The sum of these vectors is the zero vector.
Therefore, if S is a collection of vectors corresponding to edges, and some subset of these

edges form a cycle, we can get the zero vector as a nontrivial linear combination by assigning
coefficient 1 to the vectors corresponding to the edges in the subset.
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Example 5.5.7: The vectors corresponding to

{Main, Keeney}, {Main, Wriston}, {Keeney, Wriston}, {Wriston, Gregorian}
are linearly dependent because these edges include a cycle.

The zero vector is equal to the nontrivial linear combination

Pembroke Athletic Bio-Med Main Keeney Wriston Gregorian
1 * 1 1

+ 1 * 1 1
+ 1 * 1 1
+ 0 * 1 1

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

Conversely, if a set of edges contains no cycle (i.e. is a forest) then the corresponding set of
vectors is linearly independent, as in the following diagram:

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

5.5.4 Properties of linear (in)dependence

Lemma 5.5.8: A subset of a linearly independent set is linearly independent.

For example, in the context of MSF, the set of vectors corresponding to a spanning forest is
linearly independent, so any subset is also linearly independent.

Proof

Let S and T be subsets of vectors, and suppose S is a subset of T . Our goal is to prove
that if T is linearly independent then S is linearly independent. This is equivalent to the
contrapositive: if S is linearly dependent then T is linearly dependent.
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It is easy to see that this is true: if the zero vector can be written as a nontrivial linear
combination of some vectors, it can be so written even if we allow some additional vectors
to be in the linear combination.

Here is a more formal proof. Write T = {s1, . . . , sn, t1, . . . , tk} where S = {s1, . . . , sn}.
Suppose that S is linearly dependent. Then there are coefficients α1, . . . ,αn, not all zero,
such that

0 = α1s1 + · · · + αnsn

Therefore
0 = α1s1 + · · · + αnsn + 0 t1 + · · · 0 tk

which shows that the zero vector can be written as a nontrivial linear combination of the
vectors of T , i.e. that T is linearly dependent. !

Lemma 5.5.9 (Span Lemma): Let v1, . . . ,vn be vectors. A vector vi is in the span of the
other vectors if and only if the zero vector can be written as a linear combination of v1, . . . ,vn

in which the coefficient of vi is nonzero.

In the context of graphs, the Span Lemma states that an edge e is in the span of other edges
if there is a cycle consisting of e and a subset of the other edges.

Proof

Like many “if and only if” proofs, this one has two directions.
First suppose vi is in the span of the other vectors. That is, there exist coefficients

α1, . . . ,αn such that

vi = α1 v1 + · · · + αi−1 vi−1 + αi+1vi+1 + · · ·αnvn

Moving vi to the other side, we can write

0 = α1 v1 + · · · + (−1)vi + · · · + αn vn

which shows that the all-zero vector can be written as a linear combination of v1, . . . ,vn in
which the coefficient of vi is nonzero.

Now for the other direction. Suppose there are coefficients α1, . . . ,αn such that

0 = α1 v1 + · · · + αi vi + · · · + αn vn

and such that αi ̸= 0.
Subtracting αivi from both sides and dividing by −αi yields

1vi = (α1/ − αi)v1 + · · · + (αi−1/ − αi)vi−1 + (αi+1/ − αi)vi+1 + · · · + (αn/ − αi)vn

which shows that vi is in the span of the other vectors. !
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5.5.5 Analyzing the Grow algorithm

Corollary 5.5.10 (Grow-Algorithm Corollary): The vectors obtained by the Grow algo-
rithm are linearly independent.

Proof

For n = 1, 2, . . ., let vn be the vector added to B in the nth iteration of the Grow algorithm.
We show by induction that v1,v2, . . . ,vn are linearly independent.

For n = 0, there are no vectors, so the claim is trivially true. Assume the claim is true
for n = k − 1. We prove it for n = k.

The vector vk added to B in the kth iteration is not in the span of v1, . . . ,vk−1. Therefore,
by the Span Lemma, for any coefficients α1, . . . ,αk such that

0 = α1v1 + · · · + αk−1vk−1 + αkvk

it must be that αk equals zero. We may therefore write

0 = α1v1 + · · · + αk−1vk−1

By the claim for n = k − 1, however, v1, . . . ,vk−1 are linearly independent, so α1, . . . ,αk−1

are all zero. We have proved that the only linear combination of v1, . . . ,vk that equals the
zero vector is the trivial linear combination, i.e. that v1, . . . ,vk are linearly independent.
This proves the claim for n = k. !

In the Grow algorithm for Minimum Spanning Forest, when considering whether to add an
edge {x, y}, we only add it if there is no x-to-y path using previously selected edges, i.e. if the
vector corresponding to {x, y} is not spanned by the vectors corresponding to previously selected
edges. If we do add the edge, therefore, it does not form a cycle with previously added edges,
i.e. the set of corresponding vectors remains linearly independent.

5.5.6 Analyzing the Shrink algorithm

Corollary 5.5.11 (Shrink-Algorithm Corollary): The vectors obtained by the Shrink al-
gorithm are linearly independent.

Proof

Let B = {v1, . . . ,vn} be the set of vectors obtained by the Shrink algorithm. Assume for a
contradiction that the vectors are linearly dependent. Then 0 can be written as a nontrivial
linear combination

0 = α1v1 + · · · + αnvn
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where at least one of the coefficients is nonzero. Let αi be a nonzero coefficient. By the
Linear-Dependence Lemma, vi can be written as a linear combination of the other vectors.
Hence by the Superfluous-Vector Lemma (Lemma 5.5.1), Span (B−{vi}) = Span B, so the
Shrink algorithm should have removed vi. !

In the MSF Shrink algorithm, when considering whether to remove an edge {x, y}, we remove
it if there would still be an x-to-y path using the remaining edges. If the edge {x, y} is part of
a cycle then the algorithm can safely remove it since the other edges of the cycle form an x-to-y
path.

5.6 Basis

The Grow algorithm and the Shrink algorithm each find a set of vectors spanning the vector
space V. In each case, the set of vectors found is linearly independent.

5.6.1 Defining basis

We have arrived at the most important concept in linear algebra.

Definition 5.6.1: Let V be a vector space. A basis for V is a linearly independent set of
generators for V.

The plural of basis is bases, pronounced “basees”.
Thus a set B of vectors of V is a basis for V if B satisfies two properties:

Property B1 (Spanning) Span B = V, and

Property B2 (Independent) B is linearly independent.

Example 5.6.2: Define V to be the vector space spanned by [1, 0, 2, 0], [0,−1, 0,−2], and
[2, 2, 4, 4]. Then the set {[1, 0, 2, 0], [0,−1, 0,−2], [2, 2, 4, 4]} is not a basis for V because it is
not linearly independent. For example,

1 [1, 0, 2, 0] − 1 [0,−1, 0,−2] − 1

2
[2, 2, 4, 4] = 0

However, the set {[1, 0, 2, 0], [0,−1, 0,−2]} is a basis:

• You can tell that these two vectors are linearly independent because each has a nonzero
entry in a position in which the other has a zero. The argument for linear independence is
that given in Example 5.5.4 (Page 283).

• You can tell that these two vectors span V by using the Superfluous-Vector Lemma
(Lemma 5.5.1): the third vector in the definition of V, namely [2, 2, 4, 4], is superfluous
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because it can be written as a linear combination of the first two:

[2, 2, 4, 4] = 2 [1, 0, 2, 0] − 2 [0,−1, 0,−2] (5.2)

Since {[1, 0, 2, 0], [0,−1, 0,−2]} spans V and is linearly independent, it is a basis.

Example 5.6.3: Also, {[1, 0, 2, 0], [2, 2, 4, 4]} is a basis for the same vector space V:

• To show linear independence, consider any nontrivial linear combination

α1 [1, 0, 2, 0] + α2 [2, 2, 4, 4]

If α2 is nonzero then the sum has a nonzero entry in, for example, the second position.
If α2 is zero but α1 is nonzero then the sum has a nonzero entry in the first position.
{[1, 0, 2, 0], [2, 2, 4, 4]}

• To show that these vectors span V, we again use the Superfluous-Vector Lemma: the
vector [0,−1, 0,−2] is superfluous because it can be written as a linear combination of the
others. A little manipulation of Equation 5.2 yields

[0,−1, 0,−2] = −1 [1, 0, 2, 0] +
1

2
[2, 2, 4, 4]

Example 5.6.4: What about the vector space R3? One basis for R3 is [1, 0, 0], [0, 1, 0], [0, 0, 1].
How do we know this is a basis?

• Every vector [x, y, z] ∈ R3 can be expressed as x[1, 0, 0]+ y[0, 1, 0]+ z[0, 0, 1]. This shows
the vectors span R3.

• How do we know the vectors are linearly independent? We just need to show that none of
these three can be expressed as a linear combination of the other two. Consider [1, 0, 0].
Since none of other two vectors have a nonzero first entry, [1, 0, 0] cannot be expressed as
a linear combination of them. The argument can be used for [0, 1, 0] and [0, 0, 1] as well.
This shows that the dimension of R3 is 3.

Example 5.6.5: Another basis for R3 is [1, 1, 1], [1, 1, 0], [0, 1, 1]. How do we know these
vectors span R3? We already know that the vectors [1, 0, 0], [0, 1, 0], [0, 0, 1] are spanning, so if
these vectors are in the span of [1, 1, 1], [1, 1, 0], [0, 1, 1] then we know the latter vectors span all
of R3.
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[1, 0, 0] = [1, 1, 1]− [0, 1, 1]

[0, 1, 0] = [1, 1, 0] + [0, 1, 1]− [1, 1, 1]

[0, 0, 1] = [1, 1, 1]− [1, 1, 0]

How do we know the vectors [1, 1, 1], [1, 1, 0], [0, 1, 1] are linearly independent? Suppose they
were linearly dependent. By the Linear-Dependence Lemma, one of them could be written in
terms of the other two vectors. There are three cases.

• Can [1, 1, 1] be written as a linear combination α [1, 1, 0] + β [0, 1, 1]? In order for the first
entry of the linear combination to be 1, α would have to be 1. In order for the third entry
to be 1, β would have to be 1. That would mean the second entry would be 2, so [1, 1, 1]
cannot be written as a linear combination.

• Can [1, 1, 0] be written as a linear combination α [1, 1, 1] + β [0, 1, 1]? In order for the first
entry of the linear combination to be 1, α would have to be 1. Therefore, in order for the
second entry to be 1, β would have to be 0 but in order for the third entry to be 0, β
would ahve to be -1.

• Can [0, 1, 1] be written as a linear combination α [1, 1, 1] + β [1, 1, 0]? Adapting the argu-
ment used in the previous case shows that the answer is no.

Example 5.6.6: Does a trivial vector space, consisting only of a zero vector, have a basis?
Of course: the empty set. We know from Quiz 3.2.4 that the span of an empty set is the set
consisting of the zero vector. An empty set is linearly independent since there is no nontrivial
linear combination of an empty set of vectors. (For every linear combination of an empty set,
there is no nonzero coefficient.)

Example 5.6.7: In the context of a graph G, a basis of the set of edges forming the graph
corresponds to a set B of edges that is spanning for G (in the sense of Definition 5.4.2) and is
a forest (Definition 5.4.3). Thus a basis is precisely a spanning forest. Here are two examples:

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad
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Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

Example 5.6.8: Let T be a subset of edges of a graph, e.g. the solid edges in this graph:

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

In the following diagram, the set B of dark edges form a basis for Span T :

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

Let’s verify that B is a basis for Span T : the edges of B do not form any cycles—so B is
linearly independent—and for every edge of T , the endpoints are connected via edges of B, so
Span B = Span T .

In the following diagram, the dark edges form another example of a basis for Span T .

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad
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5.6.2 The standard basis for FD

In Section 3.2.5, we defined a set of generators for FD, the standard generators. The following
lemma shows that a better name for these generators (and in fact the traditional name) for these
vectors is standard basis vectors for FD:

Lemma 5.6.9: The standard generators for FD form a basis.

Problem 5.6.10: Prove Lemma 5.6.9. The argument is a generalization of that in Exam-
ple 5.6.4 (Page 289) showing [1, 0, 0], [0, 1, 0], [0, 0, 1] is a basis.

5.6.3 Towards showing that every vector space has a basis

We would like to prove that every vector space V has a basis. The Grow algorithm and the
Shrink algorithm each provides a way to prove this, but we are not there yet:

• The Grow-Algorithm Corollary implies that, if the Grow algorithm terminates, the set of
vectors it has selected is a basis for the vector space V. However, we have not yet shown
that it always terminates!

• The Shrink-Algorithm Corollary implies that, if we can run the Shrink algorithm starting
with a finite set of vectors that spans V, upon termination it will have selected a basis for
V. However, we have not yet shown that every vector space V is spanned by some finite set
of vectors.

These are not mathematically trivial matters. The issues above will be resolved in the next
chapter—for us. That is because in this book we have confined our attention to D-vectors where
D is a finite set. In the wider world of mathematics, however, D can be infinite, raising various
difficulties that we avoid.

5.6.4 Any finite set of vectors contains a basis for its span

If V is specified as the span of a finite set of vectors then we can show that V has a basis—one
consisting of a subset of that set.

Lemma 5.6.11 (Subset-Basis Lemma): Any finite set T of vectors contains a subset B
that is a basis for Span T .

This result corresponds in graphs to the fact that every graph contains a spanning forest.

Proof

Let V = Span T . We use a version of the Grow algorithm.
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def subset basis(T ):
Initialize B to the empty set.
Repeat while possible: select a vector v in T that is not in Span B, and put it in B.

This algorithm differs from the generic Grow algorithm in that the vector selected v is
required to be in the set T . Is this algorithm nevertheless an instantiation of the Grow
algorithm? This algorithm stops when Span B contains every vector in T , whereas the
original Grow algorithm stops only once Span B contains every vector in V. However,
that’s okay: when Span B contains all the vectors in T , Span B also contains all linear
combinations of vectors in T , so at this point Span B = V. This shows that our version of
the original Grow algorithm is a true instantiation of it, so our version produces a basis. !

The reader will notice that the proof is really a procedure, a version of the Grow algorithm
that can actually be implemented.

Example 5.6.12: Let T = {[1, 0, 2, 0], [0,−1, 0,−2], [2, 2, 4, 4]}. The procedure must find a
subset B that is a basis for Span T :

• Initialize B = ∅.

• Choose a vector in T that is not in Span ∅, and add it to B. Since Span ∅ consists of just
the zero vector, the first vector chosen need only be nonzero. Suppose [1, 0, 2, 0] is chosen.

• Choose a vector in T that is not in Span {[1, 0, 2, 0]}. Suppose [0,−1, 0,−2] is chosen.

• Choose a vector in T that is not in Span {[1, 0, 2, 0], [0,−1, 0,−2]}. Oops, there is no such
vector. Every vector in T is in Span {[1, 0, 2, 0], [0,−1, 0,−2]}. Therefore the procedure
is finished.

Problem 5.6.13: Give an alternative proof of Lemma 5.6.11 that is based instead on the Shrink
algorithm.

5.6.5 Can any linearly independent subset of vectors belonging to V
be extended to form a basis for V?

Analogous to the Subset-Basis Lemma, we would like to prove a Superset-Basis Lemma, a lemma
that states:

For any vector space V and any linearly independent set T of vectors, V has a basis
that contains all of T .

Perhaps we can adapt the Grow algorithm to find such a basis, as follows:

def superset basis(T, V):
Initialize B to be equal to T .
Repeat while possible: select a vector in V that is not in Span B, and put it in B.
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Return B

Initially, B contains all of T (in fact, is equal to T ). By the Grow-Algorithm Corollary, the set B
is linearly independent throughout the algorithm. When the algorithm terminates, Span B = V.
Hence upon termination B is a basis for V. Furthermore, B still contains all of T since the
algorithm did not remove any vectors from B.

There is just one catch with this reasoning. As in our attempt in Section 5.6.3 to show that
every vector space has a basis, we have not yet shown that the algorithm terminates! This issue
will be resolved in the next chapter.

5.7 Unique representation

As discussed in Section 5.1, in a coordinate system for V, specified by generators a1, . . . ,an, each
vector v in V has a coordinate representation [α1, . . . ,αn], which consists of the coefficients with
which v can be represented as a linear combination:

v = α1 a1 + · · · + αn an

But we need the axes to have the property that each vector v has a unique coordinate represen-
tation. How can we ensure that?

5.7.1 Uniqueness of representation in terms of a basis

We ensure that by choosing the axis vectors so that they form a basis for V.

Lemma 5.7.1 (Unique-Representation Lemma): Let a1, . . . ,an be a basis for a vector
space V. For any vector v ∈ V, there is exactly one representation of v in terms of the basis
vectors.

In a graph G, this corresponds to the fact that, for any spanning forest F of G, for any pair
x, y of vertices, if G contains an x-to-y path then F contains exactly one such path.

Proof

Because Span {a1, . . . ,an} = V, every vector v ∈ V has at least one representation in terms
of a1, . . . ,an. Suppose that there are two representations;

v = α1 a1 + · · · + αn an = β1 a1 + · · · + βn an

Then we can get the zero vector by subtracting one linear combination from the other:

0 = α1 a1 + · · · + αn an − (β1 a1 + · · · + βn an)

= (α1 − β1)a1 + · · · + (αn − βn)an

Since the vectors a1, . . . ,an are linearly independent, the coefficients α1 − β1, . . . ,αn − βn
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must all be zero, so the two representations are really the same. !

5.8 Change of basis, first look

Change of basis consists in changing from a vector’s coordinate representation in terms of one
basis to the same vector’s coordinate representation in terms of another basis.

5.8.1 The function from representation to vector

Let a1, . . . ,an form a basis for a vector space V over a field F. Define the function f : Fn )→ V
by

f([x1, . . . , xn]) = x1 a1 + · · · + xn an

That is, f maps the representation in a1, . . . ,an of a vector to the vector itself. The Unique-
Representation Lemma tells us that every vector in V has exactly one representation in terms of
a1, . . . ,an, so the function f is both onto and one-to-one, so it is invertible.

Example 5.8.1: I assert that one basis for the vector space R3 consists of a1 = [2, 1, 0],a2 =
[4, 0, 2],a3 = [0, 1, 1]. The matrix with these vectors as columns is

A =

⎡

⎣

2 4 0
1 0 1
0 2 1

⎤

⎦

Then the function f : R3 −→ R3 defined by f(x) = Ax maps the representation of a vector
in terms of a1, . . . ,a3 to the vector itself. Since I have asserted that a1,a2,a3 form a basis,
every vector has a unique representation in terms of these vectors, so f is an invertible function.
Indeed, the inverse function is the function g : R3 −→ R3 defined by g(y) = My where

M =

⎡

⎣

1
4

1
2 − 1

5
1
8 − 1

4
1
4

− 1
4

1
2

1
2

⎤

⎦

Thus M is the inverse of A.

5.8.2 From one representation to another

Now suppose a1, . . . ,an form one basis for V and b1, . . . , bm form another basis. Define f :
Fn −→ V and g : Fm −→ V by

f([x1, . . . , xn]) = x1 a1 + · · · + xn an and g([y1, . . . , ym]) = y1 b1 + · · · + ym bm
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By the linear-combinations definition of matrix-vector definition, each of these functions can be
represented by matrix-vector multiplication:

f(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1 · · · an

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣ x

⎤

⎦ and g(y) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1 · · · bm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣ y

⎤

⎦

Furthermore, by the reasoning in Section 5.8.1, the functions f and g are both invertible. By
Lemma 4.13.1, their inverses are linear functions

Now consider the function g−1 ◦ f . It is the composition of linear functions so it is a linear
function. Its domain is the domain of f , which is Fn, and its co-domain is the domain of g, which
is Fm. Therefore, by Lemma 4.10.19, there is a matrix C such that Cx = (g−1 ◦ f)(x).

The matrix C is a change-of-basis matrix:

• Multiplying by C converts from a vector’s coordinate representation in terms of a1, . . . ,an

to the same vector’s coordinate representation in terms of b1, . . . , bn.

Since g−1 ◦ f is the composition of invertible functions, it too is an invertible function. By the
same reasoning, there is a matrix D such that Dy = (f−1 ◦ g)(y).

• Multiplying by D converts from a vector’s coordinate representation in terms of b1, . . . , bk
to the same vector’s coordinate representation in terms of a1, . . . ,an.

Finally, since f−1 ◦ g and g−1 ◦ f are inverses of each other, the matrices C and D are inverses
of each other.

Why would you want functions that map between different representations of a vector? There
are many reasons. In the next section, we’ll explore one: dealing with perspective in images.
Lab 5.12 will similarly deal with perspective using change of basis. Change of basis is crucially
important in Chapters 10, 11, and 12.

5.9 Perspective rendering

As an application of coordinate representation, we show how to synthesize a camera view from a
set of points in three dimensions, taking into account perspective. The mathematics underlying
this task will be useful in a lab, where we will go in the opposite direction, removing perspective
from a real image.

5.9.1 Points in the world

We start with the points making up a wire-frame cube with coordinates as shown:
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(0,1,0)

(1,0,0)

(0,0,1) (1,0,1)

(0,0,0)

(1,1,1)

(1,1,0)

(0,1,1)

The coordinates might strike you as a bit odd: the point (0,1,0) is vertically below the point
(0,0,0). We are used to y-coordinates that increase as you move up. We use this coordinate
system in order to be consistent with the way pixel coordinates work.

The list of points making up the wire-frame cube can be produced as follows:

>>> L = [[0,0,0],[1,0,0],[0,1,0],[1,1,0],[0,0,1],[1,0,1],[0,1,1],[1,1,1]]]
>>> corners = [list2vec(v) for v in L]

>>> def line_segment(pt1, pt2, samples=100):
return [(i/samples)*pt1 + (1-i/samples)*pt2 for i in range(samples+1)]

>>> line_segments = [line_segment(corners[i], corners[j]) for i,j in
[(0,1),(2,3), (0,2),(1,3),(4,5),(6,7),(4,6),(5,7),(0,4),(1,5),(2,6), (3,7)]]

>>> pts = sum(line_segments, [])

Imagine that a camera takes a picture of this cube: what does the picture look like? Obviously
that depends on where the camera is located and which direction it points. We will choose to
place the camera at the location (-1,-1, -8) facing straight at the plane containing the front face
of the cube.

5.9.2 The camera and the image plane

We present a simplified model of a camera, a pinhole camera. Assume the location and orientation
of the camera are fixed. The pinhole is a point called the camera center.

Camera Center

There is an image sensor array in the back of the camera. Photons bounce off objects in the
scene and travel through the camera center to the image sensor array. A photon from the scene
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only reaches the image sensor array if it travels in a straight line through the camera center. The
image ends up being reversed.

An even simpler model is usually adopted to make the math easier. In this model, the image
sensor array is between the camera center and the scene.

camera center

image plane

We retain the rule that a photon is only sensed by the sensor array if the photon is traveling in
a line through the camera center.

The image sensor array is located in a plane, called the image plane. A photon bounces off
an object in the scene, in this case the chin of a frog, and heads in a straight line towards the
camera center. On its way, it bumps into the image plane where it encounters the sensor array.

The sensor array is a grid of rectangular sensor elements. Each element of the image sensor
array measures the amount of red, green, and blue light that hits it, producing three numbers.
Which sensor element is struck by the photon? The one located at the intersection between the
image plane and the line along which the photon is traveling.

The result of all this sensing is an image, which is a grid of rectangular picture elements
(pixels), each assigned a color. The pixels correspond to the sensor elements.

The pixels are assigned coordinates, as we have seen before:

(0,0)

(0,3)

(5,0)

(5,3)
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5.9.3 The camera coordinate system

For each point q in the sensor array, the light that hits q is light that travels in a straight line
towards the camera center. Thus the color detected by the sensor at q is located at some point
p in the world such that the line through p and the origin intersects the image plane at q.

camera center

image plane
point p in world

point q in image plane

To synthesize an image of the wire-frame cube, we need to define a function that maps points
p in the world to the pixel coordinates of the corresponding point q in the image plane.

There is a particularly convenient basis that enables us to simply express this function. We
call it the camera coordinate system.

(camera center)

image plane

origin

a3

a2

a1

The origin is defined to be the camera center. The first basis vector a1 goes horizontally
from the top-left corner of a sensor element to the top-right corner. The second vector a2 goes
vertically from the top-left corner of a sensor element down to the bottom-left corner. The third
vector a3 goes from the origin (the camera center) to the top-left corner of sensor element (0,0).

There’s something nice about this basis. Let q be a point in the image plane
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q

q has coordinates (2.7, 4.5, 1)

q is located in pixel (2, 4)

and let the coordinates of q in this coordinate system be x = (x1, x2, x3), so q = x1 a1 + x2 a2 +
x3 a3.

Then the third coordinate x3 is 1, and the first and second x1, x2 tell us which pixel contains
the point q.

def pixel(x): return (x[0], x[1])

We can round x1 and x2 down to integers i, j to get the coordinates of that pixel (if there exists
an i, j pixel).

5.9.4 From the camera coordinates of a point in the scene to the camera
coordinates of the corresponding point in the image plane

Let’s take a side view from a point in the image plane, so we only see the edge of the sensor
array:

image plane

a3 a2

origin

p has 
coordinates 
(x1, x2, x3)
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In this view, we can see the basis vectors a2 and a3 but not a1 since it is pointed directly at us.
Now suppose p is a point in the scene, way beyond the image plane.

image plane

p has 
coordinates 
(x1, x2, x3)

a2

origin

p

a3

You can see the edge of the plane through p that is parallel to the image plane. We write p as
a linear combination of the vectors of the camera basis:

p = x1 a1 + x2 a2 + x3 a3

Think of the vector x3 a3 extending through the bottom-left corner of the sensor array all the
way to the plane through p that is parallel to the image plane.

image plane

p has 
coordinates 
(x1, x2, x3)

x3 a3

x2 a2

origin

p

The vector x2 a2 extends vertically downward, and the vector x1 a1, which is not visible, extends
horizontally towards us.

Let q be the point where the line through p and the origin intersects the image plane.
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image plane

p has 
coordinates 
(x1, x2, x3)

x3 a3

x2 a2

origin
q

p

What are the coordinates of q?
We see that the triangle formed by the origin, the head of a3 (when the tail is located at the

origin), and q is a scaled-down version of the triangle formed by the origin, the head of x3 a3,
and the point p. Since the side formed by a3 has length 1/x3 times that of the side formed by
x3 a3, a little geometric intution tells us that the coordinates of q are 1/x3 times each of the
coordinates of p, i.e. that q’s coordinates are (x1/x3, x2/x3, x3/x3).

image plane

p has 
coordinates 
(x1, x2, x3)q has coordinates 

(x1/x3, x2/x3, x3/x3)

x3 a3

x2 a2

origin
q

p

a3

(x2 /x3) a2

Thus, when the camera basis is used, it is easy to go from the representation of p to the
representation of q: just divide each of the entries by the third entry:

def scale_down(x): return list2vec([x[0]/x[2], x[1]/x[2], 1])

5.9.5 From world coordinates to camera coordinates

We now know how to map
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• from the representation in camera coordinates of a point in the world

• to the coordinates of the pixel that “sees” that point.

However, to map the points of our wire-frame cube, we need to map from the coordinates of a
point of the cube to the representation of that same point in camera coordinates.

First we write down the camera basis vectors.
We do this in two steps. The first step accounts for the fact that we are locating the camera

center at (-1,-1,-8) in world coordinates. In order to use the camera coordinate system, we need
to locate the camera at (0,0,0), so we translate the points of the wire-frame cube by adding
(1,1,8) to each of them:

>>> shifted_pts = [v+list2vec([1,1,8]) for v in pts]

In the second step, we must do a change of basis. For each point in shifted pts, we obtain
its coordinate representation in terms of the camera basis.

To do this, we first write down the camera basis vectors. Imagine we have 100 horizontal
pixels and 100 vertical pixels making up an image sensor array of dimensions 1 × 1. Then
a1 = [1/100, 0, 0] and a2 = [0, 1/100, 0]. For the third basis vector a3, we decide that the
sensor array is positioned so that the camera center lines up with the center of the sensor array.
Remember that a2 points from the camera center to the top-left corner of the sensor array, so
a2 = [0, 0, 1].

>>> cb = [list2vec([1/xpixels,0,0]),
list2vec([0,1/ypixels,0]),
list2vec([0,0,1])]

We find the coordinates in the camera basis of the points in shifted pts:

>>> reps = [vec2rep(cb, v) for v in shifted_pts]

5.9.6 ... to pixel coordinates

Next we obtain the projections of these points onto the image plane:

>>> in_camera_plane = [scale_down(u) for u in reps]

Now that these points lie in the camera plane, their third coordinates are all 1, and their first
and second coordinates can be interpreted as pixel coordinates:

>>> pixels = [pixel(u) for u in in_camera_plane]

To see the result, we can use the plot procedure from the plotting module.

>>> plot(pixels, 30, 1)

However, keep in mind that increasing second pixel coordinate corresponds to moving downwards,
whereas our plot procedure interprets the second coordinate in the usual mathematical way, so
the plot will be a vertical inversion of what you would see in an image:



CHAPTER 5. THE BASIS 304

5.10 Computational problems involving finding a basis

Bases are quite useful. It is important for us to have implementable algorithms to find a basis
for a given vector space. But a vector space can be huge—even infinite—how can it be the input
to a procedure? There are two natural ways to specify a vector space V:

1. Specifying generators for V. This is equivalent to specifying a matrix A such that V =
Col A.

2. Specifying a homogeneous linear system whose solution set is V. This is equivalent to
specifying a matrix A such that V = Null A.

For each of these ways to specify V, we consider the Computational Problem of finding a basis.

Computational Problem 5.10.1: Finding a basis of the vector space spanned by given vec-
tors

• input: a list [v1, . . . ,vn] of vectors

• output: a list of vectors that form a basis for Span {v1, . . . ,vn}.

You might think we could use the approach of the Subset-Basis Lemma (Lemma 5.6.11) and
the procedure subset basis(T) of Problem 5.14.17, but this approach depends on having a way
to tell if a vector is in the span of other vectors, which is itself a nontrivial problem.

Computational Problem 5.10.2: Finding a basis of the solution set of a homogeneous
linear system

• input: a list [a1, . . . ,am] of vectors

• output: a list of vectors that form a basis for the set of solutions to the system a1 · x =
0, . . . ,am · x = 0

This problem can be restated as
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Given a matrix

A =

⎡

⎢
⎣

a1

...
am

⎤

⎥
⎦ ,

find a basis for the null space of A.

An algorithm for this problem would help us with several Questions. For example, having a
basis would tell us whether the solution set was trivial: if the basis is nonempty, the solution set
is nontrivial.

In Chapters 7 and 9, we will discuss efficient algorithms for solving these problems.

5.11 The Exchange Lemma

Do the Minimum Spanning Forest algorithms find truly minimum-weight spanning forests? We
have seen one example of a computational problem—Minimum Dominating Set–for which greedy
algorithms sometimes fail to find the best answer. What makes Minimum Spanning Forest
different?

5.11.1 The lemma

We present a lemma, the Exchange Lemma, that applies to vectors. In Section 5.4.3 we saw the
close connection between MSF and vectors. In Section 5.11.2, we use the Exchange Lemma to
prove the correctness of the Grow algorithm for MSF.

Lemma 5.11.1 (Exchange Lemma): Suppose S is a set of vectors and A is a subset of S.
Suppose z is a vector in Span S and not in A such that A ∪ {z} is linearly independent. Then
there is a vector w ∈ S − A such that Span S = Span ({z} ∪ S − {w}).

It’s called the Exchange Lemma because it says you can inject a vector z and eject another
vector without changing the span. The set A is used to keep certain vectors from being ejected.

Proof

Write S = {v1, . . . ,vk,w1, . . . ,wℓ} and A = {v1, . . . ,vk}. Since z is in Span S, it can be
expressed as a linear combination of vectors in S:

z = α1 v1 + · · · + αk vk + β1 w1 + · · · + βℓ wℓ (5.3)

If the coefficients β1, . . . ,βℓ were all zero then we would have z = α1 v1 + · · · + αk vk,
contradicting the linear independence of A∪ {z}. Thus the coefficients β1, . . . ,βℓ cannot all
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be zero. Let βj be a nonzero coefficient. Then Equation (5.3) can be rewritten as

wj = (1/βj) z + (−α1/βj) v1 + · · · + (−αk/βj) vk + (−β1/βj) w1 + . . . + (−βj−1/βj) wj−1

+(−βj+1/βj) wj+1 + · · · + (−βℓ/βj) wℓ

(5.4)

By the Superfluous-Vector Lemma (Lemma 5.5.1),

Span ({z} ∪ S − {wj}) = Span ({z} ∪ S) = Span S

!

We use the Exchange Lemma in the next section to prove the correctness of the Grow al-
gorithm for MSF. In the next chapter, we use the Exchange Lemma in a more significant and
relevant way: to show that all bases for a vector space V have the same size. This is the central
result in linear algebra.

5.11.2 Proof of correctness of the Grow algorithm for MSF

We show that the algorithm Grow(G) returns a minimum-weight spanning forest for G. We
assume for simplicity that all edge-weights are distinct. Let F ∗ be the true minimum-weight
spanning forest for G, and let F be the set of edges chosen by the algorithm. Let e1, e2, . . . , em
be the edges of G in increasing order. Assume for a contradiction that F ̸= F ∗, and let ek be
the minimum-weight edge on which F and F ∗ disagree. Let A be the set of edges before ek that
are in both F and F ∗. Since at least one of the forests includes all of A and also ek, we know
A ∪ {ek} has no cycles (is linearly independent).

Consider the moment when the Grow algorithm considers ek. So far, the algorithm has chosen
the edges in A, and ek does not form a cycle with edges in A, so the algorithm must also choose
ek. Since F and F ∗ differ on ek, we infer that ek is not in F ∗.

Now we use the Exchange Lemma:

• A is a subset of F ∗.

• A ∪ {ek} is linearly independent.

• Therefore there is an edge en in F ∗ − A such that Span (F ∗ ∪ {ek} − {en}) = Span F ∗.

That is, F ∗ ∪ {ek} − {en} is also spanning.
But ek is cheaper than en so F ∗ is not a minimum-weight solution. Contradiction. This

completes the proof of the correctness of Grow(G).

5.12 Lab: Perspective rectification

The goal for this lab is to remove perspective from an image of a flat surface. Consider the
following image (stored in the file board.png) of the whiteboard in my office:
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Looks like there’s some interesting linear algebra written on the board!
We will synthesize a new image. This new image has never been captured by a camera; in

fact, it would be impossible using a traditional camera since it completely lacks perspective:



CHAPTER 5. THE BASIS 308

The technique for carrying out this transformation makes use of the idea of a coordinate sys-
tem. Actually, it requires us to consider two coordinate systems and to transform between a
representation within one system and a representation within the other.

Think of the original image as a grid of rectangles, each assigned a color. (The rectangles
correspond to the pixels.) Each such rectangle in the image corresponds to a parallelogram
in the plane of the whiteboard. The perspective-free image is created by painting each such
parallelogram the color of the corresponding rectangle in the original image.

Forming the perspective-free image is easy once we have a function that maps pixel coordinates
to the coordinates of the corresponding point in the plane of the whiteboard. How can we derive
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such a function?
The same problem arises in using a Wiimote light pen. The light from the light pen strikes

a particular sensor element of the Wiimote, and the Wiimote reports the coordinates of this
sensor element to the computer. The computer needs to compute the corresponding location on
the screen in order to move the mouse to that location. We therefore need a way to derive the
function that maps coordinates of a sensor element to the coordinates in the computer screen.

The basic approach to derive this mapping is by example. We find several input-output
pairs—points in the image plane and corresponding points in the whiteboard plane—and we
derive the function that agrees with this behavior.

5.12.1 The camera basis

We use the camera basis a1,a2,a3 where:

• The origin is the camera center.

• The first vector a1 goes horizontally from the top-left corner of the top-left sensor element
to the top-right corner.

• The second vector a2 goes vertically from the top-left corner of the top-left sensor element
to the bottom-left corner.

• The third vector a3 goes from the origin (the camera center) to the top-left corner of sensor
element (0,0).

(camera center)

image plane

origin

a3

a2

a1

This basis has the advantage that the top-left corner of sensor element (x1, x2) has coordinate
representation (x1, x2, 1).
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5.12.2 The whiteboard basis

In addition, we define a whiteboard basis c1, c2, c3 where:

• The origin is the camera center.

• The first vector c1 goes horizontally from the top-left corner of whiteboard to top-right
corner.

• The second vector c2 goes vertically from the top-left corner of whiteboard to the bottom-
left corner.

• The third vector c3 goes from the origin (the camera center) to the top-left corner of the
whiteboard.

As we will see, this basis has the advantage that, given the coordinate representation (y1, y2, y3)
of a point q, the intersection of the line through the origin and q with the whiteboard plane has
coordinates (y1/y3, y2/y3, y3/y3).

5.12.3 Mapping from pixels to points on the whiteboard

Our goal is to derive the function that maps the representation in camera coordinates of a point
in the image plane to the representation in whiteboard coordinates of the corresponding point in
the whiteboard plane.

At the heart of the function is a change of basis. We have two coordinate systems to think
about, the camera coordinate system, defined by the basis a1,a2,a3, and the whiteboard coor-
dinate system, defined by the basis c1, c2, c3. This gives us two representations for a point. Each
of these representations is useful:

1. It is easy to go from pixel coordinates to camera coordinates: the point with pixel coordi-
nates (x1, x2) has camera coordinates (x1, x2, 1).
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2. It is easy to go from the whiteboard coordinates of a point q in space to the whiteboard
coordinates of the corresponding point p on the whiteboard: if q has whiteboard coordinates
(y1, y2, y3) then p has whiteboard coordinates (y1/y3, y2/y3, y3/y3).

In order to construct the function that maps from pixel coordinates to whiteboard coordinates,
we need to add a step in the middle: mapping from camera coordinates of a point q to whiteboard
coordinates of the same point.

To help us keep track of whether a vector is the coordinate representation in terms of camera
coordinates or is the coordinate representation in terms of whiteboard coordinates, we will use
different domains for these two kinds of vectors. A coordinate representation in terms of camera
coordinates will have domain C={’x1’,’x2’,’x3’}. A coordinate representation in terms of
whiteboard coordinates will have domain R={’y1’,’y2’,’y3’}.

Our aim is to derive the function f : RC −→ RR with the following spec:

• input: the coordinate representation x in terms of camera coordinates of a point q

• output: the coordinate representation y in terms of whiteboard coordinates of the point p
such that the line through the origin and q intersects the whiteboard plane at p.

There is a little problem here; if q lies in the plane through the origin that is parallel to the
whiteboard plane then the line through the origin and q does not intersect the whiteboard plane.
We’ll disregard this issue for now.

We will write f as the composition of two functions f = g ◦ h, where

• h : RC −→ RR is defined thus:

– input: a point’s coordinate representation with respect to the camera basis

– output: the same point’s coordinate representation with respect to the whiteboard
basis

• g : RR −→ RR is defined thus:

– input: the coordinate representation in terms of whiteboard coordinates of a point q

– output: the coordinate representation in terms of whiteboard coordinates of the point
p such that the line through the origin and q intersects the whiteboard plane at p.

5.12.4 Mapping a point not on the whiteboard to the corresponding point on the
whiteboard

In this section, we develop a procedure for the function g.
We designed the whiteboard coordinate system in such a way that a point on the whiteboard

has coordinate y3 equal to 1. For a point that is closer to the camera, the y3 coordinate is less
than 1.

Suppose q is a point that is not on the whiteboard, e.g. a point closer to the camera. Consider
the line through the origin and q. It intersects the whiteboard plane at some point p. How do
we compute the point p from the point q?
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This figure shows a top-view of the situation.

whiteboard plane

p has board 
coordinates

 (y1/y3, y2/y3, y3/y3)

q has board coordinates 
(y1, y2, y3)

b3

b1

origin

q

p

In this view, we see the top edge of the whiteboard, a point q not on the whiteboard, and the
point p on the whiteboard that corresponds to q (in the sense that the line between the origin
and q intersects the whiteboard plane at p).

Let the whiteboard-coordinate representation of q be (y1, y2, y3). In this figure, y3 is less
than 1. Elementary geometric reasoning (similar triangles) shows that the whiteboard-coordinate
representation of the point p is (y1/y3, y2/y3, y3/y3). Note that the third coordinate is 1, as
required of a point in the whiteboard plane.

Task 5.12.1: Write a procedure move2board(y) with the following spec:

• input: a {’y1’,’y2’,’y3’}-vector y, the coordinate representation in whiteboard coor-
dinates of a point q
(Assume q is not in the plane through the origin that is parallel to the whiteboard plane,
i.e. that the y3 entry is nonzero.)

• output: a {’y1’,’y2’,’y3’}-vector z, the coordinate representation in whiteboard coor-
dinates of the point p such that the line through the origin and q intersects the whiteboard
plane at p.

5.12.5 The change-of-basis matrix

You have developed a procedure for g. Now we begin to address the procedure for h.
Writing a point q in terms of both the camera coordinate system a1,a2,a3 and the white-

board coordinate system c1, c2, c3, and using the linear-combinations definition of matrix-vector
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multiplication, we have

⎡

⎣ q

⎤

⎦ =

⎡

⎣ a1 a2 a3

⎤

⎦

⎡

⎣

x1

x2

x3

⎤

⎦ =

⎡

⎣ c1 c2 c3

⎤

⎦

⎡

⎣

y1
y2
y3

⎤

⎦

Let A =

⎡

⎣ a1 a2 a3

⎤

⎦ and let C =

⎡

⎣ c1 c2 c3

⎤

⎦. Since the function from R3 to R3

defined by y )→ Cy is an invertible function, the matrix C has an inverse C−1. Let H = C−1A.
Then a little algebra shows

⎡

⎣ H

⎤

⎦

⎡

⎣

x1

x2

x3

⎤

⎦ =

⎡

⎣

y1
y2
y3

⎤

⎦

This is just a recapitulation of the argument that change of basis is matrix-multiplication.

5.12.6 Computing the change-of-basis matrix

Now that we know a change-of-basis matrix H exists, we don’t use the camera basis or the
whiteboard basis to compute it because we don’t know those bases! Instead, we will compute
H by observing how it behaves on known points, setting up a linear system based on these
observations, and solving the linear system to find the entries of H.

Write H =

⎡

⎣

hy1,x1
hy1,x2

hy1,x3

hy2,x1
hy2,x2

hy2,x3

hy3,x1
hy3,x2

hy3,x3

⎤

⎦.

Let q be a point on the image plane. If q is the top-left corner of pixel x1, x2 then its camera
coordinates are (x1, x2, 1), and

⎡

⎣

y1
y2
y3

⎤

⎦ =

⎡

⎣

hy1,x1
hy1,x2

hy1,x3

hy2,x1
hy2,x2

hy2,x3

hy3,x1
hy3,x2

hy3,x3

⎤

⎦

⎡

⎣

x1

x2

1

⎤

⎦

where (y1, y2, y3) are the whiteboard coordinates of q.
Multiplying out, we obtain

y1 = hy1,x1
x1 + hy1,x2

x2 + hy1,x3
(5.5)

y2 = hy2,x1
x1 + hy2,x2

x2 + hy2,x3
(5.6)

y3 = hy3,x1
x1 + hy3,x2

x2 + hy3,x3
(5.7)

If we had a point with known camera coordinates and known whiteboard coordinates, we could
plug in these coordinates to get three linear equations in the unknowns, the entries of H. By
using three such points, we would get nine linear equations and could solve for the entries of H.

For example, by inspecting the image of the board, you can find the pixel coordinates of
the bottom-left corner of the whiteboard. You can do this using an image viewer such as The
GIMP by opening the image and pointing with your cursor at the corner and reading off the
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pixel coordinates.6 I get the coordinates x1 = 329, x2 = 597. Therefore the sensor element that
detected the light from this corner is located at (x1, x2, x3) = (329, 597, 1) in camera coordinates.

Plugging in these values for x1, x2, we get

y1 = hy1,x1
329 + hy1,x2

597 + hy1,x3
(5.8)

y2 = hy2,x1
329 + hy2,x2

597 + hy2,x3
(5.9)

y3 = hy3,x1
329 + hy3,x2

597 + hy3,x3
(5.10)

Pretend we knew that the whiteboard coordinates for the same point were (0.2, 0.1, 0.3). Then
we could plug these values into the equations and obtain three equations in the unknown values
of the entries of H. By considering other points in the image, we could get still more equations,
and eventually get enough equations to allow us to solve for the entries of H. This approach
consists in learning the function h from input-output pairs (x,y) such that h(x) = y.

The bad news is that we don’t know the whiteboard coordinates for these points. The good
news is that we can use a similar strategy, learning the function f from input-output pairs such
that f(x) = y. For example, if x is (329, 597, 1) then y = f(x) is (0, 1, 1).

How can we use the knowledge of input-output pairs for f to calculate the entries of H? We
need to do a bit of algebra. Let (y1, y2, y3) be the whiteboard coordinates of the point q whose
camera coordinates are (329, 597, 1). We don’t know the values of y1, y2, y3 but we do know (from
the discussion in Section 5.12.4) that

0 = y1/y3

1 = y2/y3

so

0y3 = y1

1y3 = y2

The first equation tells us that y1 = 0. Combining this with Equation 5.8 gives us a linear
equation:

hy1,x1
329 + hy1,x2

597 + hy1,x3
= 0

The second equation tells us that y3 = y2. Therefore, combining Equations 5.9 and 5.10 gives us

hy3,x1
329 + hy3,x2

597 + hy3,x3
= hy2,x1

329 + hy2,x2
597 + hy2,x3

Thus we have obtained two linear equations in the unknown entries of H.
By considering the other three corners of the whiteboard, we can get six more equations. In

general, suppose we know numbers x1, x2, w1, w2 such that

f([x1, x2, 1]) = [w1, w2, 1]

6There are simpler programs that can be used for the same purpose. Under Mac OS, you don’t need to install
anything: the tool for making a screenshot of a rectangular region can be used.
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Let [y1, y2, y3] be the whiteboard coordinates of the point whose camera coordinates are [x1, x2, 1].
According to Section 5.12.4, the whiteboard-coordinate representation of the original point p is
(y1/y3, y2/y3, 1). This shows

w1 = y1/y3

w2 = y2/y3

Multiplying through by y3, we obtain

w1y3 = y1

w2y3 = y2

Combining these equations with Equations 5.5, 5.6, and 5.7, we obtain

w1(hy3,x1
x1 + hy3,x2

x2 + hy3,x3
) = hy1,x1

x1 + hy1,x2
x2 + hy1,x3

w2(hy3,x1
x1 + hy3,x2

x2 + hy3,x3
) = hy2,x1

x1 + hy2,x2
x2 + hy2,x3

Multiplying through and moving everything to the same side, we obtain

(w1x1)hy3,x1
+ (w1x2)hy3,x2

+ w1hy3,x3
− x1hy1,x1

− x2hy1,x2
− 1hy1,x3

= 0 (5.11)

(w2x1)hy3,x1
+ (w2x2)hy3,x2

+ w2hy3,x3
− x1hy2,x1

− x2hy2,x2
− 1hy2,x3

= 0 (5.12)

Because we started with numbers for x1, x2, w1, w2, we obtain two linear equations with known
coefficients. Recall that a linear equation can be expressed as an equation stating the value of
the dot-product of a coefficient vector—a vector whose entries are the coefficients—and a vector
of unknowns.

Task 5.12.2: Define the domain D = R × C.
Write a procedure make equations(x1, x2, w1, w2) that outputs a list [u,v] consisting

of two D-vectors u and v such that Equations 5.11 and 5.12 are expressed as

u · h = 0

v · h = 0

where h is the D-vector of unknown entries of H.

By using the four corners of the whiteboard, we obtain eight equations. However, no matter
how many points we use, we cannot hope to exactly pin down H using only input-output pairs
of f .

Here is the reason. Suppose Ĥ were a matrix that satisfied all such equations: for any input
vector x = [x1, x2, 1], g(Ĥx) = f(x). For any scalar α, an algebraic property of matrix-vector
multiplication is

(αĤ)x = α(Ĥx)

Let [y1, y2, y3] = Ĥx. Then α(Ĥx) = [αy1,αy2,αy3]. But since g divides the first and second
entries by the third, multiplying all three entries by α does not change the output of g:

g(αĤx) = g([αy1,αy2,αy3]) = g([y1, y2, y3])
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This shows that if Ĥ is a suitable matrix for H then so is αĤ.
This mathematical result corresponds to the fact that we cannot recover the scale of the

whiteboard from the image. It could be a huge whiteboard that is very far away, or a tiny
whiteboard that is very close. Fortunately, the math also shows it doesn’t matter to the function
f .

In order to pin down some matrix H, we impose a scaling equation. We simply require that
some entry, say the (’y1’, ’x1’) entry, be equal to 1. We will write this as w · h = 1

Task 5.12.3: Write the D-vector w with a 1 in the (’y1’, ’x1’) entry.

Now we have a linear system consisting of nine equations. To solve it, we construct a
{0, 1, . . . , 8}×D matrix L whose rows are the coefficient vectors and we construct a {0, 1, . . . , 8}-
vector b whose entries are all zero except for a 1 in the position corresponding to the scaling
equation.

Task 5.12.4: Here are the pixel coordinates for the corners of the whiteboard in the image.

top left x1 = 358, x2 = 36
bottom left x1 = 329, x2 = 597
top right x1 = 592, x2 = 157

bottom right x1 = 580, x2 = 483

Assign to L the {0, 1, . . . , 8} × D matrix whose rows are, in order,

• the vector u and the vector v from make equations(x1, x2, w1, w2) applied to the
top-left corner,

• the vector u and the vector v from make equations(x1, x2, w1, w2) applied to the
bottom-left corner,

• the vector u and the vector v from make equations(x1, x2, w1, w2) applied to the

top-right corner,

• the vector u and the vector v from make equations(x1, x2, w1, w2) applied to the
bottom-right corner,

• the vector w from the above ungraded task.

Assign to b the {0, 1, . . . , 8}-vector b whose entries are all zero except for a 1 in position 8.
Assign to h the solution obtained by solving the equation Lh = b. Verify for yourself that it

is indeed a solution to this equation.
Finally, assign to H the matrix whose entries are given by the vector h.
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5.12.7 Image representation

Recall the image representation used in the 2D geometry lab. A generalized image consists
of a grid of generalized pixels, where each generalized pixel is a quadrilateral (not necessarily a
rectangle).

The points at the corners of the generalized pixels are identified by pairs (x, y) of integers,
the pixel coordinates.

Each corner is assigned a location in the plane, and each generalized pixel is assigned a color.
The mapping of corners to points in the plane is given by a matrix, the location matrix. Each
corner corresponds to a column of the location matrix, and the label of that column is the
pair (x, y) of pixel coordinates of the corner. The column is a {'x','y','u'}-vector giving the
location of the corner. Thus the row labels of the location matrix are ’x’, ’y’, and ’u’.

The mapping of generalized pixels to colors is given by another matrix, the color matrix.
Each generalized pixel corresponds to a column of the color matrix, and the label of that column
is the pair of pixel coordinates of the top-left corner of that generalized pixel. The column is a
{'r','g','b'}-vector giving the color of that generalized pixel.

The module image_mat_util defines the procedures

• file2mat(filename, rowlabels), which, given a path to a .png image file and optionally
a tuple of row labels, returns the pair (points, colors) of matrices representing the
image, and

• mat2display(pts, colors, row labels), which displays an image given by a matrix
pts and a matrix colors and optionally a tuple of row labels. There are a few additional
optional parameters that we will use in this lab.

As in the 2D geometry lab, you will apply a transformation to the locations to obtain new
locations, and view the resulting image.

5.12.8 Synthesizing the perspective-free image

Now we present the tasks involved in using H to create the synthetic image.

Task 5.12.5: Construct the generalized image from the image file board.png:

(X_pts, colors) = image_mat_util.file2mat('board.png', ('x1','x2','x3'))

Task 5.12.6: The columns of the matrix X pts are the camera-coordinates representations of
points in the image. We want to obtain the board-coordinates representations of these points.
To apply the transformation H to each column of X pts, we use matrix-matrix multiplication:

Y_pts = H * X_pts
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Task 5.12.7: Each column of Y pts gives the whiteboard-coordinate representation (y1, y2, y3)
of a point q in the image. We need to construct another matrix Y_board in which each column
gives the whiteboard-coordinate representation (y1/y3, y2/y3, 1) of the corresponding point p in
the plane containing the whiteboard.

Write a procedure mat move2board(Y) with the following spec:

• input: a Mat each column of which is a ’y1’,’y2’,’y3’-vector giving the whiteboard
coordinates of a point q

• output: a Mat each column of which is the corresponding point in the whiteboard plane
(the point of intersection with the whiteboard plane of the line through the origin and q

Here’s a small example:

>>> Y_in = Mat(({'y1', 'y2', 'y3'}, {0,1,2,3}),
{('y1',0):2, ('y2',0):4, ('y3',0):8,
('y1',1):10, ('y2',1):5, ('y3',1):5,
('y1',2):4, ('y2',2):25, ('y3',2):2,
('y1',3):5, ('y2',3):10, ('y3',3):4})

>>> print(Y_in)

0 1 2 3
------------

y1 | 2 10 4 5
y2 | 4 5 25 10
y3 | 8 5 2 4

>>> print(mat_move2board(Y_in))

0 1 2 3
------------------

y1 | 0.25 2 2 1.25
y2 | 0.5 1 12.5 2.5
y3 | 1 1 1 1

Once your mat move2board procedure is working, use it to derive the matrix Y board from
Y pts:

>>> Y_board = mat_move2board(Y_pts)

One simple way to implement mat move2board(Y) is to convert the Mat to a column dic-
tionary (coldict), call your move2board(y) procedure for each column, and convert the resulting
column dictionary back to a matrix.
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Task 5.12.8: Finally, display the result of

>>> image_mat_util.mat2display(Y_board, colors, ('y1', 'y2', 'y3'),
scale=100, xmin=None, ymin=None)

Task 5.12.9: If you have time, repeat with cit.png. This is a picture of Brown University’s
Computer Science building. Select a rectangle on a wall of the building (e.g. one of the windows),
and define a coordinate system that assigns coordinates (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1) to the
corners of the rectangle. Then find out the pixels corresponding to these points, and so on.

5.13 Review questions

• What is coordinate representation?

• How can you express conversion between a vector and its coordinate representation using
matrices?

• What is linear dependence?

• How would you prove a set of vectors are linearly independent?

• What is the Grow algorithm?

• What is the Shrink algorithm?

• How do the concepts of linear dependence and spanning apply to subsets of edges of graphs?

• Why is the output of the growing algorithm a set of linearly independent vectors?

• Why is the output of the shrinking algorithm a set of linearly independent vectors?

• What is a basis?

• What is unique representation?

• What is change of basis?

• What is the Exchange Lemma?

5.14 Problems

Span of vectors over R

Problem 5.14.1: Let V = Span {[2, 0, 4, 0], [0, 1, 0, 1], [0, 0,−1,−1]}. For each of the follow-
ing vectors, show it belongs to V by writing it as a linear combination of the generators of
V.
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(a) [2, 1, 4, 1]

(b) [1, 1, 1, 0]

(c) [0, 1, 1, 2]

Problem 5.14.2: Let V = Span {[0, 0, 1], [2, 0, 1], [4, 1, 2]}. For each of the following vectors,
show it belongs to V by writing it as a linear combination of the generators of V.

(a) [2, 1, 4]

(b) [1, 1, 1]

(c) [5, 4, 3]

(d) [0, 1, 1]

Span of vectors over GF (2)

Problem 5.14.3: Let V = Span {[0, 1, 0, 1], [0, 0, 1, 0], [1, 0, 0, 1], [1, 1, 1, 1]} where the vectors
are over GF (2). For each of the following vectors over GF (2), show it belongs to V by writing
it as a linear combination of the generators of V.

(a) [1, 1, 0, 0]

(b) [1, 0, 1, 0]

(c) [1, 0, 0, 0]

Problem 5.14.4: The vectors over GF (2) representing the graph

a b c

d e f

g h

v1 v2

v3 v4 v5

v6

v8

v7

are
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a b c d e f g h
v1 1 1
v2 1 1
v3 1 1
v4 1 1
v5 1 1
v6 1 1
v7 1 1
v8 1 1

For each of the following vectors over GF (2), show it belongs to the span of the above vectors
by writing it as a linear combination of the above vectors.

(a) [0, 0, 1, 1, 0, 0, 0, 0]

(b) [0, 0, 0, 0, 0, 1, 1, 0]

(c) [1, 0, 0, 0, 1, 0, 0, 0]

(d) [0, 1, 0, 1, 0, 0, 0, 0]

Linear dependence over R

Problem 5.14.5: For each of the parts below, show the given vectors over R are linearly
dependent by writing the zero vector as a nontrivial linear combination of the vectors.

(a) [1, 2, 0], [2, 4, 1], [0, 0,−1]

(b) [2, 4, 0], [8, 16, 4], [0, 0, 7]

(c) [0, 0, 5], [1, 34, 2], [123, 456, 789], [−3,−6, 0], [1, 2, 0.5]

Problem 5.14.6: For each of the parts below, show the given vectors over R are linearly
dependent by writing the zero vector as a nontrivial linear combination of the vectors. You can
use sqrt( ) and pi.

(a) [1, 2, 3], [4, 5, 6], [1, 1, 1]

(b) [0,−1, 0,−1], [π,π,π,π], [−
√

2,
√

2,−
√

2,
√

2]

(c) [1,−1, 0, 0, 0], [0, 1,−1, 0, 0], [0, 0, 1,−1, 0], [0, 0, 0, 1,−1], [−1, 0, 0, 0, 1]

Problem 5.14.7: Show that one of the vectors is superfluous by expressing it as a linear
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combination of the other two.

u = [3, 9, 6, 5, 5]

v = [4, 10, 6, 6, 8]

w = [1, 1, 0, 1, 3]

Problem 5.14.8: Give four vectors that are linearly dependent but such that any three are
linearly independent.

Linear dependence over GF (2)

Problem 5.14.9: For each of the subproblems, show the given vectors over GF (2) are linearly
dependent by writing the zero vector as a nontrivial linear combination of the vectors.

(a) [one, one, one, one], [one, 0, one, 0], [0, one, one, 0], [0, one, 0, one]

(b) [0, 0, 0, one], [0, 0, one, 0], [one, one, 0, one], [one, one, one, one]

(c) [one, one, 0, one, one], [0, 0, one, 0, 0], [0, 0, one, one, one], [one, 0, one, one, one], [one, one, one, one, one]

Problem 5.14.10: Each of the subproblems specifies some of the vectors over GF (2) specified
in Problem 5.14.4. For each subproblem, show that the vectors are linearly dependent by giving
the coefficients of a nontrivial linear combination whose sum is the zero vector. (Hint: Looking
at the graph will help.)

(a) v1,v2,v3,v4,v5

(b) v1,v2,v3,v4,v5,v7,v8

(c) v1,v2,v3,v4,v6

(d) v1,v2,v3,v5,v6,v7,v8

Exchange Lemma for vectors over R

Problem 5.14.11: Let S = {[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]},
and let
A = {[1, 0, 0, 0, 0], [0, 1, 0, 0, 0]}. For each of the following vectors z, find a vector w in S − A
such that Span S = Span (S ∪ {z} − {w}).

(a) z = [1, 1, 1, 1, 1]

(b) z = [0, 1, 0, 1, 0]
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(c) z = [1, 0, 1, 0, 1]

Exchange Lemma for vectors over GF (2)

Problem 5.14.12: We refer in this problem to the vectors over GF (2) specified in Prob-
lem 5.14.4.

Let S = {v1,v2,v3,v4}. Each of the following parts specifies a subset A of S and a vector
z such that A ∪ {z} is linearly independent. For each part, specify a vector w in S − A such
that Span S = Span (S ∪ {z} − {w}). (Hint: Drawing subgraphs of the graph will help.)

(a) A = {v1,v4} and z is
a b c d e f g h

1 1

(b) A = {v2,v3} and z is
a b c d e f g h

1 1

(c) A = {v2,v3} and z is
a b c d e f g h
1 1

Problem 5.14.13: Write and test a procedure rep2vec(u, veclist) with the following spec:

• input: a vector u and a list veclist of Vecs [a0, . . . ,an−1]. The domain of u should be
{0, 1, 2, n − 1} where n is the length of veclist.

• output: the vector v such that u is the coordinate representation of v with respect to
a0, . . . ,an−1, where entry i of u is the coefficient of ai for i = 0, 1, 2 . . . , n − 1.

Your procedure should not use any loops or comprehensions but of course can use the operations
on instances of Mat and Vec and can also use procedures from the matutil module. Note that
the procedures coldict2mat and rowdict2mat (defined in matutil) can accept lists, not just
dictionaries.

Here is an illustration of how the procedure is used.

>>> a0 = Vec({'a','b','c','d'}, {'a':1})
>>> a1 = Vec({'a','b','c','d'}, {'b':1})
>>> a2 = Vec({'a','b','c','d'}, {'c':1})
>>> rep2vec(Vec({0,1,2}, {0:2, 1:4, 2:6}), [a0,a1,a2])
Vec({'a', 'c', 'b', 'd'},{'a': 2, 'c': 6, 'b': 4, 'd': 0})

Test your procedure with the following examples.

• u = [5, 3,−2], veclist = [[1, 0, 2, 0], [1, 2, 5, 1], [1, 5,−1, 3]] over R

• u = [1, 1, 0], veclist = [[1, 0, 1], [1, 1, 0], [0, 0, 1]] over GF (2)
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Note that the vectors in the examples above are given in math notation, but the procedure
requires vectors to be represented as instances of Vec. You can use the procedure list2vec
(defined in the module vecutil) to convert the example vectors from list representation to Vec
for use as inputs to the procedure.

Also note that, in trying out the GF2 example, you should use the value one defined in the
module GF2 in place of the number 1.

Problem 5.14.14: Write and test a procedure vec2rep(veclist, v) with the following spec:

• input: a list veclist of vectors [a0, . . . ,an−1], and a vector v with the domain {0, 1, 2, . . . , n−
1} where n is the length of veclist. You can assume v is in Span {a0, . . . ,an−1}.

• output: the vector u whose coordinate representation in terms of a0, . . . ,an−1 is v.

As in Problem 5.14.13, your procedure should use no loops or comprehensions directly but can use
procedures defined in matutil and can use the procedure solve(A, b) defined in the solver
module.

Here is an illustration of how the procedure is used.

>>> a0 = Vec({'a','b','c','d'}, {'a':1})
>>> a1 = Vec({'a','b','c','d'}, {'b':1})
>>> a2 = Vec({'a','b','c','d'}, {'c':1})
>>> vec2rep([a0,a1,a2], Vec({'a','b','c','d'}, {'a':3, 'c':-2}))
Vec({0, 1, 2},{0: 3.0, 1: 0.0, 2: -2.0})

Test your procedure with the following examples:

• v = [6,−4, 27,−3], veclist = [[1, 0, 2, 0], [1, 2, 5, 1], [1, 5,−1, 3]] in R

• v = [0, 1, 1], veclist = [[1, 0, 1], [1, 1, 0], [0, 0, 1]] in GF (2)

As in Problem 5.14.13, the examples above are given in math notation but the procedure expects
vectors to be represented as instances of Vec, and the value one from the module GF2 should
be used in the GF(2) examples.

Problem 5.14.15: Write and test a procedure is superfluous(L, i) with the following
spec:

• input: a list L of vectors, and an integer i in {0, 1, . . . , n − 1} where n = len(L)

• output: True if the span of the vectors in L equals the span of

L[0], L[1], . . . , L[i − 1], L[i + 1], ..., L[n − 1]

Your procedure should not use loops or comprehensions but can use procedures defined in the
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module matutil and can use the procedure solve(A,b) defined in solver module. Your
procedure will most likely need a special case for the case where len(L) is 1.

Note that the solve(A,b) always returns a vector u. It is up to you to check that u is in
fact a solution to the equation Ax = b. Moreover, over R, even if a solution exists, the solution
returned by solve is approximate due to roundoff error. To check whether the vector u returned
is a solution, you should compute the residual b−A ∗u, and test if it is close to the zero vector:

>>> residual = b - A*u
>>> residual * residual
1.819555009546577e-25

If the sum of squares of the entries of the residual (the dot-product of the residual with itself) is
less than, say 10−14, it is pretty safe to conclude that u is indeed a solution.
Here is an illustration of how is superfluous(L, v) is used.

>>> a0 = Vec({'a','b','c','d'}, {'a':1})
>>> a1 = Vec({'a','b','c','d'}, {'b':1})
>>> a2 = Vec({'a','b','c','d'}, {'c':1})
>>> a3 = Vec({'a','b','c','d'}, {'a':1,'c':3})
>>> is_superfluous(L, 3)
True
>>> is_superfluous([a0,a1,a2,a3], 3)
True
>>> is_superfluous([a0,a1,a2,a3], 0)
True
>>> is_superfluous([a0,a1,a2,a3], 1)
False

Test your procedure with the following examples:

• L = [[1, 2, 3]],v = [1, 2, 3] over R

• L = [[2, 5, 5, 6], [2, 0, 1, 3], [0, 5, 4, 3]] ,v = [0, 5, 4, 3] over R

• L = [[1, 1, 0, 0], [1, 1, 1, 1], [0, 0, 0, 1]] ,v = [0, 0, 0, 1] over GF (2)

As in Problems 5.14.13 and 5.14.14, the examples are written in mathese and you have to
translate into our Python representation:

Problem 5.14.16: Write and test a procedure is independent(L) with the following spec:

• input: a list L of vectors

• output: True if the vectors form a linearly independent list.

Your algorithm for this procedure should be based on the Span Lemma (Lemma 5.5.9). You can
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use as a subroutine any one of the following:

• the procedure is superfluous(L, b) from Problem 5.14.15, or

• the solve(A,b) procedure from the solvermodule (but see the provisos in Problem 5.14.15).

You will need a loop or comprehension for this procedure.
Here is an illustration of how the procedure is used:

>>> a0 = Vec({'a','b','c','d'}, {'a':1})
>>> a1 = Vec({'a','b','c','d'}, {'b':1})
>>> a2 = Vec({'a','b','c','d'}, {'c':1})
>>> a3 = Vec({'a','b','c','d'}, {'a':1,'c':3})
>>> is_independent([a0, a1, a2])
True
>>> is_independent([a0, a2, a3])
False
>>> is_independent([a0, a1, a3])
True
>>> is_independent([a0, a1, a2, a3])
False

Note: There is a slight technical difference between a set being linearly independent and a
list being linearly independent. A list can contain some vector v twice, in which case the list
is considered linearly dependent. Your code should not deal specially with this case; it will be
handled naturally, so don’t think about this case until after you have written your procedure.

Test your procedure with the following examples:

• [[2, 4, 0], [8, 16, 4], [0, 0, 7]] over R

• [[1, 3, 0, 0], [2, 1, 1, 0], [0, 0, 1, 0], [1, 1, 4,−1]] over R

• [[1, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1], [1, 0, 0, 1]] over GF (2)

As usual, the examples are given in math notation but the procedure expects vectors represented
as Vec instances, and the 1 in GF (2) vectors should be replaced by the value one defined in the
module GF2.

Problem 5.14.17: Write and test a procedure subset basis(T) with the following spec:

• input: a list T of vectors

• output: a list S consisting of vectors of T such that S is a basis for the span of T .

Your procedure should be based on either a version of the Grow algorithm or a version of the
Shrink algorithm. Think about each one to see which is easier for you. You will need a loop or
comprehension for this procedure. You can use as a subroutine any one of the following:
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• the procedure is superfluous(L, b) from Problem 5.14.15, or

• the procedure is independent(L) from Problem 5.14.16 or from the module independence
we provide, or

• the procedure solve(A,b) from the solvermodule (but see the provisos in Problem 5.14.15).

Here is an illustration of how the procedure is used.

>>> a0 = Vec({'a','b','c','d'}, {'a':1})
>>> a1 = Vec({'a','b','c','d'}, {'b':1})
>>> a2 = Vec({'a','b','c','d'}, {'c':1})
>>> a3 = Vec({'a','b','c','d'}, {'a':1,'c':3})
>>> subset_basis([a0,a1,a2,a3])
[Vec({'a', 'c', 'b', 'd'},{'a': 1}), Vec({'a', 'c', 'b', 'd'},{'b':
1}),
Vec({'a', 'c', 'b', 'd'},{'c': 1})]
>>> subset_basis([a0,a3,a1,a2])
[Vec({'a', 'c', 'b', 'd'},{'a': 1}),
Vec({'a', 'c', 'b', 'd'},{'a': 1, 'c': 3}),
Vec({'a', 'c', 'b', 'd'},{'b': 1})]

Note that the order in which vectors appear in T is likely to affect the returned list. Note also
that there are different valid outputs.

Test your procedure with the following examples:

• [1, 1, 2, 1], [2, 1, 1, 1], [1, 2, 2, 1], [2, 2, 1, 2], [2, 2, 2, 2] over R

• [1, 1, 0, 0], [1, 1, 1, 1], [0, 0, 1, 1], [0, 0, 0, 1], [0, 0, 1, 0] over GF (2)

As usual, the examples are given in math notation but the procedure expects vectors represented
as Vec instances, and the 1 in GF (2) vectors should be replaced by the value one defined in the
module GF2.

Problem 5.14.18: Write and test a procedure superset basis(T, L) with the following
spec:

• input: a linearly independent list T of vectors, and a list L of vectors such that every vector
in T is in the span of L.

• output: a linearly independent list S containing all vectors in T such that the span of S
equals the span of L (i.e. S is a basis for the span of L).

Your procedure should be based on either a version of the Grow algorithm or a version of the
Shrink algorithm. Think about each one to see which is easier for you. You will need a loop or
comprehension for this procedure. You can use as a subroutine any one of the following:
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• the procedure is superfluous(L, b) from Problem 5.14.15, or

• the procedure is independent(L) from Problem 5.14.16, or

• the procedure solve(A,b) from the solvermodule (but see the provisos in Problem 5.14.15).

Here is an illustration of how the procedure is used.

>>> a0 = Vec({'a','b','c','d'}, {'a':1})
>>> a1 = Vec({'a','b','c','d'}, {'b':1})
>>> a2 = Vec({'a','b','c','d'}, {'c':1})
>>> a3 = Vec({'a','b','c','d'}, {'a':1,'c':3})
>>> superset_basis([a0, a3], [a0, a1, a2])
[Vec({'b', 'c', 'd', 'a'},{'a': 1}), Vec({'b', 'c', 'd', 'a'},{'c': 3, 'a': 1}),
Vec({'b', 'c', 'd', 'a'},{'b': 1})]

Test your procedure with the following examples:

• T = [[0, 5, 3], [0, 2, 2], [1, 5, 7]], L = [[1, 1, 1], [0, 1, 1], [0, 0, 1]] over R

• T = [[0, 5, 3], [0, 2, 2]], L = [[1, 1, 1], [0, 1, 1], [0, 0, 1]] over R

• T = [[0, 1, 1, 0], [1, 0, 0, 1]], L = [[1, 1, 1, 1], [1, 0, 0, 0], [0, 0, 0, 1]] over GF (2)

As in Problems 5.14.13 and 5.14.14, the examples are written in mathese and you have to
translate into our Python representation.

Problem 5.14.19: Write and test a procedure exchange(S, A, z) with the following spec:

• input: A list S of vectors, a list A of vectors that are all in S (such that len(A) < len(S)),
and a vector z such that A + [z] is linearly independent

• output: a vector w in S but not in A such that

Span S = Span ({z} ∪ S − {w})

Your procedure should follow the proof of the Exchange Lemma (Lemma 5.11.1). You should
use the solver module or the procedure vec2rep(veclist, u) from Problem 5.14.14. You
can test whether a vector is in a list using the expression v in L.

Here is an illustration of how the procedure is used:

>>> S=[list2vec(v) for v in [[0,0,5,3] , [2,0,1,3],[0,0,1,0],[1,2,3,4]]]
>>> A=[list2vec(v) for v in [[0,0,5,3],[2,0,1,3]]]
>>> z=list2vec([0,2,1,1])
>>> print(exchange(S, A, z))

0 1 2 3
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--------
0 0 1 0

Test your procedure with the following examples:

• S = [[0, 0, 5, 3], [2, 0, 1, 3], [0, 0, 1, 0], [1, 2, 3, 4]], A = [[0, 0, 5, 3], [2, 0, 1, 3]], z = [0, 2, 1, 1]
in R

• S = [[0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0]] , A = [[0, 1, 1, 1], [1, 1, 0, 1]] , z = [1, 1, 1, 1]
in GF (2)
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Dimension

I hope that posterity will judge me
kindly, not only as to the things which I
have explained, but also to those which I
have intentionally omitted so as to leave
to others the pleasure of discovery.

René Descartes, Geometry

The crucial fact about bases is that all bases for a vector space have the same size. I prove
this fact in Section 6.1. In Section 6.2, I use this fact to define the dimension of a vector space.
This concept opens the door to many important insights about vector spaces, about homogeneous
linear systems, about linear functions, and about matrices.

6.1 The size of a basis

At the heart of linear algebra is the next result. (The name I give for it is, uh, nonstandard.)

6.1.1 The Morphing Lemma and its implications

Lemma 6.1.1 (Morphing Lemma): Let V be a vector space. Suppose S is a set of gener-
ators for V, and B is a linearly independent set of vectors belonging to V. Then |S| ≥ |B|.

We will prove it presently. For now, let us see how it can be used to prove what is perhaps the
most important result in linear algebra.

Theorem 6.1.2 (Basis Theorem): Let V be a vector space. All bases for V have the same
size.

330
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Proof

Let B1 and B2 be two bases for V. Applying the Morphing Lemma with S = B1 and
B = B2, we infer that |B1| ≥ |B2|. Appying it with S = B2 and B = B1, we infer that
|B2| ≥ |B1|. Putting these inequalities together, we infer |B1| = |B2|. !

Theorem 6.1.3: Let V be a vector space. Then a set of generators for V is a smallest set of
generators for V if and only if the set is a basis for V.

Proof

Let T be a set of generators for V. We must prove (1) if T is a basis for V then T is a smallest
set of generators for V, and (2) if T is not a basis for V then there is a set of generators
smaller than T .

1. Suppose T is a basis. Let S be a smallest set of generators for V. By the Morphing
Lemma, |T | ≤ |S|, so T is also a smallest set of generators.

2. Suppose T is not a basis. A basis is a linearly independent set of generators. Since
T is a set of generators, it must be linearly dependent. By the Linear-Dependence
Lemma (Lemma 5.5.9), there is some vector in T that is in the span of the other
vectors. Therefore, by the Superfluous-Vector Lemma (Lemma 5.5.1), there is some
vector whose removal from T leaves a set of generators for V. Thus T is not a smallest
set of generators.

!

6.1.2 Proof of the Morphing Lemma

The proof of the Morphing Lemma is algorithmic. We give an algorithm to convert S to a set S′

that still spans V, and that has the same cardinality as S, but that includes all the elements of
B. This shows that |S| is at least |B|.

Why is it called the “Morphing Lemma”? The algorithm modifies S step by step to include
more and more vectors of B, while preserving its cardinality and the fact that it spans V, until
it includes all of B. In each step, the algorithm “injects” a vector of B into S and, in order to
preserve the cardinality of S, it “ejects” a vector from S. The choice of vector to eject is the
responsibility of a subroutine, the Exchange Lemma of Section 5.11.1.

For the reader’s convenience, I restate the Morphing Lemma (Lemma 6.1.1):

Let V be a vector space. Suppose S is a set of generators for V, and B is a linearly
independent set of vectors belonging to V. Then |B| ≤ |S|.
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Proof

Let B = {b1, . . . , bn}. We will transform S step by step to include more and more vectors
in B without ever increasing the size of the set. For k = 0, 1, . . . , |B|, we use Sk to denote
the set obtained after k steps. We will prove by induction on k that there is a set Sk that
spans V and contains b1, . . . , bk but has the same cardinality as S.

Consider the case k = 0. The set S0 is just S, which spans V by assumption, and which
has the same cardinality as itself. It is not required to contain any of the vectors of B, so
the base case holds.

Now we prove the induction step. For k = 1, . . . , n, we obtain Sk from Sk−1 as follows.
Let Ak = {b1, . . . , bk−1}. Since bk ∪Ak is linearly independent, we can apply the Exchange
Lemma to Ak and Sk−1. There is a vector w ∈ Sk−1 − Ak such that {bk} ∪ (Sk−1 − {w})
spans V. We define Sk = {bk} ∪ Sk−1 − {w}. Then |Sk| = |Sk−1| and Sk spans V and Sk

contains b1, . . . , bk, so we have proved the induction step. !

Example 6.1.4: Let S be the set of vectors corresponding to dark edges in the following graph:

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

How can we morph S into the set B of vectors corresponding to the dark edges in the next
diagram?

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

We insert edges of B into S edge by edge, removing edges from S in each step in accordance
with the Exchange Lemma. First we inject, say, the edge with endpoints Bio-Med and Athletic:
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Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

which entails ejecting an edge, say the edge with endpoints Bio-Med and Pembroke:

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

resulting in the forest

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

Next we inject, say, the edge with endpoints Keeney and Main, and eject the edge with endpoints
Keeney and Wriston:

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

resulting in
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Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

Finally, we inject the edge with endpoints Keeney and Gregorian, ejecting the edge with endpoints
Wriston and Gregorian:

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

which results in the target spanning forest B:

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

6.2 Dimension and rank

We have shown that all bases of V have the same size.

6.2.1 Definitions and examples

Definition 6.2.1: We define the dimension of a vector space to be the size of a basis for that
vector space. The dimension of a vector space V is written dim V.

Example 6.2.2: One basis for R3 is the standard basis: {[1, 0, 0], [0, 1, 0], [0, 0, 1]}. Therefore
the dimension of R3 is 3.



CHAPTER 6. DIMENSION 335

Example 6.2.3: More generally, for any field F and any finite set D, one basis for FD is the
standard basis, which consists of |D| vectors. Therefore FD has dimension |D|.

Example 6.2.4: Let S = {[−0.6,−2.1,−3.5,−2.2], [−1.3, 1.5,−0.9,−0.5], [4.9,−3.7, 0.5,−0.3],
[2.6,−3.5,−1.2,−2.0], [−1.5,−2.5,−3.5, 0.94]}. What can we say about the dimension of
Span S?

If we knew that S were linearly independent, we would know that S is a basis for Span S, so
dim Span S would equal the cardinality of S, namely five.

But let’s say we don’t know whether S is linearly independent. By the Subset-Basis Lemma
(Lemma 5.6.11), we know that S contains a basis. That basis must have size at most |S|, so
we can be sure that dim Span S is less than or equal to five.

Since S contains nonzero vectors, so does Span S. We can therefore be sure that dim Span S
is greater than zero.

Definition 6.2.5: We define the rank of a set S of vectors as the dimension of Span S. We
write rank S for the rank of S.

Example 6.2.6: In Example 5.5.3 (Page 283), we showed that the vectors [1, 0, 0], [0, 2, 0], [2, 4, 0]
are linearly dependent. Therefore their rank is less than three. Any two of these vectors form a
basis for the span of all three, so the rank is two.

Example 6.2.7: The set S given in Example 6.2.4 (Page 335) has rank between one and five.

As illustrated in Example 6.2.4 (Page 335), the Subset-Basis Lemma (Lemma 5.6.11) shows
the following.

Proposition 6.2.8: For any set S of vectors, rank S ≤ |S|.

Definition 6.2.9: For a matrix M , the row rank of M is the rank of its rows, and the column
rank of M is the rank of its columns.

Equivalently, the row rank of M is the dimension of Row M , and the column rank of M is the
dimension of Col M .
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Example 6.2.10: Consider the matrix

M =

⎡

⎣

1 0 0
0 2 0
2 4 0

⎤

⎦

whose rows are the vectors of Example 6.2.6 (Page 335). We saw that the set consisting of these
vectors has rank two, so the row rank of M is two.

The columns of M are [1, 0, 2], [0, 2, 4], and [0, 0, 0]. Since the third vector is the zero vector,
it is not needed for spanning the column space. Since each of the first two vectors has a nonzero
where the other has a zero, these two are linearly independent, so the column rank is two.

Example 6.2.11: Consider the matrix

M =

⎡

⎣

1 0 0 5
0 2 0 7
0 0 3 9

⎤

⎦

Each of the rows has a nonzero where the others have zeroes, so the three rows are linearly
independent. Thus the row rank of M is three.

The columns of M are [1, 0, 0], [0, 2, 0], [0, 0, 3], and [5, 7, 9]. The first three columns are
linearly independent, and the fourth can be written as a linear combination of the first three, so
the column rank is three.

In both of these examples, the row rank equals the column rank. This is not a coincidence;
we will show this is true in any matrix.

Example 6.2.12: Consider the set of vectors S = {[1, 0, 3], [0, 4, 0], [0, 0, 3], [2, 1, 3]}. By com-
putation, one can show that the first three vectors of S are linearly independent. Thus, the rank
of S is three. On the other hand, consider the matrix whose rows are the vectors of S.

M =

⎡

⎢
⎢
⎣

1 0 3
0 4 0
0 0 3
2 1 3

⎤

⎥
⎥
⎦

Because S has rank three, we also infer that the row rank of M is three. Moreover, since
each of the columns has a nonzero where the others have zeroes, three columns are linearly
independent. Thus the column rank of M is three.

6.2.2 Geometry

We asked in Section 3.3.1 about predicting the dimensionality of the geometric object formed by
the span of given vectors.
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We can now understand geometry in terms of coordinate systems. The dimensionality of such
a geometric object is the minimum number of coordinates that must be assigned to its points.
The number of coordinates is the size of the basis, and the size of the basis is the rank of the set
of given vectors.

For example,

• Span {[1, 2,−2]} is a line, a one-dimensional object, whereas Span {[0, 0, 0]} is a point, a
one-dimensional structure—the first vector space has dimension one and the second has
dimension zero.

• Span {[1, 2], [3, 4]} consists of all of R2, a two-dimensional object, whereas Span {[1, 3], [2, 6]}
is a line, a one-dimensional object—the first has dimension two and the second has dimen-
sion one.

• Span {[1, 0, 0], [0, 1, 0], [0, 0, 1]} is all of R3, a three-dimensional object, whereas
Span {[1, 0, 0], [0, 1, 0], [1, 1, 0]} is a plane, a two-dimensional object—the first has dimension
three and the second has dimension two.

6.2.3 Dimension and rank in graphs

In Chapter 5, we described the concepts of spanning, linear independence, and basis as they
apply to a graph such as:

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

In Example 5.6.8 (Page 291), we saw examples of bases of the span of subsets of edges. Let
T be the set of dark edges in the following diagram:

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

In each of the following two diagrams, the dark edges form a basis for T :



CHAPTER 6. DIMENSION 338

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

Athletic Complex
Main Quad

Pembroke Campus

Keeney Quad Wriston Quad
Bio-Med

Gregorian Quad

Each basis has size four, so dim Span T = 4 so rank T = 4.
A set T of edges of a graph forms a connected subgraph if every pair of edges of T belong

to some path consisting of edges of T . An easy induction shows that the rank of a connected
subgraph T equals the number of nodes that are endpoints of edges in T , minus one. For example,
the set consisting of a single edge has rank one, and a set consisting of three edges forming a
cycle has rank two.

In each of the diagrams above, the dark edges comprise two connected subgraphs that share
no nodes. The connected subgraph on the left, which consists of a single edge, has rank one.
The connected subgraph on the right, which has four nodes, has rank three. The rank of the set
of all dark edges is one plus three, i.e. four.

6.2.4 The cardinality of a vector space over GF (2)

In Section 3.6.2, we saw that the number of solutions to a linear system

a1 · x = β1

...

am · x = βm

over GF (2) equals the number of vectors in the vector space V consisting of solutions to the
corresponding system of homogeneous linear equations.

In Section 3.6.4, in order to calculate the probability of undetected corruption of a file, we
similarly needed to know the cardinality of a vector space V over GF (2).

Let d be the dimension of V, and suppose b1, . . . , bd is a basis for V . By the Unique Rep-
resentation Lemma (Lemma 5.7.1), each vector in V has a unique representation as a linear
combination of the basis vectors. Thus the number of vectors in V equals the number of linear
combinations of the basis vectors. Since there are d basis vectors, there are d coefficients in each
linear combination. Each coefficient can be zero or one. Therefore there are 2d different linear
combinations.
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6.2.5 Any linearly independent set of vectors belonging to V can be
extended to form a basis for V

Now that we have the notion of dimension, we can prove the Superset-Basis Lemma stated in
Section 5.6.5.

Lemma 6.2.13 (Superset-Basis Lemma): For any vector space V and any linearly inde-
pendent set A of vectors, V has a basis that contains all of A.

Proof

We started the proof in Section 5.6.5 but were unable to complete it because we lacked the
notion of dimension. Let’s try again.

We use a version of the Grow algorithm:

def superset basis(T, V):
Initialize B to be equal to T .
Repeat while possible: select a vector in V that is not in Span B, and put it in B.
Return B

Initially, B contains all of T (in fact, is equal to T ) and is linearly independent. By the Grow-
Algorithm Corollary, the set B remains linearly independent throughout the algorithm.
If the algorithm terminates, Span B = V. Hence upon termination B is a basis for V.
Furthermore, B still contains all of T since the algorithm did not remove any vectors from
B.

How do we show that the algorithm terminates? For some field F and some set D, the
vector space V consists of vectors in FD. In this book, we assume D is finite. Therefore
there is a standard basis for FD, which consists of |D| vectors.

By the Morphing Lemma, since B is a linearly independent set of vectors belonging to
FD, the cardinality of B is at most the cardinality of the standard basis for FD. However,
each iteration of the Grow algorithm increases the cardinality of B by one, so the algorithm
cannot continue forever (in fact, it cannot continue for more than |D| iterations). !

This proof crucially uses the fact that, for the purposes of this book, every vector space is a
subspace of FD where D is a finite set. Things get trickier when D is allowed to be infinite!

6.2.6 The Dimension Principle

The Superset-Basis Lemma is used in the proof of the following principle.

Lemma 6.2.14 (Dimension Principle): If V is a subspace of W then

Property D1: dim V ≤ dim W, and

Property D2: if dim V = dim W then V = W.
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Proof

Let v1, . . . ,vk be a basis for V. By the Superset-Basis Lemma (Lemma 6.2.13), there is a
basis B for W that contains v1, . . . ,vk. Thus the cardinality of B is at least k. This proves
1. Moreover, if the cardinality of B is exactly k then B contains no vectors other than
v1 . . . ,vk, which shows that the basis of V is also a basis for W, which proves 2. !

Example 6.2.15: Suppose V = Span {[1, 2], [2, 1]}. Clearly V is a subspace of R2. However,
the set {[1, 2], [2, 1]} is linearly independent, so dim V = 2. Since dimR2 = 2, 1 shows that
V = R2.

Example 6.2.16: In Example 6.2.4 (Page 335), we considered the set
S = {[−0.6,−2.1,−3.5,−2.2],
[−1.3, 1.5,−0.9,−0.5], [4.9,−3.7, 0.5,−0.3], [2.6,−3.5,−1.2,−2.0], [−1.5,−2.5,−3.5, 0.94]}. We
observed that, because |S| = 5, we know dim Span S ≤ 5. We can say more. Since every vector
in S is a 4-vector, Span S is a subspace of R4, so dim Span S ≤ 4.

Using the argument in Example 6.2.16 (Page 340), we can obtain the following:

Proposition 6.2.17: Any set of D-vectors has rank at most |D|.

6.2.7 The Grow algorithm terminates

In Section 5.6.3, I pointed out that the Grow algorithm almost shows that every vector space has
a basis—but we had not yet shown that the algorithm terminates. We can now do that, using
the Dimension Principle.

Recall the Grow algorithm from Section 5.3.1:

def Grow(V)
S = ∅
repeat while possible:

find a vector v in V that is not in Span S, and put it in S.

Lemma 6.2.18 (Grow Algorithm Termination Lemma): If dim V is finite thenGrow(V)
terminates.
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Proof

In each iteration, a new vector is added to S. Therefore after k iterations, |S| equals k. The
Grow-Algorithm Corollary (Corollary 5.5.10) ensures that, at each point in the execution
of the algorithm, the set S is linearly independent, so after k iterations, rank S = k. Every
vector added to S belongs to V so Span S is a subspace of V. Suppose dim V is a finite
number. Then after dim V iterations, dimSpan S = dimV so, by Property D2 of the
Dimension Principle, Span S = V. Therefore, the algorithm must terminate. At this point,
S is a basis for V. !

How can we be sure that dim V is a finite number? Suppose V is a vector space consisting of
D-vectors over a field F, where D is a finite set. Then V is a subspace of FD, so, by Property D1
of the Dimension Principle, dim V ≤ |D|. We therefore obtain:

Corollary 6.2.19: For finite D, any subspace of FD has a basis.

In this book, we only consider D-vectors where D is a finite set. As mentioned in Section 5.6.3,
in the wider world of mathematics, one must on occasion consider D-vectors where D is an infinite
set. For such vectors, the notion of dimension is more complicated and we do not consider it in
this book, except to mention without proof that, even for such vectors, every vector space has a
basis (albeit possibly one of infinite size).

6.2.8 The Rank Theorem

We observed earlier that, in a couple of examples, the row rank happen to be equal to the column
rank. Here we show that this was not a coincidence.

Theorem 6.2.20 (Rank Theorem): For any matrix, the row rank equals the column rank.

Proof

We show that, for any matrix A, the row rank of A is less than or equal to the column rank
of A. Applying the same argument to AT proves that the row rank of AT is less than or
equal to the column rank of AT , i.e. that the column rank of A is less than or equal to to
the row rank of A. Putting these two inequalities together shows that the row rank of A
equals the column rank of A.

Let A be a matrix. Write A in terms of its columns: A =

⎡

⎢
⎢
⎢
⎢
⎣

a1 · · · an

⎤

⎥
⎥
⎥
⎥
⎦

. Let r be

the column rank of A, and let b1, . . . , br be a basis for the column space of A.
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For each column aj of A, let uj be the coordinate representation of aj in terms of
b1, . . . , br. Then by the linear-combinations definition of matrix-vector multiplication,

⎡

⎣ aj

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

b1 · · · br

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎣ uj

⎤

⎦

By the matrix-vector definition of matrix-matrix multiplication, therefore,

⎡

⎢
⎢
⎢
⎢
⎣

a1 · · · an

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

b1 · · · br

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

u1 · · · un

⎤

⎥
⎥
⎥
⎥
⎦

which we write as
A = BU

Note that B has r columns and U has r rows.
Now we switch interpretations, and interpret A and B as consisting of rows instead of

columns: ⎡

⎢
⎣

ā1

...
ām

⎤

⎥
⎦ =

⎡

⎢
⎣

b̄1
...

b̄m

⎤

⎥
⎦U

By the vector-matrix definition of matrix-matrix multiplication, row i of A, āi, is the product
of row i of B, b̄i, times the matrix U :

⎡

⎣ āi

⎤

⎦ =

⎡

⎣ b̄i

⎤

⎦

⎡

⎣ U

⎤

⎦

By the linear-combinations definition of vector-matrix multiplication, therefore, every row
of A is some linear combination of the rows of U . Therefore the row space of A is a subspace
of the row space of U . By Proposition 6.2.8, the dimension of the row space of U is at most
r, the number of rows of U . Therefore, by Property D1 of the Dimension Principle, the row
rank of A is at most r.

We have shown that, for any matrix A, the row rank of A is at most the column rank of
A. For any matrix M , applying this result to M shows that

row rank of M ≤ column rank of M
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Applying the result to MT shows that

row rank of MT ≤ column rank of MT

which means
column rank ofM ≤ row rank of M

This shows that the row rank of M equals the column rank of M . !

Definition 6.2.21: We define the rank of a matrix to be its column rank, which is also equal
to its row rank.

6.2.9 Simple authentication revisited

Recall the simple authentication scheme of Section 2.9.6. The password is an n-vector x̂ over
GF (2). The computer issues challenges to the human and the human responds:

• Challenge: Computer sends random n-vector a.

• Response: Human sends back a · x̂.

until the computer is convinced that the human knows the password x̂.
Suppose Eve eavesdrops on the communication, and learns m pairs a1, b1, . . . ,am, bm such

that bi is the right response to challenge ai. We saw in Section 2.9.9 that Eve can calculate the
right response to any challenge in Span {a1, . . . ,am}:

Indeed, let a = α1 a1 + · · · + αm am. Then the right response is α1b1 + · · · + αmbm
Using probability theory, it is possible to show:

Fact 6.2.22: Probably rank [a1, . . . ,am] is not much less than min{m, n}.

You can try this for yourself using Python. Set n = 100, say, and generate some number m
of random n-vectors over GF (2).

>>> from vec import Vec
>>> from random import randint
>>> from GF2 import one
>>> def rand_GF2(): return one if randint(0,1)==1 else 0
>>> def rand_GF2_vec(D): return Vec(D, {d:rand_GF2() for d in D})
>>> D = set(range(100))

We provide a procedure rank(L) in the module independence.

>>> L = [rand_GF2_vec(D) for i in range(50)]
>>> from independence import rank
>>> rank(L)
50
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Once m > n, probably Span {a1, . . . ,am} is all of GF (2)n

so Eve can respond to any challenge.

Also, the password x̂ is a solution to the linear system

⎡

⎢
⎣

a1

...
am

⎤

⎥
⎦

︸ ︷︷ ︸

A

⎡

⎣ x

⎤

⎦ =

⎡

⎢
⎣

b1
...

bm

⎤

⎥
⎦

︸ ︷︷ ︸

b

The solution set of Ax = b is x̂ + Null A.
Once rank A reaches n, the columns of A are linearly independent so Null A is trivial. This

implies that the only solution is the password x̂, which means Eve can compute the password by
using solver.

6.3 Direct sum

We are familiar with the idea of adding vectors—now we learn about adding vector spaces. The
ideas presented here will be useful in proving a crucial theorem in the next section—the Kernel-
Image Theorem—and also prepare the way for a concept to be presented a couple of chapters
hence: orthogonal complement.

6.3.1 Definition

Let U and V be two vector spaces consisting of D-vectors over a field F.

Definition 6.3.1: If U and V share only the zero vector then we define the direct sum of U
and V to be the set

{u + v : u ∈ U , v ∈ V}

written U ⊕ V

That is, U ⊕ V is the set of all sums of a vector in U and a vector in V.
In Python, we can compute the list of vectors comprising the direct sum of U and V as follows:

>>> {u+v for u in U for v in V}

Recall that the Cartesian product of U and V is written [(u,v) for u in U for v in V] (except
that the Python computes a list, not a set). This shows that the direct sum is similar to a
Cartesian product—you add the two vectors instead of turning them into a tuple.

What if U and V share a nonzero vector? In that case, it is considered an error to form their
direct sum!

Here is an example using vectors over GF (2).

Example 6.3.2: Let U = Span {1000, 0100} and let V = Span {0010}.

• Every nonzero vector in U has a one in the first or second position (or both) and nowhere
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else.

• Every nonzero vector in V has a one in the third position and nowhere else.

Therefore the only vector in both U and V is the zero vector. Therefore U ⊕ V is defined
U⊕V = {0000+0000, 1000+0000, 0100+0000, 1100+0000, 0000+0010, 1000+0010, 0100+

0010, 1100 + 0010}

which is equal to {0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110}.

A a couple of examples using vectors over R:

Example 6.3.3: Let U = Span {[1, 2, 1, 2], [3, 0, 0, 4]} and let V be the null space of

[

0 1 −2 0
1 0 0 −1

]

.

• The vector [2,−2,−1, 2] is in U because it is [3, 0, 0, 4] − [1, 2, 1, 2]

• It is also in V because

[

0 1 −2 0
1 0 0 −1

]

⎡

⎢
⎢
⎣

2
−2
−1
2

⎤

⎥
⎥
⎦

=

[

0
0

]

Therefore we cannot form V ⊕ W .

Example 6.3.4: Let U = Span {[4,−1, 1]}, and let V = Span {[0, 1, 1]}. Each of U and V is
the span of a single vector, and so forms a line:

The only intersection is at the origin, so U ⊕ V is defined. It is is just Span {[4,−1, 1], [0, 1, 1]},
which we know is the plane containing the two lines.
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Proposition 6.3.5: The direct sum U ⊕ V is a vector space.

The proof is left as an exercise.

6.3.2 Generators for the direct sum

In Example 6.3.4 (Page 345), one set of generators for the direct sum U ⊕V is obtained by taking
the union of a set of generators for U and a set of generators for V. This is true generally:

Lemma 6.3.6: The union of

• a set of generators of V, and

• a set of generators of W

is a set of generators for V ⊕ W.

Proof

Suppose V = Span {v1, . . . ,vm} and W = Span {w1, . . . ,wn}.
Then

• every vector in V can be written as α1 v1 + · · · + αm vm, and

• every vector in W can be written as β1 w1 + · · · + βn wn

so every vector in V ⊕ W can be written as

α1 v1 + · · · + αm vm + β1 w1 + · · · + βn wn

!

Example 6.3.7: Let U be the set of points in R3 comprising a plane that contains the origin,
and let V be the set of points comprising a line that contains the origin:

As long as the line is not in the plane, their intersection consists just of the origin, so their direct
sum is defined, and consists of all of R3.

6.3.3 Basis for the direct sum
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Lemma 6.3.8 (Direct Sum Basis Lemma): The union of a basis of U and a basis of V is
a basis of U ⊕ V.

Proof

Let {u1, . . . ,um} be a basis for U . Let {v1, . . . ,vn} be a basis for V. Since a basis is a set of
generators, we already know from the previous lemma that {u1, . . . ,um,v1, . . . ,vn} is a set
of generators for U ⊕ V. To show it is a basis, we need only show is is linearly independent.

Suppose
0 = α1 u1 + · · · + αmum + β1 v1 + · · · + βn vn (6.1)

Then
α1 u1 + · · · + αm um
︸ ︷︷ ︸

in U

= (−β1) v1 + · · · + (−βn) vn
︸ ︷︷ ︸

in V

The left-hand side is a vector in U , and the right-hand side is a vector in V.
By definition of U ⊕ V, the only vector in both U and V is the zero vector. This shows:

0 = α1 u1 + · · · + αm um

and
0 = (−β1) v1 + · · · + (−βn) vn

By linear independence, the linear combinations must be trivial, so the original linear com-
bination in Equation 6.1 must also be trivial. This completes the proof that the union of
bases is linearly independent. !

The definition of basis gives us an immediate corollary, which will be used in the proof of the
Kernel-Image Theorem.

Corollary 6.3.9 (Direct-Sum Dimension Corollary): dim U + dim V = dimU ⊕ V

6.3.4 Unique decomposition of a vector

By definition, U ⊕ V = {u + v : u ∈ U ,v ∈ V}. Can the same vector occur in two different
ways as the sum of a vector in U and a vector in V?

We next see that the answer is no. If I obtain w by adding a vector u in U and a vector v in
V and give you w, you can figure out from w exactly which u and v I started with.

Corollary 6.3.10 (Direct-Sum Unique Representation Corollary): Any vector in U⊕
V has a unique representation as u + v where u ∈ U ,v ∈ V.
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Proof

Let {u1, . . . ,um} be a basis for U . Let {v1, . . . ,vn} be a basis for V.
Then {u1, . . . ,um,v1, . . . ,vn} is a basis for U ⊕ V .

Let w be any vector in U ⊕ V. Write w as

w = α1 u1 + · · · + αm um
︸ ︷︷ ︸

in U

+β1 v1 + · · · + βn vn
︸ ︷︷ ︸

in V

(6.2)

Consider any way of writing w as w = u + v where u is in U and v is in V. Writing u in
terms of the basis of U and writing v in terms of the basis of V, we have

w = γ1 u1 + · · · + γm um + δ1 v1 + · · · + δn vn

By the Unique-Representation Lemma, γ1 = α1, . . . , γm = αm, δ1 = β1, . . . , δn = βn, which
shows that Equation 6.2 specifies the unique way in which w can be written as a sum of a
vector in U and a vector in V. !

6.3.5 Complementary subspaces

Definition 6.3.11: If U ⊕ V = W, we say that U and V are complementary subspaces of W.

Example 6.3.12: Suppose U is a plane in R3:

Then U and any line through the origin that does not lie in U are complementary subspaces of
R3, e.g.:
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or, alternatively,

The example illustrates that, for a given subspace U of W, there can be many different subspaces
V such that U and V are complementary.

Problem 6.3.13: In each part, give a set T of vectors over R such that (Span S)⊕(Span T ) =
R3, and show how to express a generic vector [x, y, z] as a linear combination of the vectors in
S ∪ T .

1. S = {[2, 1, 2], [1, 1, 1]}

2. S = {[0, 1,−1], [0, 0, 0]}

Hint: To express [x, y, z], you might first try to express the standard basis vectors in terms of
S ∪ T .

Problem 6.3.14: In each part, give a set T of vectors over GF (2) such that (Span S) ⊕
(Span T ) = GF (2)3, and show how to express a generic vector [x, y, z] as a linear combination
of the vectors in S ∪ T .

1. S = {[1, 1, 0], [0, 1, 1]}

2. S = {[1, 1, 1]}

Hint: To express [x, y, z], you might first try to express the standard basis vectors in terms of
S ∪ T .
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Proposition 6.3.15: For any vector space W and any subspace U of W, there is a subspace
V of W such that W = U ⊕ V.

Proof

Let u1, . . . ,uk be a basis for U . By the Superset-Basis Lemma (Lemma 6.2.13), there is
a basis for W that includes u1, . . . ,uk. Write this basis as {u1, . . . ,uk,v1, . . . ,vr}. Let
V = Span {v1, . . . ,vr}. Any vector w in W can be written in terms of its basis,

w = α1 u1 + · · · + αk uk
︸ ︷︷ ︸

in U

+β1 v1 + · · · + βr vr
︸ ︷︷ ︸

in V

so we will have shown that W = U ⊕ V if we can only show that the direct sum is legal, i.e.
that the only vector in both U and V is the zero vector.

Suppose some vector v belongs to both U and V. That is,

α1 u1 + · · · + αk uk = β1 v1 + · · · + βr vr

Then
0 = α1 u1 + · · · + αk uk − β1 v1 − · · · − βr vr

which implies that α1 = · · · = αk = β1 = · · · = βr = 0, which shows that v is the zero
vector. !

6.4 Dimension and linear functions

We will develop a criterion for whether a linear function is invertible. That in turn will provide
a criterion for whether a matrix is invertible. These criteria will build on an important theorem,
the Kernel-Image Theorem, that will also help us answer other questions.

6.4.1 Linear function invertibility

How can we tell if a linear function f : V −→ W is invertible? We need to know (i) whether f is
one-to-one and (ii) whether it is onto.

By the One-to-One Lemma (Lemma 4.10.15), we know that f is one-to-one iff its kernel is
trivial. We asked in Question 4.10.16 if there is a similarly nice criterion for whether a linear
function is onto.

Recall that the image of f is Im f = {f(v) : v ∈ V}. Thus f is onto iff Im f = W.
We can show that Im f is a supspace of W. By the Dimension Principle (Lemma 6.2.14),

therefore, f is onto iff dim Im f = dim W.
We can conclude: a linear function f : U −→ W is invertible if dim Ker f = 0 and dim Im f =

dim W .
How does this relate to the dimension of the domain? You might think that, for f to be

invertible, we would need dim U = dim W . You would be right. We will obtain this as a result
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of a more powerful and useful theorem.

6.4.2 The largest invertible subfunction

Let f : V −→ W be a linear function that is not necessarily invertible.

V W

Let’s try to define a subfunction f∗ : V∗ −→ W∗ that is invertible.
By “subfunction”, I mean that V∗ is a subset of V, W∗ is a subset of W, and f∗ agrees with

f on all elements of V∗. Along the way, we will also select a basis for V∗ and a basis for W∗.
First, we choose W∗ so as to ensure that f∗ is onto. This step is easy: we define W∗ to be

the image of f , i.e. the elements of W that are images of domain elements. Let w1, . . . ,wr be a
basis for W∗.

V W

Next, let v1, . . . ,vr be pre-images of w1, . . . ,wr. That is, select any vectors v1, . . . ,vr in V such
that f(v1) = w1, . . . , f(vr) = wr. Now define V∗ to be Span {v1, . . . ,vr}.

V W

We now define f∗ : V∗ −→ W∗ by the rule f∗(x) = f(x).
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Lemma 6.4.1: f∗ is onto.

Proof

Let w be any vector in co-domain W∗. There are scalars α1, . . . ,αr such that

w = α1 w1 + · · · + αr wr

Because f is linear,

f(α1 v1 + · · · + αr vr)

= α1 f(v1) + · · · + αr f(vr)

= α1 w1 + · · · + αr wr

so w is the image of α1 v1 + · · · + αr vr ∈ V∗ !

Lemma 6.4.2: f∗ is one-to-one

Proof

By the One-to-One Lemma, we need only show that the kernel of f∗ is trivial. Suppose v∗

is in V∗ and f(v∗) = 0. Because V∗ = Span {v1, . . . ,vr}, there are scalars α1, . . . ,αr such
that

v∗ = α1 v1 + · · · + αr vr

Applying f to both sides,

0 = f(α1 v1 + · · · + αr vr)

= α1 w1 + · · · + αr wr

Because w1, . . . ,wr are linearly independent, α1 = · · · = αr = 0, so v∗ = 0. !

Lemma 6.4.3: v1, . . . ,vr form a basis for V∗

Proof

Since V∗ is defined to be the span of v1, . . . ,vr, we need only show that these vectors are
linearly independent.
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Suppose
0 = α1 v1 + · · · + αr vr

Applying f to both sides,

0 = f(α1 v1 + · · · + αr vr)

= α1 w1 + · · · + αr wr

Because w1, . . . ,wr are linearly independent, we infer α1 = · · · = αr = 0. !

Example 6.4.4: Let A =

⎡

⎣

1 2 1
2 1 1
1 2 1

⎤

⎦, and define f : R3 −→ R3 by f(x) = Ax.

Define W∗ = Im f = Col A = Span {[1, 2, 1], [2, 1, 2], [1, 1, 1]}. One basis for W∗ is
w1 = [0, 1, 0], w2 = [1, 0, 1]

Now we select pre-images for w1 and w2. We select

v1 =

[
1

2
,−1

2
,
1

2

]

v2 =

[

−1

2
,
1

2
,
1

2

]

for then Av1 = w1 and Av2 = w2.
Let V∗ = Span {v1,v2}. Then the function f∗ : V∗ −→ Im f defined by f∗(x) = f(x) is

onto and one-to-one.

6.4.3 The Kernel-Image Theorem

The construction of an invertible subfunction f∗ : V∗ −→ W∗ from a linear function f allows us
to relate the domain of the subfunction to the kernel of the original linear function f :

Lemma 6.4.5: V = Ker f ⊕ V∗

Proof

We must prove two things:

1. Ker f and V∗ share only zero vector, and

2. every vector in V is the sum of a vector in Ker f and a vector in V∗

We already showed kernel of f∗ is trivial. This shows that the only vector of Ker f in
V∗ is zero, which proves 1.
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Let v be any vector in V, and let w = f(v). Since f∗ is onto, its domain V∗ contains
a vector v∗ such that f(v∗) = w. Therefore f(v) = f(v∗), so f(v) − f(v∗) = 0, so
f(v − v∗) = 0. Thus u = v − v∗ is in Ker f , and v = u + v∗. This proves 2. !

Example 6.4.6: Following up on Example 6.4.4 (Page 353), let A =

⎡

⎣

1 2 1
2 1 1
1 2 1

⎤

⎦, and define

f : R3 −→ R3 by f(x) = Ax. Recall that the basis for V∗ consists of v1 = [ 12 ,− 1
2 , 1

2 ] and
v2 = [− 1

2 , 1
2 , 1

2 ].
The kernel of f is Span {[1, 1,−3]}. Therefore V = (Span {[1, 1,−3]}) ⊕ (Span {v1,v2})

Now at last we state and prove the Kernel-Image Theorem:

Theorem 6.4.7 (Kernel-Image Theorem): For any linear function f : V → W ,

dimKer f + dim Im f = dimV

Proof

Lemma 6.4.5 shows that V = Ker f ⊕ V∗. By the Direct-Sum Dimension Corollary,

dim V = dimKer f + dim V∗

Since v1, . . . ,vr form a basis for V∗, and the number r of these vectors equals the cardinality
of a basis for Im f ,

dim V∗ = r = dim Im f

This proves the theorem. !

6.4.4 Linear function invertibility, revisited

Now we can give a more appealing criterion for linear function invertibility.

Theorem 6.4.8 (Linear-Function Invertibility Theorem): Let f : V −→ W be a linear
function. Then f is invertible if and only if dimKer f = 0 and dim V = dimW.

Proof

We saw in Section 6.4.1 that f is invertible if and only if dimKer f = 0 and dim Im f =
dim W. By the Kernel-Image Theorem, dim Ker f = 0 and dim Im f = dim W if and only
if dim Ker f = 0 and dim V = dim W. !
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6.4.5 The Rank-Nullity Theorem

For an R×C matrix A, define f : FC −→ FR by f(x) = Ax. The Kernel-Image Theorem states
that dimFC = dim Ker f + dim Im f . The kernel of f is just the null space of A, and, by the
linear-combinations definition of matrix-vector multiplication, the image of f is the column space
of A, so we obtain

dimFC = dimNull A + dim Col A

Continuing, the dimension of FC is just |C|, the number of columns of A, and the dimension
of the column space of A is called the rank of A. Finally, the dimension of the null space of a
matrix A is called the nullity of A. We therefore obtain:

Theorem 6.4.9 (Rank-Nullity Theorem): For any n-column matrix A,

rank A + nullity A = n

6.4.6 Checksum problem revisited

Recall our toy checksum function maps n-vectors over GF (2) to 64-vectors over GF (2):

x )→ [a1 · x, . . . ,a64 · x]

We represent the original “file” by an n-vector p, and we represent the transmission error by an
n-vector e, so the corrupted file is p + e.

If the error is chosen according to the uniform distribution,

Probability (p + e has same checksum as p) =
2dimV

2n

where V is the null space of the matrix

A =

⎡

⎢
⎣

a1

...
a64

⎤

⎥
⎦

Suppose each of the vectors a1, . . . ,a64 defining the checksum function is chosen according
to the uniform distribution. Fact 6.2.22 tells us that (assuming n > 64) probably rank A = 64.

By the Rank-Nullity Theorem,

rank A + nullity A = n
64 + dim V = n

dim V = n − 64

Therefore

Probability =
2n−64

2n
=

1

264

Thus there is only a very tiny chance that the change is undetected.
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6.4.7 Matrix invertibility

Question 4.13.20 asks for necessary and sufficient conditions for A to be invertible.

Corollary 6.4.10: Let A be an R × C matrix. Then A is invertible if and only if |R| = |C|
and the columns of A are linearly independent.

Proof

Let F be the field. Define f : FC −→ FR by f(x) = Ax. Then A is an invertible matrix if
and only if f is an invertible function.

By Theorem 6.4.8, f is invertible iff dim Ker f = 0 and dimFC = dimFR, iff dimNull A =
0 and |C| = |R|. Moreover, dim Null A = 0 iff the only linear combination of the columns
that equals the zero vector is the trivial linear combination, i.e. if the columns are linearly
independent. !

Corollary 6.4.11: The transpose of an invertible matrix is invertible.

Proof

Suppose A is an invertible matrix. Then A is square and its columns are linearly independent.
Let n be the number of columns. Write

A =

⎡

⎣ v1 · · · vn

⎤

⎦ =

⎡

⎢
⎣

a1

...
an

⎤

⎥
⎦

and

AT =

⎡

⎣ a1 · · · an

⎤

⎦

Because the columns of A are linearly independent, the rank of A is n. Because A is square,
it has n rows. By the Rank Theorem, the row rank of A is n, so its rows are linearly
independent.

The columns of the transpose AT are the rows of A, so the columns of AT are linearly
independent. Since AT is square and its columns are linearly independent, we infer from
Corollary 6.4.10 that AT is invertible. !

Lemma 4.13.11 showed that if A has an inverse A−1 then AA−1 is an identity matrix. We
saw in Example 4.13.18 (Page 246) that the converse was not always true: there are matrices A
and B such that AB is an identity matrix but A and B are not inverses of each other. Now we
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know the missing ingredient: the matrices need to be square.

Corollary 6.4.12: Suppose A and B are square matrices such that BA is the identity matrix.
Then A and B are inverses of each other.

Proof

Suppose A is an R × C matrix. We then require that B is a C × R matrix. It follows that
BA is the the C × C identity matrix, IC .

We first show that the columns of A are linearly independent. Let u be any vector such
that Au = 0. Then B(Au) = B0 = 0. On the other hand, (BA)u = ICu = u, so u = 0.

By Corollary 6.4.10, A is invertible. We denote its inverse by A−1. By Lemma 4.13.11,
AA−1 is the R × R identity matrix, 1R.

BA = IC

BAA−1 = 1RA−1 by multiplying on the right by A−1

BAA−1 = A−1

BIR = A−1 by Lemma 4.13.11

B = A−1

!

Example 6.4.13:

[

1 2 3
4 5 6

]

is not square so cannot be invertible.

Example 6.4.14:

[

1 2
3 4

]

is square and its columns are linearly independent so it is invertible.

Example 6.4.15:

⎡

⎣

1 1 2
2 1 3
3 1 4

⎤

⎦ is square but its columns are not linearly independent so it is

not invertible

6.4.8 Matrix invertibility and change of basis

We saw in Section 5.8 that, for basis a1, . . . ,an and a basis b1, . . . , bm of the same space, there is
an m×n matrix C such that multiplication by C converts from a vector’s coordinate representa-
tion in terms of a1, . . . ,an to the same vector’s coordinate representation in terms of b1, . . . , bm.
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We saw that the matrix C is invertible.
Now we know that the two bases must have the same size, so in fact C is a square matrix, as

is required by Corollary 6.4.10.

6.5 The annihilator

We saw in Section 3.3.3 that two representations of a vector space

• as the span of a finite set of vectors, and

• as the solution set of a homogeneous linear system

were each useful. We saw in Section 3.5.5 that the analogous representations of an affine space

• as the affine hull of a finite set of vectors, and

• as the solution set of a linear system

were similarly each quite useful. For these different representations to fulfill their computa-
tional potential, it is essential that we have computational methods for converting between these
representations.

6.5.1 Conversions between representations

It would seem that we would need computational methods for four different Conversion Problems:

Conversion Problem 1: Given a homogeneous linear system Ax = 0, find vectors w1, . . . ,wk

whose span is the solution set of the system.

Conversion Problem 2: Given vectors w1, . . . ,wk, find a homogeneous linear system Ax = 0
whose solution set equals Span {w1, . . . ,wk}.

Conversion Problem 3: Given a linear system Ax = b, find vectors u1, . . . ,uk whose affine hull
is the solution set of the system (if the solution set is nonempty).

Conversion Problem 4: Given vectors w1, . . . ,wk, find a linear system Ax = 0 whose solution
set equals the affine hull of {w1, . . . ,wk}.

Conversion Problem 1 can be restated thus:

Given a matrix A, find generators for the null space of A.

This is precisely Computational Problem 5.10.2 as described in Section 5.10. We will give algo-
rithms for this problem in Chapters 7 and 9. It turns out, in fact, that using any algorithm for
Conversion Problem 1 as a subroutine, we can also solve Conversion Problems 2 through 4.

First, consider Conversion Problem 2. It turns out that this problem can be solved by an
algorithm for Conversion Problem 1. The solution is quite suprising and elegant. In the next
section, we develop the math underlying it.
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Next, consider Conversion Problem 3. Given a linear system Ax = b, we can find a solution
u1 (if one exists) using a method for solving a matrix-vector equation (such as that provided
by the solver module. Next, use the algorithm for Conversion Problem 1 to obtain generators
w1, . . . ,wk for the solution set of the corresponding homogeneous linear system Ax = 0. As we
saw in Section 3.5.3, the solution set of Ax = b is then

u1 + Span {w1, . . . ,wk}

which is in turn the affine hull of u1,w1 − u1, . . . ,wk − uk.
Finally, consider Conversion Problem 4. The goal is to represent the affine hull of w1, . . . ,wk

as the solution set of a linear system. As we saw in Section 3.5.3, this affine hull equals

w1 + Span {w2 −w1, . . . ,wk −w1}

Use the algorithm for Conversion Problem 2 to find a homogeneous linear system Ax = 0 whose
solution set is Span {w2−w1, . . . ,wk−w1}. Let b = Aw1. This ensures that w1 is one solution
to the matrix-vector equation Ax = b, and Lemma 3.6.1 ensures that the solution set is

w1 + Span {w2 −w1, . . . ,wk −w1}

which is the affine hull of w1, . . . ,wk.

Example 6.5.1: We are given the plane {[x, y, z] ∈ R3 : [4,−1, 1] · [x, y, z] = 0}.

An algorithm for Conversion Problem 1 would tell us that this plane can also be written as
Span {[1, 2,−2], [0, 1, 1]}.

Example 6.5.2: We are given the line {[x, y, z] ∈ R3 : [1, 2,−2] · [x, y, z] = 0, [0, 1, 1] ·
[x, y, z] = 0}.
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An algorithm for Conversion Problem 1 would tell us that this line can also be written as
Span {[4,−1, 1]}.

Example 6.5.3: We are given the plane Span {[1, 2,−2], [0, 1, 1]}. An algorithm for Con-
version Problem 2 would tell us that this plane can also be written as {[x, y, z] ∈ R3 :
[4,−1, 1] · [x, y, z] = 0}.

Example 6.5.4: We are given the line Span {[4,−1, 1]}. An algorithm for Conversion Prob-
lem 2 would tell us that this line can also be written as {[x, y, z] ∈ R3 : [1, 2,−2] · [x, y, z] =
0, [0, 1, 1] · [x, y, z] = 0}.

Conversion Problems 1 and 2 are clearly inverses of each other. This is illustrated by the fact
that Example 6.5.4 (Page 360) is in a sense the inverse of Example 6.5.2 (Page 359) and that
Example 6.5.3 (Page 360) is the inverse of Example 6.5.4 (Page 360).

However, the observant reader might notice something else, something tantalizing. In Ex-
amples 6.5.1 and 6.5.3, the plane is specified either as the solution set of a homogeneous linear
system consisting of the equation [4,−1, 1] · [x, y, z] = 0 or as the span of [1, 2,−2] and [0, 1, 1].
In Examples 6.5.2 and 6.5.4, the same vectors play opposite roles: the line is specified either as
the solution set of a homogeneous linear system [1, 2,−2] · [x, y, z] = 0, [0, 1, 1] · [x, y, z] = 0 or as
Span {[4,−1, 1]}. In Section 6.5.2, we will start to learn what is going on here.

Example 6.5.5: A line is given as {[x, y, z] ∈ R3 : [5, 2, 4] · [x, y, z] = 13, [0, 2,−1] · [x, y, z] =
3}.

An algorithm for Conversion Problem 3 would tell us that the line is the affine hull of [3, 1,−1]
and [1, 2, 1]



CHAPTER 6. DIMENSION 361

Example 6.5.6: In Section 3.5.5, we illustrated the use of multiple representations by showing
how to find the intersection of a ray with a triangle. One key step is: given the vertices of a
triangle, find the equation for the plane containing this triangle. The vertices are [1, 1, 1], [2, 2, 3],
and [−1, 3, 0].

The plane containing the triangle is the affine hull of the vertices. An algorithm for Conversion
Problem 4 would tell us that the plane is the solution set of [5, 3,−4] · [x, y, z] = 4.

6.5.2 The annihilator of a vector space

Now we develop the mathematical ideas that permit an algorithm for Conversion Problem 1 to
be used for Conversion Problem 2.

Definition 6.5.7: For a subspace V of Fn, the annihilator of V, written Vo, is

Vo = {u ∈ Fn : u · v = 0 for every vector v ∈ V}

Conversion Problem 1 concerns finding generators for the null space of a matrix. What does
the annihilator of a vector space have to do with null space?

Lemma 6.5.8: Let a1, . . . ,am be generators for V, and let

A =

⎡

⎢
⎣

a1

...
am

⎤

⎥
⎦

Then Vo = Null A.
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Proof

Let v be a vector in Fn. Then

v is in Null A if and only if a1 · v = 0, . . . ,am · v = 0
if and only if a · v = 0 for every vector a ∈ Span {a1, . . . ,am}
if and only if v is in Vo

!

Example 6.5.9 (Example over R): Let V = Span {[1, 0, 1], [0, 1, 0]}. I show that Vo =
Span {[1, 0,−1]}:

• Note that [1, 0,−1] · [1, 0, 1] = 0 and [1, 0,−1] · [0, 1, 0] = 0.

Therefore [1, 0,−1] · v = 0 for every vector v in Span {[1, 0, 1], [0, 1, 0]}.

• For any scalar β,
β [1, 0,−1] · v = β ([1, 0,−1] · v) = 0

for every vector v in Span {[1, 0, 1], [0, 1, 0]}.

• Which vectors u satisfy u · v = 0 for every vector v in Span {[1, 0, 1], [0, 1, 0]}? Only
scalar multiples of [1, 0,−1].

Note that in this case dim V = 2 and dim Vo = 1, so

dim V + dim Vo = 3

Example 6.5.10 (Example over GF (2)): Let V = Span {[1, 0, 1], [0, 1, 0]}. I show that
Vo = Span {[1, 0, 1]}:

• Note that [1, 0, 1] · [1, 0, 1] = 0 (remember, GF (2) addition) and [1, 0, 1] · [0, 1, 0] = 0.

• Therefore [1, 0, 1] · v = 0 for every vector v in Span {[1, 0, 1], [0, 1, 0]}.

• Of course [0, 0, 0] · v = 0 for every vector v in Span {[1, 0, 1], [0, 1, 0]}.

• [1, 0, 1] and [0, 0, 0] are the only such vectors.

Note that in this case again dim V = 2 and dim Vo = 1 so

dim V + dim Vo = 3

Example 6.5.11 (Example over R): Let V = Span {[1, 0, 1, 0], [0, 1, 0, 1]}. One can show
that Vo = Span {[1, 0,−1, 0], [0, 1, 0,−1]}. Note that in this case, dim V = 2 and dim Vo = 2,
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so
dim V + dim Vo = 4

Remark 6.5.12: In the traditional, abstract approach to linear algebra, alluded to in Sec-
tion 3.4.4, the annihilator is defined differently, but in a way that is consistent with our definition.

6.5.3 The Annihilator Dimension Theorem

It is not a coincidence that, in each of the above examples, the sum of the dimension of V and
that of its annihilator equals the dimension of the underlying space.

Theorem 6.5.13 (Annihilator Dimension Theorem): If V and Vo are subspaces of Fn

then
dim V + dim Vo = n

Proof

Let A be a matrix whose row space is V. By Lemma 6.5.8, Vo = Null A. The Rank-Nullity
Theorem states that rank A + nullity A = n, which implies dimV + dim Vo = n. !

Example 6.5.14: Let’s find a basis for the null space of A =

⎡

⎣

1 0 2 4
0 5 1 2
0 2 5 6

⎤

⎦ Let V =

Row A. By Lemma 6.5.8, the null space of A is the annihilator Vo. Since the three rows of A
are linearly independent, we know dimRow A is 3, so, by the Annihilator Dimension Theorem,
dim Vo is 4− 3, which is 1. The vector [1, 1

10 , 13
20 , −23

40 ] has a dot-product of zero with every row
of A, so this vector forms a basis for the annihilator, and thus a basis for the null space of A.

6.5.4 From generators for V to generators for Vo, and vice versa

Lemma 6.5.8 shows that an algorithm for finding generators for the null space of a matrix with
rows a1, . . . ,am is an algorithm for finding generators for the annihilator of Span {a1, . . . ,am}.

Let us suppose we have such an algorithm; call it Algorithm X. If we give it generators for a
vector space V, it outputs generators for the annihilator Vo:

generators for a vector space V
↓

Algorithm X
↓

generators for annihilator Vo
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What if we give it generators for the annihilator Vo? It should output generators for the annihi-
lator of the annihilator:

generators for annihilator Vo

↓
Algorithm X

↓
generators for annihilator of annihilator (Vo)o

In the next section, we learn that the annihilator of the annihilator is the original space. That
means that if we give Algorithm X generators for the annihilator Vo of V, it will output genera-
tors for the original space V:

generators for annihilator Vo

↓
Algorithm Y

↓
generators for original space V

Drawing on the connection between null space and annihilator, this means that the matrix
whose rows are the output vectors has as its null space the span of the input vectors. Thus
Algorithm X, by virtue of solving Conversion Problem 1, also solves Conversion Problem 2. The
two problems, which are apparently different, are in fact the same.

6.5.5 The Annihilator Theorem

Theorem 6.5.15 (Annihilator Theorem): (Vo)o = V (The annihilator of the annihilator
is the original space.)

Proof

Let a1, . . . ,am be a basis for V. Let b1, . . . , bk be a basis for Vo. Since b1 · v = 0 for every
vector v in V,

b1 · a1 = 0, b1 · a2 = 0, . . . , b1 · am = 0

Similarly bi · a1 = 0, bi · a2 = 0, . . . , bi · am = 0 for i = 1, 2, . . . , k.
Reorganizing,

a1 · b1 = 0,a1 · b2 = 0, . . . ,a1 · bk = 0

which implies that a1 · u = 0 for every vector u in Span {b1, . . . , bk}, which is Vo. This
shows a1 is in (Vo)o.

Similarly a2 is in (Vo)o, a3 is in (Vo)o, ..., am is in (Vo)o. Therefore every vector in
Span {a1,a2, . . . ,am} is in (V o)o.

Thus Span {a1,a2, . . . ,am}, which is V, is a subspace of (Vo)o. It remains to show that
dim V = dim(Vo)o, for then the Dimension Principle proves that V and Vo are equal.
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By the Annihilator Dimension Theorem, dim V + dim Vo = n. By the Annihilator Di-
mension Theorem applied to Vo, dim Vo + dim(Vo)o = n.

Together these equations show dim V = dim(Vo)o. !

6.6 Review questions

• Can a vector space have bases of different sizes?

• What is the rank of a set of vectors?

• What is the rank of a matrix?

• What is the difference between dimension and rank?

• How do dimension and rank apply to graphs?

• What is the Rank Theorem?

• What is the Dimension Principle?

• When can two vector spaces form a direct sum?

• How does the dimension of a direct sum of two vector spaces relate to their dimension?

• How can dimension be used in a criterion for a linear function to be invertible?

• What is the Kernel-Image Theorem?

• What is the Rank-Nullity Theorem?

• How can dimension be used to give a criterion for matrix invertibility?

• What is the annihilator of a vector space?

• What is the Annihilator Theorem?

6.7 Problems

Morphing using the Exchange Lemma

Problem 6.7.1: You will practice using the Exchange Lemma to transform one spanning forest
into another.

Consider the campus map in Figure 6.1(a). Use the Exchange Lemma for spanning trees to
transform a spanning forest F0 = {(W, K), (W,M), (P,W), (K,A)} in Figure 6.1(a), into the
spanning forest F4 = {(P,K), (P,M), (P,A), (W,A)} in Figure 6.1(b). You should draw forests
F0, F1, F2, F3 and F4 to show each step of your transformation.
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A

M
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K W

(a) Campus map with spanning forest F0.

A

M

P

K W

(b) Campus map with spanning forest F4.

For the next two problems, use the Exchange Lemma iteratively to transform a set S =
{w0,w1,w2} into a set B = {v0,v1,v2}. In each step, one vector of B is injected, and one
vector of S is ejected. Be careful to ensure that the ejection does not change the set of vectors
spanned.

You might find the following table useful in keeping track of the iterations.

Si A v to inject w to eject
i = 0 {w0,w1,w2} ∅
i = 1
i = 2
i = 3 {v0,v1,v2} {v0,v1,v2} -

You are to specify the list of vectors comprising S1 (after one iteration) and S2 (after two
iterations) in the process of transforming from {w0,w1,w2} to {v0,v1,v2}.

Problem 6.7.2: Vectors over R:

w0 = [1, 0, 0] v0 = [1, 2, 3]

w1 = [0, 1, 0] v1 = [1, 3, 3]

w2 = [0, 0, 1] v2 = [0, 3, 3]
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Problem 6.7.3: Vectors over GF (2):

w0 = [0, one, 0] v0 = [one, 0, one]

w1 = [0, 0, one] v1 = [one, 0, 0]

w2 = [one, one, one] v2 = [one, one, 0]

Problem 6.7.4: In this problem, you will write a procedure to achieve the following goal:

• input: a list S of vectors, and a list B of linearly independent vectors such that Span S =
Span B

• output: a list T of vectors that includes B and possibly some vectors of S such that

– |T | = |S|, and
– Span T = Span S

This is not useful in its own sake, and indeed there is a trivial implementation in which T is
defined to consist of the vectors in B together with enough vectors of S to make |T | = |S|. The
point of writing this procedure is to illustrate your understanding of the proof of the Morphing
Lemma. The procedure should therefore mimic that proof: T should be obtained step by step
from S by, in each iteration, injecting a vector of B and ejecting a vector of S − B using the
Exchange Lemma. The procedure must return the list of pairs (injected vector, ejected vector)
used in morphing S into T .

The procedure is to be called morph(S, B). The spec is as follows:

• input: a list S of distinct vectors, and a list B of linearly independent vectors such that
Span S = Span B

• output: a k-element list [(z1,w1), (z2,v2), . . . , (zk,wk)] of pairs of vectors such that, for
i = 1, 2, . . . , k,

Span S = Span (S ∪ {z1, z2, . . . , zi} − {w1,w2, . . . ,wi})

where k = |B|.

This procedure uses a loop. You can use the procedure exchange(S, A, z) from Prob-
lem 5.14.19 or the procedure vec2rep(veclist, u) from Problem 5.14.14 or the solver
module.

Here is an illustration of how the procedure is used.

>>> S = [list2vec(v) for v in [[2,4,0],[1,0,3],[0,4,4],[1,1,1]]]
>>> B = [list2vec(v) for v in [[1,0,0],[0,1,0],[0,0,1]]]
>>> for (z,w) in morph(S, B):
... print("injecting ", z)
... print("ejecting ", w)
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... print()

...
injecting
0 1 2
------
1 0 0
ejecting
0 1 2
------
2 4 0

injecting
0 1 2
------
0 1 0
ejecting
0 1 2
------
1 0 3

injecting
0 1 2
------
0 0 1
ejecting
0 1 2
------
0 4 4

Test your procedure with the above example. Your results need not exactly match the results
above.

Dimension and rank

Problem 6.7.5: For each of the following matrices, (a) give a basis for the row space (b) give
a basis for the column space, and (c) verify that the row rank equals the column rank. Justify
your answers.

1.

[

1 2 0
0 2 1

]

2.

⎡

⎣

1 4 0 0
0 2 2 0
0 0 1 1

⎤

⎦
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3.

⎡

⎣

1
2
3

⎤

⎦

4.

⎡

⎣

1 0
2 1
3 4

⎤

⎦

Problem 6.7.6: In this problem you will again write an independence-testing procedure. Write
and test a procedure my is independent(L) with the following spec:

• input: a list L of vectors

• output: True if the vectors form a linearly independent list.

Vectors are represented as instances of Vec. We have provided a module independence that
provides a procedure rank(L). You should use this procedure to write my is independent(L).
No loop or comprehension is needed. This is a very simple procedure.

Here is an illustration of how the procedure is used.

>>> my_is_independent([list2vec(v) for v in [[2,4,0],[8,16,4],[0,0,7]]])
False
>>> my_is_independent([list2vec(v) for v in [[2,4,0],[8,16,4]]])
True

Test your procedure with the following examples (written in Mathese, not in Python):

• [[2, 4, 0], [8, 16, 4], [0, 0, 7]] over R

• [[1, 3, 0, 0], [2, 1, 1, 0], [0, 0, 1, 0], [1, 1, 4,−1]] over R

• [[one, 0, one, 0], [0, one, 0, 0], [one, one, one, one], [one, 0, 0, one]] over GF (2)

Problem 6.7.7: Write and test a procedure my rank(L) with the following spec:

• input: a list L of Vecs

• output: The rank of L

You can use the procedure subset basis(T) from Problem 5.14.17, in which case no loop is
needed. Alternatively, you can use the procedure is independent(L) from Problem 5.14.16 or
from the module independence we provide; in this case, the procedure requires a loop.

Here is an illustration of how the procedure is used:

>>> my_rank([list2vec(v) for v in [[1,2,3],[4,5,6],[1.1,1.1,1.1]]])
2
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Test your procedure with the following examples:

• [[1, 2, 3], [4, 5, 6], [1.1, 1.1, 1.1]] over R (rank is 2)

• [[1, 3, 0, 0], [2, 0, 5, 1], [0, 0, 1, 0], [0, 0, 7,−1]] over R

• [[one, 0, one, 0], [0, one, 0, 0], [one, one, one, one], [0, 0, 0, one]] over GF (2)

Problem 6.7.8: Prove that if a vector space has dimension n then any n+1 of its vectors are
linearly dependent.

Direct sum

Problem 6.7.9: Each of the following subproblems specifies two subspaces U and V of a vector
space. For each subproblem, check whether U ∩ V = {0}.

1. Subspaces of GF (2)4: let U = Span {1010, 0010} and let V = Span {0101, 0001}.

2. Subspaces of R3: let U = Span {[1, 2, 3], [1, 2, 0]} and let V = Span {[2, 1, 3], [2, 1, 3]}.

3. Subspaces of R4: let U = Span {[2, 0, 8, 0], [1, 1, 4, 0]} and let V = Span {[2, 1, 1, 1], [0, 1, 1, 1]}

Problem 6.7.10: Proposition 6.3.5 states that the direct sum U ⊕ V is a vector space. Prove
this using the Properties V1, V2, and V3 that define vector spaces.

Direct sum unique representation

Problem 6.7.11: Write and test a procedure direct sum decompose(U basis, V basis,
w) with the following spec:

• input: A list U basis containing a basis for a vector space U , a list V basis containing a
basis for a vector space V, and a vector w that belongs to the direct sum U ⊕ V

• output: a pair (u,v) such that w = u + v and u belongs to U and v belongs to V.

All vectors are represented as instances of Vec. Your procedure should use the fact that a basis of
U joined with a basis of V is a basis for U ⊕V. It should use the solver module or the procedure
vec2rep(veclist, u) from Problem 5.14.14.

Over R: Given U basis = {[2, 1, 0, 0, 6, 0], [11, 5, 0, 0, 1, 0], [3, 1.5, 0, 0, 7.5, 0]},
V basis = {[0, 0, 7, 0, 0, 1], [0, 0, 15, 0, 0, 2]}, test your procedure with each of the following
vectors w:

1. w = [2, 5, 0, 0, 1, 0]
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2. w = [0, 0, 3, 0, 0,−4]

3. w = [1, 2, 0, 0, 2, 1]

4. w = [−6, 2, 4, 0, 4, 5]

Over GF (2): Given U basis = {[one, one, 0, one, 0, one], [one, one, 0, 0, 0, one], [one, 0, 0, 0, 0, 0]},
V basis = {[one, one, one, 0, one, one]}, test your procedure with each of the the following vec-
tors w:

1. w = [0, 0, 0, 0, 0, 0]

2. w = [one, 0, 0, one, 0, 0]

3. w = [one, one, one, one, one, one]

Testing invertibility

Problem 6.7.12: Write and test a procedure is invertible(M) with the following spec:

• input: an instance M of Mat

• output: True if M is an invertible matrix, False otherwise.

Your procedure should not use any loops or comprehensions. It can use procedures from the
matutil module and from the independence module.

Test your procedure with the following examples:
Over R:

[

1 2 3
3 1 1

]

⎡

⎢
⎢
⎣

1 0 1 0
0 2 1 0
0 0 3 1
0 0 0 4

⎤

⎥
⎥
⎦

⎡

⎣

1 0
0 1
2 1

⎤

⎦

[

1 0
0 1

]
⎡

⎣

1 0 1
0 1 1
1 1 0

⎤

⎦

False True False True True
Over GF (2):
⎡

⎣

one 0 one
0 one one
one one 0

⎤

⎦

[

one one
0 one

]

False True
Note the resemblance between two matrices, one over R and one over GF (2), and note that

one is invertible and the other is not.

Finding the matrix inverse

Problem 6.7.13: Write a procedure find matrix inverse(A) with the following spec:

• input: an invertible matrix A over GF (2) (represented as a Mat)
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• output: the inverse of A (also represented as a Mat)

Note that the input and output matrices are over GF (2).
Test your inverse procedure by printing AA−1 and A−1A.
Try out your procedure on the following matrices over GF (2). (Note: once your procedure

outputs a matrix, you should test that it is indeed the inverse of the input matrix by multiplying
the input and output matrices together.

•

⎡

⎣

0 one 0
one 0 0
0 0 one

⎤

⎦

•

⎡

⎢
⎢
⎣

one one one one
one one one 0
0 one 0 one
0 0 one 0

⎤

⎥
⎥
⎦

•

⎡

⎢
⎢
⎢
⎢
⎣

one one 0 0 0
0 one one 0 0
0 0 one one 0
0 0 0 one one
0 0 0 0 one

⎤

⎥
⎥
⎥
⎥
⎦

Your procedure should use as a subroutine the solve procedure of the solver module. Since
we are using GF (2), you need not worry about rounding errors. Your procedure should be based
on the following result:

Suppose A and B are square matrices such that AB is the identity matrix. Then A
and B are inverses of each other.

In particular, your procedure should try to find a square matrix B such that AB is an identity
matrix:

⎡

⎢
⎢
⎢
⎢
⎣

A

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

B

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1

. . .

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

To do this, consider B and the identity matrix as consisting of columns.

⎡

⎢
⎢
⎢
⎢
⎣

A

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

b1 · · · bn

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

1

· · ·

1

⎤

⎥
⎥
⎥
⎥
⎦
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Using the matrix-vector definition of matrix-matrix multiplication, you can interpret this matrix-
matrix equation as a collection of n matrix-vector equations: one for b1, ..., one for bn. By
solving these equations, you can thus obtain the columns of B.

Remember: If A is an R × C matrix then AB must be an R × R matrix so the inverse B
must be a C × R matrix.

Problem 6.7.14: You will write a procedure for finding the inverse of an upper-triangular
matrix.

find triangular matrix inverse(A)

• input: an instance M of Mat representing an upper triangular matrix with nonzero diagonal
elements.

You can assume that the row-label set and column-label set are of the form {0, 1, 2 . . . , n−
1}.

• output: a Mat representing the inverse of M

This procedure should use triangular solve which is defined in the module triangular. It
can also use the procedures in matutil, but that’s all.

Try out your procedure on

>>> A = listlist2mat([[1, .5, .2, 4],[0, 1, .3, .9],[0,0,1,.1],[0,0,0,1]])
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Gaussian elimination

Thou, nature, art my goddess; to thy
laws my services are bound.

Carl Friedrich Gauss

In this chapter, we finally present a sophisticated algorithm for solving computational prob-
lems in linear algebra. The method is commonly called Gaussian elimination but was illustrated
in Chapter Eight of a Chinese text, The Nine Chapters on the Mathematical Art, that was written
roughly two thousand years before Gauss.

Many years later, the method was rediscovered in Europe; it was described in full by Isaac
Newton and by Michel Rolle, and elaborated by many others. Gauss got into the act in adapting
the method to address another computational problem, one we address in Chapter 8.

Gauss referred to the method as eliminiationem vulgarem (“common elimination”). He did,
however, introduce a convenient notation for expressing the computation, and this is likely the
reason that an author of a survey published in 1944, Henry Jensen, called it the “Gauss’ian
algorithm”, starting a tradition that has persisted to this day.

The algorithm clearly predated the concept of matrices, but was reformulated, by Jensen and
others, in terms of matrices. The algorithm is related in spirit to backward substitution, the
algorithm described in Section 2.11.

Gaussian elimination is most often applied to solving a system of linear equations—and we
will see how—but it has other uses as well. Formulating the algorithm in terms of matrices helps
to make clear its broader applicability.

Traditionally, Gaussian elimination is applied to matrices over the field R of real numbers.
When it is actually carried it out on a computer using floating-point arithmetic, there are some
subtleties involved in ensuring that the outputs are accurate. In this chapter, we outline the
process applied to matrices over R but we focus on Gaussian elimination applied to matrices over
GF (2). We apply this algorithm to:

• Finding a basis for the span of given vectors. This additionally gives us an algorithm for
rank and therefore for testing linear dependence.

• Finding a basis for the null space of a matrix.

374
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• Solving a matrix equation (Computational Problem 4.5.13), which is the same as express-
ing a given vector as a linear combination of other given vectors (Computational Prob-
lem 3.1.8), which is the same as solving a system of linear equations (Computational Prob-
lem 2.9.12) and 2.8.7

7.1 Echelon form

Echelon form is a generalization of triangular matrices. Here is an example of a matrix in echelon
form: ⎡

⎢
⎢
⎣

0 2 3 0 5 6
0 0 1 0 3 4
0 0 0 0 1 2
0 0 0 0 0 9

⎤

⎥
⎥
⎦

Note that

• the first nonzero entry in row 0 is in column 1,

• the first nonzero entry in row 1 is in column 2,

• the first nonzero entry in row 2 is in column 4, and

• the first nonzero entry in row 4 is in column 5.

Definition 7.1.1: An m× n matrix A is in echelon form if it satisfies the following condition:
for any row, if that row’s first nonzero entry is in position k then every previous row’s first
nonzero entry is in some position less than k.

This definition implies that, as you iterate through the rows of A, the first nonzero entries
per row move strictly right, forming a sort of staircase that descends to the right:

A triangular matrix such as

⎡

⎢
⎢
⎣

4 1 3 0
0 3 0 1
0 0 1 7
0 0 0 9

⎤

⎥
⎥
⎦

is a special case: the first nonzero entry in row i

is in column i.
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If a row of a matrix in echelon form is all zero then every subsequent row must also be all
zero, e.g.

⎡

⎢
⎢
⎣

0 2 3 0 5 6
0 0 1 0 3 4
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎦

7.1.1 From echelon form to a basis for row space

What good is it having a matrix in echelon form?

Lemma 7.1.2: If a matrix is in echelon form, the nonzero rows form a basis for the row space.

For example, a basis for the row space of
⎡

⎢
⎢
⎣

0 2 3 0 5 6
0 0 1 0 3 4
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎦

is {
[

0 2 3 0 5 6
]

,
[

0 0 1 0 3 4
]

}.
In particular, if every row is nonzero, as in each of the matrices

⎡

⎢
⎢
⎣

0 2 3 0 5 6
0 0 1 0 3 4
0 0 0 0 1 2
0 0 0 0 0 9

⎤

⎥
⎥
⎦

,

⎡

⎢
⎢
⎣

2 1 0 4 1 3 9 7
0 6 0 1 3 0 4 1
0 0 0 0 2 1 3 2
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎦

,

⎡

⎢
⎢
⎣

4 1 3 0
0 3 0 1
0 0 1 7
0 0 0 9

⎤

⎥
⎥
⎦

then the rows form a basis of the row space.
To prove Lemma 7.1.2, note that it is obvious that the nonzero rows span the row space; we

need only show that these vectors are linearly independent.
Before giving the formal argument, I illustrate it using the matrix

⎡

⎢
⎢
⎣

4 1 3 0
0 3 0 1
0 0 1 7
0 0 0 9

⎤

⎥
⎥
⎦

Recall the Grow algorithm:

def Grow(V)
S = ∅
repeat while possible:

find a vector v in V that is not in Span S, and put it in S

We imagine the Grow algorithm adding to S each of the rows of the matrix, in reverse order:
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• Initially S = ∅

• Since Span ∅ does not include
[

0 0 0 9
]

, the algorithm adds this vector to S.

• Now S = {
[

0 0 0 9
]

}. Since every vector in Span S has zeroes in the first three
positions, Span S does not contain [0, 0, 1, 7], so the algorithm adds this vector to S.

• Now S = {
[

0 0 0 9
]

,
[

0 0 1 7
]

}. Since every vector in Span S has zeroes in
the first two positions, Span S does not contain [0, 3, 0, 1], so the algorithm adds this vector
to S.

• Now S = {
[

0 0 0 9
]

,
[

0 0 1 7
]

,
[

0 3 0 1
]

}. Since every vector in Span S
has a zero in the first position, Span S does not contain

[

4 1 3 0
]

, so the algorithm
adds this vector to S, and we are done.

By the Grow-Algorithm Corollary (Corollary 5.5.10), the set S is linearly independent.
Now we present the same argument more formally:

Proof

Let a1, . . . ,am be the vectors of a matrix in echelon form, in order from top to bottom. To
show that these vectors are linearly independent, imagine we run the Grow algorithm on
Span {a1, . . . ,am}. We direct the Grow algorithm to add the am,am−1, . . . ,a2,a1 to S, in
that order.

After the Grow algorithm has added am,am−1, . . . ,ai to S, we want it to add ai−1. How
can we be sure ai−1 is not already in Span S? Suppose the first nonzero entry of ai−1 is in
the k + 1st position. Then, by the definition of echelon form, the first k entries of ai−1 are
zero, so the first k + 1 entries of ai,ai+1, . . . ,am are zero. Therefore the first k + 1 entries
of every vector in Span S are zero. Since the k + 1th entry of ai−1 is nonzero, this vector is
not in Span S, so the algorithm is allowed to add it. !

7.1.2 Rowlist in echelon form

Since echelon form has a lot to do with rows, it is convenient in working with echelon form to
represent a matrix not as an instance of Mat but as a row-list—a list of vectors.

Since we want to handle vectors over arbitrary finite domains D rather than just sets of the
form {0, 1, 2, . . . , n− 1}, we have to decide on an ordering of the labels (the column-labels of the
matrix). For this purpose, we use

col_label_list = sorted(rowlist[0].D, key=hash)

which sorts the labels.
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7.1.3 Sorting rows by position of the leftmost nonzero

Of course, not every rowlist is in echelon form. Our goal is to develop an algorithm that, given a
matrix represented by a row-list, transforms the matrix into one in echelon form. We will later
see exactly what kind of transformations are permitted.

To start, let’s simply find a reordering of the vectors in rowlist that has a chance of being in
echelon form. The definition of echelon form implies that the shows should be ordered according
to the positions of their leftmost nonzero entries. We will use a naive sorting algorithm: try to
find a row with a nonzero in the first column, then a row with a nonzero in the second column,
and so on. The algorithm will accumulate the rows found in a list new rowlist, initially empty:

new_rowlist = []

The algorithm maintains the set of indices of rows remaining to be sorted, rows left, initially
consisting of all the row indices:

rows_left = set(range(len(rowlist)))

It iterates through the column labels in order, finding a list of indices of the remaining rows that
have nonzero entries in the current column. It takes one of these rows, adds it to new rowlist,
and removes its index from rows left:

for c in col_label_list:
rows_with_nonzero = [r for r in rows_left if rowlist[r][c] != 0]
pivot = rows_with_nonzero[0]
new_rowlist.append(rowlist[pivot])
rows_left.remove(pivot)

The row added to new rowlist is called the pivot row, and the element of the pivot row in
column c is called the pivot element.

Okay, let’s try out our algorithm with the matrix

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7
0 0 0 9 9

⎤

⎥
⎥
⎥
⎥
⎦

Things start out okay. After the iterations c = 0 and c = 1, new rowlist is

[[

1 2 3 4 5
]

,
[

0 2 3 4 5
]]

and rows left is {1, 2, 4}. The algorithm runs into trouble in iteration c = 2 since none of the
remaining rows have a nonzero in column 2. The code above raises a list index out of range
exception. How can we correct this flaw?

When none of the remaining rows have a nonzero in the current column, the algorithm should
just move on to the next column without changing new rowlist or rows left. We amend the
code accordingly:
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for c in col_label_list:
rows_with_nonzero = [r for r in rows_left if rowlist[r][c] != 0]
if rows_with_nonzero != []:

pivot = rows_with_nonzero[0]
new_rowlist.append(rowlist[pivot])
rows_left.remove(pivot)

With this change, the code does not raise an exception but at termination new rowlist is
⎡

⎢
⎢
⎣

1 2 3 4 5
0 2 3 4 5
0 0 0 3 2
0 0 0 6 7

⎤

⎥
⎥
⎦

which violates the definition of echelon form: the fourth row’s first nonzero entry occurs in the
fourth position, which means that every previous row’s first nonzero entry must be strictly to
the left of the third position—but the third row’s first nonzero entry is in the fourth position.

7.1.4 Elementary row-addition operations

There is a way to repair the algorithm, however. If, in the iteration corresponding to some
column-label c, there is a row other than the pivot row that has a nonzero element in the
corresponding column then the algorithm must perform an elementary row-addition operation to
make that element into a zero.

For example, given the matrix
⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

in the iteration corresponding to the fourth column, the algorithm subtracts twice the second
row

2
[

0 0 0 3 2
]

from the fourth
[

0 0 0 6 7
]

gettting new fourth row
[

0 0 0 6 7
]

− 2
[

0 0 0 3 2
]

=
[

0 0 0 6 − 6 7 − 4
]

=
[

0 0 0 0 3
]

During the same iteration, the algorithm also subtracts thrice the second row

3
[

0 0 0 3 2
]

from the fifth
[

0 0 0 9 9
]
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getting new fifth row

[

0 0 0 9 9
]

− 3
[

0 0 0 3 2
]

=
[

0 0 0 0 3
]

The resulting matrix is
⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 0 3
0 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎦

In the iteration corresponding to the fifth column, the algorithm selects
[

0 0 0 3
]

as
the pivot row, and adds it to new rowlist. Next, the algorithm subtracts two-thirds times the
fourth row from the fifth row, getting new fifth row

[

0 0 0 0 2
]

− 2

3

[

0 0 0 0 3
]

=
[

0 0 0 0 0
]

There are no more columns, and the algorithms stops. At this point, new rowlist is

⎡

⎢
⎢
⎣

1 2 3 4 5
0 2 3 4 5
0 0 0 3 2
0 0 0 0 3

⎤

⎥
⎥
⎦

The code for the procedure is

for c in col_label_list:
rows_with_nonzero = [r for r in rows_left if rowlist[r][c] != 0]
if rows_with_nonzero != []:

pivot = rows_with_nonzero[0]
rows_left.remove(pivot)
new_rowlist.append(rowlist[pivot])

=> for r in rows_with_nonzero[1:]:
=> multiplier = rowlist[r][c]/rowlist[pivot][c]
=> rowlist[r] -= multiplier*rowlist[pivot]

The only change is the addition of a loop in which the appropriate multiple of the pivot row is
subtracted from the other remaining rows.

We will prove that, when the algorithm completes, new rowlist is a basis for the row space
of the original matrix.

7.1.5 Multiplying by an elementary row-addition matrix

Subtracting a multiple of one row from another can be performed by multiplying the matrix by
a elementary row-addition matrix
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⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −2 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 2 3 4 5
0 2 3 4 5
0 0 0 3 2
0 0 0 6 7

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1 2 3 4 5
0 2 3 4 5
0 0 0 3 2
0 0 0 0 3

⎤

⎥
⎥
⎦

As we noticed in Chapter 4, such a matrix is invertible:
⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −2 1

⎤

⎥
⎥
⎦

and

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 2 1

⎤

⎥
⎥
⎦

are inverses.

7.1.6 Row-addition operations preserve row space

Our nominal goal in transforming a matrix into echelon form is to obtain a basis for the row
space of the matrix. We will prove that row-addition operations do not change the row space.
Therefore a basis for the row space of the transformed matrix is a basis for the original matrix.

Lemma 7.1.3: For matrices A and N , Row NA ⊆ Row A.

Proof

Let v be any vector in Row NA. That is, v is a linear combination of the rows of NA. By
the linear-combinations definition of vector-matrix multiplication, there is a vector u such
that

v =
[

uT
]

⎛

⎝

⎡

⎣ N

⎤

⎦

⎡

⎣ A

⎤

⎦

⎞

⎠

=

⎛

⎝
[

uT
]

⎡

⎣ N

⎤

⎦

⎞

⎠

⎡

⎣ A

⎤

⎦ by associativity

which shows that v can be written as a linear combination of the rows of A. !

Corollary 7.1.4: For matrices A and M , if M is invertible then Row MA = Row A.

Proof

By applying Lemma 7.1.3 with N = M , we obtain Row MA ⊆ Row A. Let B = MA. Since
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M is invertible, it has an inverse M−1. Applying the lemma with N = M−1, we obtain
Row M−1B ⊆ Row B. Since M−1B = M−1(MA) = (M−1M)A = IA = A, this proves
Row A ⊆ Row MA. !

Example 7.1.5: We return to the example in Section 7.1.4. Let A =

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

and let M =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −2 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

. Multiplying M by A yields MA =

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 0 3
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

.

We will use the argument of Lemma 7.1.3 to show that Row MA ⊆ Row A and Row A ⊆
Row MA.

Every vector v in Row MA can be written as

v =
[

u1 u2 u3 u4

]

MA

=
[

u1 u2 u3 u4

]

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 0 3
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

=
[

u1 u2 u3 u4

]

⎛

⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −2 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

[

u1 u2 u3 u4

]

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −2 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

showing that v can be written as a vector times the matrix A. This shows that v is Row A.
Since every vector in Row MA is also in Row A, we have shown Row MA ⊆ Row A.

We also need to show that Row A ⊆ Row MA. Since A = M−1MA, it suffices to show
that Row M−1MA ⊆ Row MA.
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Every vector v in Row M−1MA can be written as

v =
[

u1 u2 u3 u4

]

M−1MA

=
[

u1 u2 u3 u4

]

⎛

⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 2 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −2 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

[

u1 u2 u3 u4

]

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 2 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −2 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

showing that v can be written as a vector times the matrix MA. This shows that v is in
Row MA.

7.1.7 Basis, rank, and linear independence through Gaussian elimina-
tion

The program we have written has been incorporated into a procedure row reduce(rowlist)
that, given a list rowlist of vectors, mutates the list, performing the row-addition operations,
and returns a list of vectors in echelon form with the same span as rowlist. The list of vectors
returned includes no zero vectors, so is a basis for the span of rowlist.

Now that we have a procedure for finding a basis for the span of given vectors, we can easily
write procedures for rank and linear independence. But are they correct?

7.1.8 When Gaussian elimination fails

We have shown that the algorithm for obtaining a basis is mathematically correct. However,
Python carries out its computations using floating-point numbers, and arithmetic operations are
only approximately correct. As a consequence, it can be tricky to use the result to decide on the
rank of a set of vectors.

Consider the example

A =

⎡

⎣

10−20 0 1
1 1020 1
0 1 −1

⎤

⎦

The rows of A are linearly independent. However, when we call row reduce on these rows, the
result is just two rows, which might lead us to conclude that the row rank is two.

First, for column c = 0, the algorithm selects the first row,
[

10−20 0 1
]

, as the pivot
row. It subtracts 1020 times this row from the second row,

[

1 1020 1
]

, which should result
in

[

1 1020 1
]

− 1020
[

10−20 0 1
]

=
[

0 1020 1 − 1020
]

However, let’s see how Python computes the last entry:
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>>> 1 - 1e+20
-1e+20

The 1 is swamped by the - 1e+20, and is lost. Thus, according to Python, the matrix after the
row-addition operation is

⎡

⎣

10−20 0 1
0 1020 −1020

0 1 −1

⎤

⎦

Next, for column c = 1, the algorithm selects the second row
[

0 1020 −1020
]

as the pivot
row, and subtracts 1020 times this row from the third row, resulting in the matrix

⎡

⎣

10−20 0 1
0 1020 −1020

0 0 0

⎤

⎦

The only remaining row, the third row, has a zero in column c = 2, so no pivot row is selected,
and the algorithm completes.

7.1.9 Pivoting, and numerical analysis

While errors in calculation cannot be avoided when using inexact floating-point arithmetic, dis-
astrous scenarios can be avoided by modifying Gaussian elimination. Pivoting refers to careful
selection of the pivot element. Two strategies are employed:

• Partial pivoting: Among rows with nonzero entries in column c, choose row with entry
having largest absolute value.

• Complete pivoting: Instead of selecting order of columns beforehand, choose each column
on the fly to maximize pivot element.

Usually partial pivoting is used in practice because it is easy to implement and it runs quickly,
but theoretically it can still get things disastrously bad for big matrices. Complete pivoting keeps
those errors under control.

The field of numerical analysis provides tools for the mathematical analysis of errors result-
ing from using algorithms such as Gaussian elimination with inexact arithmetic. I don’t cover
numerical analysis in this text; I merely want the reader to be aware of the pitfalls of numer-
ical algorithms and of the fact that mathematical analysis can help guide the development of
algorithms that sidestep these pitfalls.

Using inexact arithmetic to compute the rank of a matrix is notoriously tricky. The accepted
approach uses the singular value decomposition of the matrix, a concept covered in a later chapter.

7.2 Gaussian elimination over GF (2)

Gaussian elimination can be carried out on vectors over GF (2), and in this case all the arithmetic
is exact, so no numerical issues arise.
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Here is an example. We start with the matrix

A B C D
1 0 0 one one
2 one 0 one one
3 one 0 0 one
4 one one one one

The algorithm iterates through the columns in the order A, B, C, D. For column A, the algorithm
selects row 2 as the pivot row. Since rows 3 and 4 also have nonzeroes in column A, the algorithm
perform row-addition operations to add row 2 to rows 3 and 4, obtaining the matrix

A B C D
1 0 0 one one
2 one 0 one one
3 0 0 one 0
4 0 one 0 0

Now the algorithm handles column B. The algorithm selects row 4 as the pivot row. Since the
other remaining rows (1 and 3) have zeroes in column B, no row operations need be performed
for this iteration, so the matrix does not change.

Now the algorithm handles column c. It selects row 1 as the pivot row. The only other
remaining row is row 3, and the algorithm performs a row-addition operation to add row 1 to
row 3, obtaining the matrix

A B C D
1 0 0 one one
2 one 0 one one
3 0 0 0 one
4 0 one 0 0

Finally, the algorithm handles column d. The only remaining row is row 3, the algorithm selects
it as the pivot row. There are no other rows, so no row-addition operations need to be performed.
We have completed all the iterations for all columns. The matrix represented by new rowlist is

A B C D
0 one 0 one one
1 0 one 0 0
2 0 0 one one
3 0 0 0 one

You can find a couple of example matrices in the file
gaussian_examples.py

7.3 Using Gaussian elimination for other problems

We have learned that the nonzero rows of a matrix in echelon form are a basis for the row space
of the matrix. We have learned how to use Gaussian elimination to transform a matrix into
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echelon form without changing the row space. This gives us an algorithm for finding a basis of
the row space of a matrix.

However, Gaussian elimination can be used to solve other problems as well:

• Solving linear systems, and

• Finding a basis for the null space.

Over GF (2), the algorithm for solving a linear system can be used, for example, to solve an in-
stance of Lights Out. It can be used by Eve to find the secret password used in the simple authen-
tication scheme. More seriously, it can even be used to predict the next random numbers coming
from Python’s random-number generator random. (See resources.codingthematrix.com.)

Over GF (2), finding a basis for the null space can be used to find a way to corrupt a file
that will not be detected by our naive checksum function. More seriously, it can be used to help
factor integers, a notoriously difficult computational problem whose difficulty is at the heart of
the cryptographic scheme, RSA, commonly used in protecting credit-card numbers transmitted
via web browsers.

7.3.1 There is an invertible matrix M such that MA is in echelon form

The key idea in using Gaussian elimination to solve these other problems is to keep track of the
elementary row-addition operations used to bring the input matrix into echelon form.

Remember that you can apply an elementary row-addition operation to a matrix by multi-
plying an elementary row-addition matrix M times the matrix. Starting with the matrix A,

• the algorithm performs one row-addition operation, resulting in the matrix M1 A,

• then performs another row-addition operation on that matrix, resulting in the matrix
M2 M1 A
...

and so on, resulting in the end in the matrix

Mk Mk−1 · · · M2 M1 A

if k is the total number of row-addition operations. Let M̄ be the product of Mk through M1.
Then the final matrix resulting from applying Gaussian elimination to A is M̄A.

In our code, the final matrix resulting is not in echelon form because its rows are not in
correct order. By reordering the rows of M̄ , we can obtain a matrix M such that MA is a matrix
in echelon form.

Moreover, since each of the matrices Mk through M1 is invertible, so is their product M̄ . Thus
M̄ is square and its rows are linearly independent. Since M is obtained from M̄ by reordering
rows, M is also square and its rows are linearly independent. Informally, we have proved the
following:
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Proposition 7.3.1: For any matrix A, there is an invertible matrix M such that MA is in
echelon form.

7.3.2 Computing M without matrix multiplications

Actually computing M does not require all these matrix-matrix multiplications however. There is
a much slicker approach. The procedure maintains two matrices, each represented by a row-list:

• the matrix undergoing the transformation, represented in our code by rowlist, and

• the transforming matrix, which we will represent in code by M rowlist.

The algorithm maintains the invariant that the transforming matrix times the input matrix
equals the matrix represented by rowlist:

M rowlist (initial matrix) = rowlist (7.1)

Performing the ith row-addition operation consists in subtracting some multiple of one row of
rowlist from another. This is equivalent to multiplying the matrix rowlist by a row-addition
matrix Mi. To maintain the invariant (Equation 7.1), we multiply both sides of the equation by
Mi:

Mi (M rowlist) (initial matrix) = Mi (rowlist)

On the right-hand side, the procedure carries out the operation by subtracting a multiple of the
pivot row from another row.

What about on the left-hand side? To update M rowlist to be the product of Mi with
M rowlist, the procedure similarly carries out the row-addition operation on M rowlist, sub-
tracting the same multiple of the corresponding row from the corresponding row.

Example 7.3.2: Let’s run through an example using the matrix

A =

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

Initially, rowlist consists of the rows of A. To make the invariant (Equation 7.1) true, the
algorithm initializes M rowlist to be the identity matrix. Now we have

⎡

⎢
⎢
⎢
⎢
⎣

1
1

1
1

1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

The first row-addition operation is to subtract twice the second row from the fourth row. The
algorithm applies this operation to the transforming matrix (the first matrix on the left-hand
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side) and the matrix being transformed (the matrix on the right-hand side), resulting in:

⎡

⎢
⎢
⎢
⎢
⎣

1
1

1
−2 1

1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 0 3
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

Since the same matrix M1 has multiplied the left-hand side and the right-hand side, the invariant
is still true. The next row-addition operation is to subtract three times the second row from the
fifth row. The algorithm applies this operation to the transforming matrix and the matrix being
transformed, resulting in:

⎡

⎢
⎢
⎢
⎢
⎣

1
1

1
−2 1
−3 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 0 3
0 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎦

The third and final row-addition operation is to subtract two-thirds times the fourth row from the
fifth row. The algorithm must apply this operation to the transforming matrix and the matrix
being transformed. The fourth row of the transforming matrix is

[

0 −2 0 1 0
]

, and
two-thirds of this row is

[

0 −1 1
3 0 2

3 0
]

. The fifth row of the transforming matrix is
[

0 −3 0 0 1
]

, and subtracting two-thirds of the fourth row yields
[

0 −1 1
3 0 − 2

3 0
]

.
Thus the equation becomes

⎡

⎢
⎢
⎢
⎢
⎣

1
1

1
−2 1
−1 1

3 − 2
3

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 6 7
0 0 0 9 8

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0 2 3 4 5
0 0 0 3 2
1 2 3 4 5
0 0 0 0 3
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

(7.2)

To incorporate this strategy into our code, we need to make two changes:

• initialize the variable M rowlist to represent the identity matrix (using 1 or GF2.one as
appropriate):

M_rowlist = [Vec(row_labels, {row_label_list[i]:one}) for i in range(m)]

• and, whenever a row-addition operation is performed on rowlist, perform the same row-
addition operation on M rowlist.

Here’s the main loop, which shows the second change:

for c in sorted(col_labels, key=hash):
rows_with_nonzero = [r for r in rows_left if rowlist[r][c] != 0]
if rows_with_nonzero != []:
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pivot = rows_with_nonzero[0]
rows_left.remove(pivot)
for r in rows_with_nonzero[1:]:

multiplier = rowlist[r][c]/rowlist[pivot][c]
rowlist[r] -= multiplier*rowlist[pivot]

=> M_rowlist[r] -= multiplier*M_rowlist[pivot]

To make this useful for solving the other problems mentioned in Section 7.3, we need to finally
produce the matrix M such that multiplying M by the input matrix gives a matrix in echelon
form. Note that in Equation 7.2, the matrix in the right-hand side is not in echelon form because
the rows are in the wrong order. Thus the matrix

⎡

⎢
⎢
⎢
⎢
⎣

1
1

1
−2 1
−1 1

3 − 2
3

⎤

⎥
⎥
⎥
⎥
⎦

represented by M rowlist is not quite M . It has the correct rows but those rows need to be
reordered.

Here is a simple way to get the rows in the correct order. Recall our initial efforts in sorting
rows by position of the leftmost nonzero (Section 7.1.3). There we accumulated the pivot rows
in a list called new rowlist. We use the same idea but this time, instead of accumulating the
pivot rows, we accumulate the corresponding rows of M rowlist in a list called new M rowlist:

=> new_M_rowlist = []
for c in sorted(col_labels, key=hash):

rows_with_nonzero = [r for r in rows_left if rowlist[r][c] != 0]
if rows_with_nonzero != []:

pivot = rows_with_nonzero[0]
rows_left.remove(pivot)

=> new_M_rowlist.append(M_rowlist[pivot])
for r in rows_with_nonzero[1:]:

multiplier = rowlist[r][c]/rowlist[pivot][c]
rowlist[r] -= multiplier*rowlist[pivot]
M_rowlist[r] -= multiplier*M_rowlist[pivot]

One problem with this approach: it fails to append the rows of M rowlist corresponding to zero
rows of rowlist since no zero row becomes a pivot row. I therefore put another loop at the end
to append these rows to new M rowlist:

for c in sorted(col_labels, key=hash):
rows_with_nonzero = [r for r in rows_left if rowlist[r][c] != 0]
if rows_with_nonzero != []:

pivot = rows_with_nonzero[0]
rows_left.remove(pivot)
new_M_rowlist.append(M_rowlist[pivot])
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for r in rows_with_nonzero[1:]:
multiplier = rowlist[r][c]/rowlist[pivot][c]
rowlist[r] -= multiplier*rowlist[pivot]
M_rowlist[r] -= multiplier*M_rowlist[pivot]

=> for r in rows_left: new_M_rowlist.append(M_rowlist[r])

The module echelon contains a procedure transformation(A) that returns an invertible
matrix M such that MA is in echelon form. It uses the above code.

Example 7.3.3: Here is another example of maintaining the transforming matrix.

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 1
0 −2 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 2 4 2 8
2 1 0 5 4
0 −1 2 −6 −6
5 0 0 2 8

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 −2 1 0
0 −2.5 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 2 4 2 8
2 1 0 5 4
0 −1 2 −6 −6
0 −2.5 0 −10.5 −2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
.5 −2 1 0
0 −2.5 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 2 4 2 8
2 1 0 5 4
4 1 2 4 2
5 0 0 2 8

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0 2 4 2 8
2 1 0 5 4
0 0 4 −5 −2
0 −2.5 0 −10.5 −2

⎤

⎥
⎥
⎦

7.4 Solving a matrix-vector equation using Gaussian elim-
ination

Suppose you want to solve a matrix-vector equation

Ax = b (7.3)

Compute an invertible matrix M such that MA is a matrix U in echelon form, and multiply
both sides of Equation 7.3 by M , obtaining the equation

MAx = Mb (7.4)

This shows that if the original equation (Equation 7.3) has a solution u, the same solution satisfies
the new equation (Equation 7.4). Conversely, suppose u is a solution to the new equation. We
then have MAu = Mb. Multiplying both sides by the inverse M−1, we obtain M−1MAu =
M−1Mb, which implies Au = b, showing that u is therefore a solution to the original equation.

The new equation MAx = Mb is easier to solve than the original equation because the matrix
MA on the left-hand side is in echelon form.
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7.4.1 Solving a matrix-vector equation when the matrix is in echelon
form—the invertible case

Can we give an algorithm to solve a matrix-vector equation Ux = b where U is in echelon form?
Consider first the case in which U is an invertible matrix. In this case, U is square and its

diagonal elements are nonzero. It is upper triangular, and we can solve the equation Ux = b̄ using
backward substitution, the algorithm described in Section 2.11.2 and embodied in the procedure
triangular solve(A, b) defined in the module triangular.

7.4.2 Coping with zero rows

Now consider the general case. There are two ways in which U can fail to be triangular:

• There can be rows that are all zero, and

• there can be columns of U for which no row has its leftmost nonzero entry in this column.

The first issue is easy to cope with: just ignore zero rows.
Consider an equation ai · x = bi where ai = 0.

• If bi = 0 then the equation is true regardless of the choice of x.

• If bi ̸= 0 then the equation is false regardless of the choice of x.

Thus the only disadvantage of ignoring the rows that are zero is that the algorithm will not
notice if the equations cannot be solved.

7.4.3 Coping with irrelevant columns

Assume therefore that U has no zero rows. Consider the following example:

A B C D E
0 1 1
1 2 3
2 1 9

∗
[

xa xb xc xd xe

]

=

⎡

⎣

1
1
1

⎤

⎦

There are no nonzero rows. Every row therefore has a leftmost nonzero entry. Discard every
column c such that no row has a leftmost nonzero in that column. (In the example, we discard
columns C and E.) The resulting system looks like this:

A B D
0 1
1 2 3
2 1

∗
[

xa xb xd

]

=

⎡

⎣

1
1
1

⎤

⎦

This system is triangular, so can be solved using backward substitution. The solution assigns
numbers to the variables xa, xb, xd. What about the variables xc and xe corresponding to dis-
carded columns? We just set these to zero. Using the linear-combinations definition of matrix-
vector multiplication, the effect is that the discarded columns contribute nothing to the linear



CHAPTER 7. GAUSSIAN ELIMINATION 392

combination. This shows this assignment to the variables remains a solution when the discarded
columns are reinserted.

In Problem 7.9.6, you will write a procedure to try to find a solution to a matrix-vector
equation where the matrix is in echelon form. A straightforward but somewhat cumbersome
approach is to form a new matrix by deleting the zero rows and irrelevant columns and to then
use triangular solve.

There is also a simpler, shorter, and more elegant solution; the code is a slightly modified
version of that for triangular solve.

7.4.4 Attacking the simple authentication scheme, and improving it

Recall the simple authentication scheme of Section 2.9.7:

• The password is an n-vector x̂ over GF (2).

• As a challenge, Computer sends random n-vector a.

• As the response, Human sends back a · x̂.

• The challenge-response interaction is repeated until Computer is convinced that Human
knowns password x̂.

Eve eavesdrops on communication, and learns m pairs a1, b1, . . . ,am, bm such that bi is the
correct response to challenge ai. Then the password x̂ is a solution to

⎡

⎢
⎣

a1

...
am

⎤

⎥
⎦

︸ ︷︷ ︸

A

⎡

⎣ x

⎤

⎦ =

⎡

⎢
⎣

b1
...

bm

⎤

⎥
⎦

︸ ︷︷ ︸

b

Once rank A reaches n, the solution is unique, and Eve can use Gaussian elimination to find
it, obtaining the password.

Making the scheme more secure by introducing mistakes The way to make the scheme
more secure is to introduce mistakes.

• In about 1/6 of the rounds, randomly, Human sends the wrong dot-product.

• Computer is convinced if Human gets the right answers 75% of the time.

Even if Eve knows that Human is making mistakes, she doesn’t know which rounds involve
mistakes. Gaussian elimination does not find the solution when some of the right-hand side values
bi are wrong. In fact, we don’t know any efficient algorithm Eve can use to find the solution, even
if Eve observes many, many rounds. Finding an “approximate” solution to a large matrix-vector
equation over GF (2) is considered a difficult computational problem.

In contrast, in the next couple of chapters we will learn how to find approximate solutions to
matrix-vector equations over R.
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7.5 Finding a basis for the null space

Given a matrix A, we describe an algorithm to find a basis for the vector space {v : v ∗A = 0}.
This is the null space of AT .

The first step is to find an invertible matrix M such that MA = U is in echelon form. In
order to use the vector-matrix definition of matrix-matrix multiplication, interpret M and U as
consisting of rows:

⎡

⎢
⎣

b1
...

bm

⎤

⎥
⎦

⎡

⎣ A

⎤

⎦ =

⎡

⎢
⎣

u1

...
um

⎤

⎥
⎦

For each row ui of U that is a zero vector, the corresponding row bi of M has the property that
bi ∗ A = 0.

Example 7.5.1: Suppose A is the following matrix over GF (2):

A =

A B C D E
a 0 0 0 one 0
b 0 0 0 one one
c one 0 0 one 0
d one 0 0 0 one
e one 0 0 0 0

Using transformation(A), we obtain the transforming matrix M such that MA = U :

a b c d e
0 0 0 one 0 0
1 one 0 0 0 0
2 one one 0 0 0
3 0 one one one 0
4 one 0 one 0 one

∗

A B C D E
a 0 0 0 one 0
b 0 0 0 one one
c one 0 0 one 0
d one 0 0 0 one
e one 0 0 0 0

=

A B C D E
0 one 0 0 one 0
1 0 0 0 one 0
2 0 0 0 0 one
3 0 0 0 0 0
4 0 0 0 0 0

Since rows 3 and 4 of the right-hand side matrix are zero vectors, rows 3 and 4 of M , the first
matrix on the left-hand side, belong to the vector space {v : v ∗ A = 0}. We will show that in
fact these two vectors form a basis for that vector space.

Thus the second step of our algorithm is to find out which rows of U are zero, and select the
corresponding rows of M .
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To show that the selected rows of M are a basis for the vector space {v : v ∗ A = 0}, we
must prove two things:

• they are linearly independent, and

• they span the vector space.

Since M is an invertible matrix, it is square and its columns are linearly independent. Therefore
its rank equals the number of columns, which is the same as the number of rows. Therefore its
rows are linearly independent (Corollary 6.4.11). Therefore any subset of its rows are linearly
independent (Lemma 5.5.8).

To show that the selected rows span the vector space {v : v ∗ A = 0}, we take an oblique
approach. Let s be the number of selected rows. These rows belong to the vector space and so
their span is a subspace. If we can show that the rank of the selected rows equals the dimension
of the vector space, the Dimension Principle (Lemma 6.2.14), 2, will show that the span of the
selected rows in fact equals the vector space. Because the selected rows are linearly independent,
their rank equals s.

Let m be the number of rows of A. Note that U has the same number of rows. U has two
kinds of rows: nonzero rows and zero rows. We saw in Section 7.1.1 that the nonzero rows form
a basis for Row A, so the number of nonzero rows is rank A.

m = (number of nonzero rows of U) + (number of zero rows of U)
= rank A + s

By the Rank-Nullity Theorem (the matrix version of the Kernel-Image Theorem),

m = rank A + nullity AT

Therefore s = nullity AT .

7.6 Factoring integers

We begin with a quotation from Gauss, writing more than two hundred years ago.

The problem of distinguishing prime numbers from composite numbers and of resolv-
ing the latter into their prime factors is known to be one of the most important and
useful in arithmetic. It has engaged the industry and wisdom of ancient and modern
geometers to such an extent that it would be superfluous to discuss the problem at
length. Further, the dignity of the science itself seems to require solution of a prob-
lem so elegant and so celebrated. (Carl Friedrich Gauss, Disquisitiones Arithmeticae,
1801)

Recall that a prime number is an integer greater than 1 whose only divisors are 1 and itself.
A composite number is an integer greater than 1 that is not prime, i.e. a positive integer that
has a divisor greater than one. A fundamental theorem of number theory is this:
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Theorem 7.6.1 (Prime Factorization Theorem): For every positive integer N , there is
a unique bag of primes whose product is N .

For example, 75 is the product of the elements in the bag {3, 5, 5}, and 126 is the product of
the elements in the bag {2, 3, 3, 7}, and 23 is the product of the elements in the bag {23}. All
the elements in a bag must be prime. If N is itself prime, the bag for N is just {N}.

Factoring a number N means finding the corresponding bag of primes. Gauss really spoke
of two problems: (1) distinguishing prime numbers from composite numbers, and (2) factoring
integers. The first problem has been solved. The second, factoring, has not, although there has
been tremendous progress in algorithms for factoring since Gauss’s time.

In Gauss’s day, the problems were of mathematical interest. In our day, primality and fac-
torization lie at the heart of the RSA cryptosystem, which we use every day to securely transfer
credit-card numbers and other secrets. In your web browser, when you navigate to a secure
website,

the browser communicates with the server using the protocol HTTPS (Secure HTTP), which is
based on RSA. To quote from a book by a current-day expert, Bill Gates:

Because both the system’s privacy and the security of digital money depend on en-
cryption, a breakthrough in mathematics or computer science that defeats the cryp-
tographic system could be a disaster. The obvious mathematical breakthrough would
be the development of an easy way to factor large prime numbers (Bill Gates, The
Road Ahead, 1995).

Okay, Bill got it slightly wrong. Factoring a large prime number is easy. Don’t worry—this was
corrected in the next release of his book.

Factoring a composite number N into primes isn’t the hard part. Suppose you had an
algorithm factor(N) that, given a composite number N , found any integers a and b bigger than
1 such that N = ab. You could then obtain the prime factorization by recursively factoring a
and b:

def prime_factorize(N):
if is_prime(N):
return [N]

a,b = factor(N)
return prime_factorize(a)+prime_factorize(b)

The challenge is implementing factor(N) to run quickly.

7.6.1 First attempt at factoring

Let’s consider algorithms that involve trial divisions. A trial division is testing, for a particular
integer b, whether N is divisible by b. Trial division is not a trivial operation—it’s much slower
than operations on floats because it has to be done in exact arithmetic—but it’s not too bad.
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Consider some obvious methods: The most obvious method of finding a factor of N is to try
all numbers between 2 and N − 1. This requires N − 2 trial divisions. If your budget is one
billion trial divisions, you can factor numbers up to a billion, i.e. 9 digits.

def find_divisor(N):
for i in range(2, N):
if N % i == 0:

return i

We can get a slight improvement using the following claim:

Claim: If N is composite, it has a nontrivial divisor that is at most
√

N .

Proof

Suppose N is composite, and let b be a nontrivial divisor. If b is no more than
√

N , the
claim holds. If b >

√
N then N/b <

√
N and N/b is an integer such that b · (N/b) = N . !

By the claim, it suffices to look for a divisor of N that is less than or equal to
√

N . Thus
we need only carry out

√
N trial divisions. With the same billion trial divisions, you can now

handle numbers up to a billion squared, i.e. 18 digits.
The next refinement you might consider it to do trial division only by primes less than or

equal to
√

N . The Prime Number Theorem states essentially that the number of primes less than
or equal to a number K is roughly K/ ln(K), where ln(K) is the natural log of K. It turns out,
therefore, that this refinement saves you about a factor of fifty, so now you can handle numbers
with about 19 digits.

Okay, but it’s easy for RSA to add another ten digits to its numbers, increasing the time for
this method by a factor of ten thousand or so. What else you got?

In an upcoming lab, you will explore a more sophisticated method for factoring, the quadratic
sieve. At its heart, it is based on (you guessed it) linear algebra. There is a still more sophisticated
methods for factoring, but it uses linear algebra in a similar way.

7.7 Lab: Threshold Secret-Sharing

Recall we had a method for splitting a secret into two pieces so that both were required to
recover the secret. The method used GF (2). We could generalize this to split the secret
among, say, four teaching assistants (TAs), so that jointly they could recover the secret but
any three cannot. However, it is risky to rely on all four TAs showing up for a meeting.

We would instead like a threshold secret-sharing scheme, a scheme by which, say, we
could share a secret among four TAs so that any three TAs could jointly recover the secret,
but any two TAs could not. There are such schemes that use fields other than GF (2), but
let’s see if we can do it using GF (2).
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7.7.1 First attempt

Here’s a (doomed) attempt. I work with five 3-vectors over GF (2): a0,a1,a2,a3,a4. These
vectors are supposed to satisfy the following requirement:

Requirement: every set of three are linearly independent.

These vectors are part of the scheme; they are known to everybody. Now suppose I want to
share a one-bit secret s among the TAs. I randomly select a 3-vector u such that a0 ·u = s.
I keep u secret, but I compute the other dot-products:

β1 = a1 · u
β2 = a2 · u
β3 = a3 · u
β4 = a4 · u

Now I give the bit β1 to TA 1, I give β2 to TA 2, I give β3 to TA 3, and I give β4 to TA 4.
The bit given to a TA is called the TA’s share.

First I argue that this scheme allows any three TAs to combine their shares to recover
the secret.

Suppose TAs 1, 2, and 3 want to recover the secret. They solve the matrix-vector equation

⎡

⎣

a1

a2

a3

⎤

⎦

⎡

⎣

x1

x2

x3

⎤

⎦ =

⎡

⎣

β1

β2

β3

⎤

⎦

The three TAs know the right-hand side bits, so can construct this matrix-vector equation.
Since the vectors a1,a2,a3 are linearly independent, the rank of the matrix is three, so the
columns are also linearly independent. The matrix is square and its columns are linearly
independent, so it is invertible, so there is a unique solution. The solution must therefore
be the secret vector u. The TAs use solve to recover u, and take the dot-product with a0

to get the secret s.
Similarly, any three TAs can combine their shares to recover the secret vector u and

thereby get the secret.
Now suppose two rogue TAs, TA 1 and TA 2, decide they want to obtain the secret

without involving either of the other TAs. They know β1 and β2. Can they use these to get
the secret s? The answer is no: their information is consistent with both s = 0 and s = one:
Since the matrix ⎡

⎣

a0

a1

a2

⎤

⎦
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is invertible, each of the two matrix equations

⎡

⎣

a0

a1

a2

⎤

⎦

⎡

⎣

x0

xvec1
xvec2

⎤

⎦ =

⎡

⎣

0
β1

β2

⎤

⎦

⎡

⎣

a0

a1

a2

⎤

⎦

⎡

⎣

x0

xvec1
xvec2

⎤

⎦ =

⎡

⎣

one
β1

β2

⎤

⎦

has a unique solution. The solution to the first equation is a vector v such that a0 · v = 0,
and the solution to the second equation is a vector v such that a0 · v = one.

7.7.2 Scheme that works

So the scheme seems to work. What’s the trouble?
The trouble is that there are no five 3-vectors satisfying the requirement. There are just

not enough 3-vectors over GF (2) to make it work.
Instead, we go to bigger vectors. We will seek ten 6-vectors a0, b0,a1, b1,a2, b2,a3, b3,a4, b4

over GF (2). We think of them as forming five pairs:

• Pair 0 consists of a0 and b0,

• Pair 1 consists of a1 and b1,

• Pair 2 consists of a2 and b2,

• Pair 3 consists of a3 and b3, and

• Pair 4 consists of a4 and b4.

The requirement is as follows:

Requirement: For any three pairs, the corresponding six vectors are linearly
independent.

To use this scheme to share two bits s and t, I choose a secret 6-vector u such that a0 ·u = s
and b0 ·u = t. I then give TA 1 the two bits β1 = a1 ·u and γ1 = b1 ·u, I give TA 2 the two
bits β2 = a2 · u and γ2 = b2 · u, and so on. Each TA’s share thus consists of a pair of bits.

Recoverability: Any three TAs jointly can solve a matrix-vector equation with a 6 × 6
matrix to obtain u, whence they can obtain the secret bits s and t. Suppose, for example,
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TAs 1, 2, and 3 came together. Then they would solve the equation

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1

b1
a2

b2
a3

b3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

β1

γ1
β2

γ2
β3

γ3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

to obtain u and thereby obtain the secret bits. Since the vectors a1, b1,a2, b2,a3, b3 are
linearly independent, the matrix is invertible, so there is a unique solution to this equation.

Secrecy: However, for any two TAs, the information they possess is consistent with any
assignment to the two secret bits s and t. Suppose TAs 1 and 2 go rogue and try to recover s
and t. They possess the bits β1, γ1,β2, γ2. Are these bits consistent with s = 0 and t = one?
They are if there is a vector u that solves the equation

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0

b0
a1

b1
a2

b2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
one
β1

γ1
β2

γ2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where the first two entries of the right-hand side are the guessed values of s and t.
Since the vectors a0, b0,a1, b1,a2, b2 are linearly independent, the matrix is invertible,

so there is a unique solution. Similarly, no matter what you put in the first two entries of
the right-hand side, there is exactly one solution. This shows that the shares of TAs 1 and 2
tell them nothing about the true values of s and t.

7.7.3 Implementing the scheme

To make thing simple, we will define a0 = [one, one, 0, one, 0, one] and b0 = [one, one, 0, 0, 0, one]:

>>> a0 = list2vec([one, one, 0, one, 0, one])
>>> b0 = list2vec([one, one, 0, 0, 0, one])

Remember, list2vec is defined in the module vecutil and one is defined in GF2.

7.7.4 Generating mathbfu
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Task 7.7.1: Write a procedure choose secret vector(s,t) with the following spec:

• input: GF (2) field elements s and t (i.e. bits)

• output: a random 6-vector u such that a0 · u = s and b0 · u = t

Why must the output be random? Suppose that the procedure was not random: the output
vector u was determined by the two secret bits. The TA could use the information to make
a good guess as to the value of u and therefore the values of s and t.

For this task, you can use Python’s random module to generate pseudorandom elements
of GF (2).

>>> import random
>>> def randGF2(): return random.randint(0,1)*one

However, be warned: Don’t use this method if you really intend to keep a secret. Python’s
randommodule does not generate cryptographically secure pseudorandom bits. In particular,
a rogue TA could use his shares to actually figure out the state of the pseudorandom-
number generator, predict future pseudorandom numbers, and break the security of the
scheme. (Figuring out the state of the pseudorandom-number generator uses—you guessed
it—linear algebra over GF (2).)

7.7.5 Finding vectors that satisfy the requirement

Task 7.7.2: We have decided that a0 = [one, one, 0, one, 0, one] and b0 = [one, one, 0, 0, 0, one].
Your goal is to select vectors a1, b1,a2, b2,a3, b3,a4, b4 over GF (2) so that the require-
ment is satisfied:

For any three pairs, the corresponding six vectors are linearly independent.

Include in your answer any code you used, and the vectors you came up with. Your solution
to this problem should be submitted electronically and on paper.

Hint: try selecting eight random vectors and testing whether they satisfy the require-
ment. Repeat until you succeed. Use the independence module.

7.7.6 Sharing a string

Now that we can share two bits, we can share an arbitrarily long string.
The module bitutil defines procedures

• str2bits(str), which converts a string to a list of GF (2) values

• bits2str(bitlist), the inverse of str2bits

• bits2mat(bitlist, nrows), which uses the bits in bitlist to populate a matrix
with nrows rows.
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• mat2bits(M), which is the inverse of bits2mat

You can use str2bits to transform a string, say "Rosebud", into a list of bits, and use
bits2mat to transform the list of bits to a 2 × n matrix.

For each column of this matrix, you can use the procedure choose secret vector(s,t)
of Task 7.7.1 to obtain a corresponding secret vector u, constructing a matrix U whose
columns are the secret vectors.

To compute the shares of the TAs, multiply the matrix

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0

b0
a1

b1
a2

b2
a3

b3
a4

b4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

times U . The second and third rows of the product form the share for TA 1, and so on.

7.8 Lab: Factoring integers

7.8.1 First attempt to use square roots

In one step towards a modern factorization algorithm, suppose you could find integers a and
b such that

a2 − b2 = N

for then
(a − b)(a + b) = N

so a− b and a + b are divisors of N . We hope that they happen to be nontrivial divisors (ie.
that a − b is neither 1 nor N).
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Task 7.8.1: To find integers a and b such that a2−b2 = N , write a procedure root method(N)
to implement the following algorithm:

• Initialize integer a to be an integer greater than
√

N

• Check if
√

a2 − N is an integer.

• If so, let b =
√

a2 − N . Success! Return a − b.

• If not, repeat with the next greater value of a.

The module factoring support provides a procedure intsqrt(x) with the following spec:

• input: an integer x

• output: an integer y such that y ∗ y is close to x and, if x happens to be a perfect
square, y ∗ y is exactly x.

You should use intsqrt(x) in your implementation of the above algorithm. Try it out with
55, 77, 146771, and 118. Hint: the procedure might find just a trivial divisor or it might
run forever.

7.8.2 Euclid’s algorithm for greatest common divisor

In order to do better, we turn for help to a lovely algorithm that dates back some 2300 years:
Euclid’s algorithm for greatest common divisor. Here is code for it:

def gcd(x,y): return x if y == 0 else gcd(y, x % y)

Task 7.8.2: Enter the code for gcd or import it from the module factoring support
that we provide. Try it out. Specifically, use Python’s pseudo-random-number generator
(use the procedure randint(a,b) in the module random) or use pseudo-random whacking
at your keyboard to generate some very big integers r, s, t. Then set a = r ∗ s and b = s ∗ t,
and find the greatest common divisor d of a and b. Verify that d has the following properties:

• a is divisible by d (verify by checking that a%d equals zero)

• b is divisible by d, and

• d ≥ s

7.8.3 Using square roots revisited

It’s too hard to find integers a and b such that a2−b2 equals N . We will lower our standards
a bit, and seek integers a and b such that a2 − b2 is divisible by N . Suppose we find such
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integers. Then there is another integer k such that

a2 − b2 = kN

That means
(a − b)(a + b) = kN

Every prime in the bag of primes whose product is kN

• belongs either to the the bag of primes whose product is k or the bag of primes whose
product is N , and

• belongs either to the the bag of primes whose product is a − b or the bag of primes
whose product is a + b.

Suppose N is the product of two primes, p and q. If we are even a little lucky, one of these
primes will belong to the bag for a− b and the other will belong to the bag for a + b. If this
happens, the greatest common divisor of a − b with N will be nontrivial! And, thanks to
Euclid’s algorithm, we can actually compute it.

Task 7.8.3: Let N = 367160330145890434494322103, let a = 67469780066325164, and
let b = 9429601150488992, and verify that a ∗ a− b ∗ b is divisible by N . That means that
the greatest common divisor of a − b and N has a chance of being a nontrivial divisor of
N . Test this using the gcd procedure, and report the nontrivial divisor you found.

But how can we find such a pair of integers? Instead of hoping to get lucky, we’ll take
matters into our own hands. We’ll try to create a and b. This method starts by creating a
set primeset consisting of the first thousand or so primes. We say an integer x factors over
primeset if you can multiply together some of the primes in S (possibly using a prime more
than once) to form x.

For example:

• 75 factors over {2, 3, 5, 7} because 75 = 3 · 5 · 5.

• 30 factors over {2, 3, 5, 7} because 30 = 2 · 3 · 5.

• 1176 factors over {2, 3, 5, 7} because 1176 = 2 · 2 · 2 · 3 · 7 · 7.

We can represent a factorization of an integer over a set of primes by a list of pairs
(prime, exponent). For example:

• We can represent the factorization of 75 over {2, 3, 5, 7} by the list of pairs [(3, 1), (5, 2)],
indicating that 75 is obtained by multiplying a single 3 and two 5’s.

• We can represent the factorization of 30 by the list [(2, 1), (3, 1), (5, 1)], indicating that
30 is obtained by multiplying 2, 3, and 5.
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• We can represent the factorization of 1176 by the list [(2, 3), (3, 1), (7, 2)], indicating
that 1176 is obtained by multiplying together three 2’s, one 3 and two 7’s.

The first number in each pair is a prime in the set primeset and the second number is its
exponent:

75 = 3152

30 = 213151

1176 = 233172

The module factoring support defines a procedure dumb factor(x, primeset) with the
following spec:

• input: an integer x and a set primeset of primes

• output: if there are primes p1, . . . ,ps in primeset and positive integers e1, e2, . . . , es (the
exponents) such that x = pe11 pe22 · · · pess then the procedure returns the list [(p1, e1), (p2, e2), . . . , (ps, es)]
of pairs (prime, exponent). If not, the procedure returns the empty list.

Here are some examples:

>>> dumb_factor(75, {2,3,5,7})
[(3, 1), (5, 2)]
>>> dumb_factor(30, {2,3,5,7})
[(2, 1), (3, 1), (5, 1)]
>>> dumb_factor(1176, {2,3,5,7})
[(2, 3), (3, 1), (7, 2)]
>>> dumb_factor(2*17, {2,3,5,7})
[]
>>> dumb_factor(2*3*5*19, {2,3,5,7})
[]

Task 7.8.4: Define primeset={2, 3, 5, 7, 11, 13}. Try out dumb factor(x, primeset) on
integers x = 12, x = 154, x = 2 ∗ 3 ∗ 3 ∗ 3 ∗ 11 ∗ 11 ∗ 13, x = 2 ∗ 17, x = 2 ∗ 3 ∗ 5 ∗ 7 ∗ 19.
Report the results.

Task 7.8.5: From the GF2 module, import the value one. Write a procedure int2GF2(i)
that, given an integer i, returns one if i is odd and 0 if i is even.

>>> int2GF2(3)
one
>>> int2GF2(4)
0
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The module factoring support defines a procedure primes(P) that returns a set con-
sisting of the prime numbers less than P .

Task 7.8.6: From the module vec, import Vec. Write a procedure make Vec(primeset,
factors) with the following spec:

• input: a set of primes primeset and a list factors=[(p1, a1), (p2, a2), . . . , (ps, as)] such
as produced by dumb factor, where every pi belongs to primeset

• output: a primeset-vector v over GF (2) with domain primeset such that v[pi] =
int2GF2(ai) for i = 1, . . . , s

For example,

>>> make_Vec({2,3,5,7,11}, [(3,1)])
Vec({3, 2, 11, 5, 7},{3: one})
>>> make_Vec({2,3,5,7,11}, [(2,17), (3, 0), (5,1), (11,3)])
Vec({3, 2, 11, 5, 7},{11: one, 2: one, 3: 0, 5: one})

Now comes the interesting part.

Task 7.8.7: Suppose you want to factor the integer N = 2419 (easy but big enough to
demonstrate the idea).

Write a procedure find candidates(N, primeset) that, given an integer N to factor
and a set primeset of primes, finds len(primeset)+1 integers a for which a · a − N can
be factored completely over primeset The procedure returns two lists:

• the list roots consisting of a0, a1, a2, ... such that ai·ai−N can be factored completely
over primeset, and

• the list rowlist such that element i is the primeset-vector over GF (2) corresponding
to ai (that is, the vector produced by make vec).

The algorithm should initialize

roots = []
rowlist = []

and then iterate for x = intsqrt(N)+2, intsqrt(N)+3, . . ., and for each value of x,

• if x · x − N can be factored completely over primeset,

– append x to roots,

– append to rowlist the vector corresponding to the factors of x · x − N

continuing until at least len(primeset)+1 roots and vectors have been accumulated.
Try out your procedure on N = 2419 by calling find candidates(N, primes(32)).



CHAPTER 7. GAUSSIAN ELIMINATION 406

Here’s a summary of the result of this computation:

x x2-N factored result of dumb factor vector.f
51 182 2 · 7 · 13 [(2, 1), (7, 1), (13, 1)] {2 : one, 13 : one, 7 : one}
52 285 3 · 5 · 19 [(3, 1), (5, 1), (19, 1)] {19 : one, 3 : one, 5 : one}
53 390 2 · 3 · 5 · 13 [(2, 1), (3, 1), (5, 1), (13, 1)] {2 : one, 3 : one, 5 : one, 13 : one}
58 945 33 · 5 · 7 [(3, 3), (5, 1), (7, 1)] {3 : one, 5 : one, 7 : one}
61 1302 2 · 3 · 7 · 31 [(2, 1), (3, 1), (7, 1), (31, 1)] {31 : one, 2 : one, 3 : one, 7 : one}
62 1425 3 · 52 · 19 [(3, 1), (5, 2), (19, 1)] {19 : one, 3 : one, 5 : 0}
63 1550 2 · 52 · 31 [(2, 1), (5, 2), (31, 1)] {2 : one, 5 : 0, 31 : one}
67 2070 2 · 32 · 5 · 23 [[(2, 1), (3, 2), (5, 1), (23, 1)] {2 : one, 3 : 0, 5 : one, 23 : one}
68 2205 32 · 5 · 72 [(3, 2), (5, 1), (7, 2)] {3 : 0, 5 : one, 7 : 0}
71 2622 2 · 3 · 19 · 23 [(2, 1), (3, 1), (19, 1), (23, 1)] {19 : one, 2 : one, 3 : one, 23 : one}
77 3510 2 · 33 · 5 · 13 [(2, 1), (3, 3), (5, 1), (13, 1)] {2 : one, 3 : one, 5 : one, 13 : one}
79 3822 2 · 3 · 72 · 13 [(2, 1), (3, 1), (7, 2), (13, 1)] {2 : one, 3 : one, 13 : one, 7 : 0}

Thus, after the loop completes, the value of roots should be the list

[51, 52, 53, 58, 61, 62, 63, 67, 68, 71, 77, 79]

and the value of rowlist should be the list

[Vec({2,3,5, ..., 31},{2: one, 13: one, 7: one}),
...

Vec({2,3,5, ... , 31},{2: one, 3: one, 5: one, 13: one}),
Vec({2,3,5, ..., 31}, {2: one, 3: one, 13: one, 7: 0})]

Now we use the results to find a nontrivial divisor of N .
Examine the table rows corresponding to 53 and 77. The factorization of 53 ∗ 53 − N is

2 · 3 · 5 · 13. The factorization of 77 ∗ 77 − N is 2 · 33 · 5 · 13. Therefore the factorization of
the product (53 ∗ 53 − N)(77 ∗ 77 − N) is

(2 · 3 · 5 · 13)(2 · 33 · 5 · 13) = 22 · 34 · 52 · 132

Since the exponents are all even, the product is a perfect square: it is the square of

2 · 32 · 5 · 13

Thus we have derived

(532 − N)(772 − N) = (2 · 32 · 5 · 13)2

532 · 772 − kN = (2 · 32 · 5 · 13)2

(53 · 77)2 − kN = (2 · 32 · 5 · 13)2
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Task 7.8.8: To try to find a factor, let a = 53 · 77 and let b = 2 · 32 · 5 · 13, and compute
gcd(a − b, N). Did you find a proper divisor of N?

Similarly, examine the table rows corresponding to 52, 67, and 71. The factorizations of
x ∗ x − N for these values of x are

3 · 5 · 19
2 · 32 · 5 · 23
2 · 3 · 19 · 23

Therefore the factorization of the product (52 ∗ 52 − N)(67 ∗ 67 − N)(71 ∗ 71 − N) is

(3 · 5 · 19)(2 · 32 · 5 · 23)(2 · 3 · 19 · 23) = 22 · 34 · 52 · 192 · 232

which is again a perfect square; it is the square of

2 · 32 · 5 · 19 · 23

Task 7.8.9: To again try to find a factor of N (just for practice), let a = 52 · 67 · 71 and
let b = 2 · 32 · 5 · 19 · 23, and compute gcd(a − b, N). Did you find a proper divisor of N?

How did I notice that the rows corresponding to 52, 67, and 71 combine to provide a
perfect square? That’s where the linear algebra comes in. The sum of the vectors in these
rows is the zero vector. Let A be the matrix consisting of these rows. Finding a nonempty
set of rows of A whose GF (2) sum is the zero vector is equivalent, by the linear-combinations
definition of vector-matrix multiplication, to finding a nonzero vector v such that v ∗ A is
the zero vector. That is, v is a nonzero vector in the null space of AT .

How do I know such a vector exists? Each vector in rowlist is a primeset-vector and so
lies in a K-dimensional space where K = len(primelist). Therefore the rank of these vectors
is at most K. But rowlist consists of at least K +1 vectors. Therefore the rows are linearly
dependent.

How do I find such a vector? When I use Gaussian elimination to transform the matrix
into echelon form, the last row is guaranteed to be zero.

More specifically, I find a matrix M representing a transformation that reduced the
vectors in rowlist to echelon form. The last row of M , multiplied by the original matrix
represented by rowlist, yields the last row of the matrix in echelon form, which is a zero
vector.

To compute M , you can use the procedure transformation rows(rowlist input) de-
fined in the module echelon we provide. Given a matrix A (represented by as a list
rowlist input of rows), this procedure returns a matrix M (also represented as a list
of rows) such that MA is in echelon form.
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Since the last row of MA must be a zero vector, by the vector-matrix definition of
matrix-vector multiplication, the last row of M times A is the zero vector. By the linear-
combinations definition of vector-matrix multiplication, the zero vector is a linear combina-
tion of the rows of A where the coefficients are given by the entries of the last row of M .
The last row of M is

Vec({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},{0: 0, 1: one, 2: one, 4: 0,
5: one, 11: one})

Note that entries 1, 2, 5, and 11 are nonzero, which tells us that the sum of the corresponding
rows of rowlist is the zero vector. That tells us that these rows correspond to the factor-
izations of numbers whose product is a perfect square. The numbers are: 285, 390, 1425,
and 3822. Their product is 605361802500, which is indeed a perfect square: it is the square
of 778050. We therefore set b = 778050. We set a to be the product of the corresponding
values of x (52, 53, 62, and 79), which is 139498888. The greatest common divisor of a − b
and N is, uh, 1. Oops, we were unlucky–it didn’t work.

Was all that work for nothing? It turns out we were not so unlucky. The rank of the
matrix A could have been len(rowlist) but turned out to be somewhat less. Consequently,
the second-to-last row of MA is also a zero vector. The second-to-last row of M is

Vec({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},{0: 0, 1: 0, 10: one, 2: one})

Note that entries 10 and 2 are nonzero, which tells us that combining row 2 of rowlist (the
row corrresponding to 53) with row 10 of rowlist (the row corresponding to 77) will result
in a perfect square.

Task 7.8.10: Define a procedure find a and b(v, roots, N) that, given a vector v
(one of the rows of M), the list roots, and the integer N to factor, computes a pair (a, b)
of integers such that a2 − b2 is a multiple of N .

Your procedure should work as follows:

• Let alist be the list of elements of roots corresponding to nonzero entries of the
vector v. (Use a comprehension.)

• Let a be the product of these. (Use the procedure prod(alist) defined in the module
factoring support.)

• Let c be the product of {x · x − N : x ∈ alist}.

• Let b be intsqrt(c).

• Verify using an assertion that b*b == c

• Return the pair (a, b).

Try out your procedure with v being the last row of M . See if a−b and N have a nontrivial
common divisor. If it doesn’t work, try it with v being the second-to-last row of M , etc.
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Finally, you will try the above strategy on larger integers.

Task 7.8.11: Let N = 2461799993978700679, and try to factor N

• Let primelist be the set of primes up to 10000.

• Use find candidates(N, primelist) to compute the lists roots and rowlist.

• Use echelon.transformation rows(rowlist) to get a matrix M .

• Let v be the last row of M , and find a and b using find a and b(v, roots, N).

• See if a − b has a nontrivial common divisor with N . If not, repeat with v being the
second-to-last row of M or the third-to-last row....

Give a nontrivial divisor of N .

Task 7.8.12: Let N = 20672783502493917028427, and try to factor N . This time, since
N is a lot bigger, finding K + 1 rows will take a lot longer, perhaps six to ten minutes
depending on your computer. Finding M could take a few minutes.

Task 7.8.13: Here is a way to speed up finding M : The procedure
echelon.transformation rows takes an optional second argument, a list of column-
labels. The list instructs the procedure in which order to handle column-labels. The pro-
cedure works much faster if the list consists of the primes of primelist in descending
order:

>>> M_rows = echelon.transformation_rows(rowlist,
sorted(primelist, reverse=True))

Why should the order make a difference? Why does this order work well? Hint: a large
prime is less likely than a small prime to belong to the factorization of an integer.

7.9 Review questions

• What is echelon form?

• What can we learn about the rank of a matrix in echelon form?

• How can a matrix be converted into echelon form by multiplication by an invertible matrix?

• How can Gaussian elimination be used to find a basis for the null space of a matrix?

• How can Gaussian elimination be used to solve a matrix-vector equation when the matrix
is invertible?
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Problems

Practice on Gaussian elimination

Problem 7.9.1: Carry out Gaussian elimination by hand for the following matrix over GF (2).
Handle the columns in the order A,B,C,D. For each of the column-labels, tell us

• which row you select as the pivot row,

• which rows the pivot row is added to (if any), and

• what the resulting matrix is.

Finally, reorder the rows of the resulting matrix to obtain a matrix in echelon form.
Note: Remember that each row is only used once as a pivot-row, and that the pivot-row for

column c must have a nonzero value for that column. Remember that the matrix is over GF (2).

A B C D
0 one one 0 0
1 one 0 one 0
2 0 one one one
3 one 0 0 0

Recognizing echelon form

Problem 7.9.2: Each of the matrices given below is almost in echelon form; replace the
MINIMUM number of elements with zeroes to obtain a matrix in echelon form. You are not
allowed to reorder the rows or columns of the matrix. (Note: you don’t need to actually do any
steps of Gaussian elimination for this problem.)

Example: Given the matrix
⎡

⎢
⎢
⎣

1 2 3 4
9 2 3 4
0 0 3 4
0 8 0 4

⎤

⎥
⎥
⎦

you would replace the 9 and 8 with zeroes, so you answer would be the matrix

⎡

⎢
⎢
⎣

1 2 3 4
0 2 3 4
0 0 3 4
0 0 0 4

⎤

⎥
⎥
⎦

Okay, here are the problems:
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1.

⎡

⎢
⎢
⎢
⎢
⎣

1 2 0 2 0
0 1 0 3 4
0 0 2 3 4
1 0 0 2 0
0 3 0 0 4

⎤

⎥
⎥
⎥
⎥
⎦

2.

⎡

⎢
⎢
⎣

0 4 3 4 4
6 5 4 2 0
0 0 0 0 1
0 0 0 0 2

⎤

⎥
⎥
⎦

3.

⎡

⎣

1 0 0 1
1 0 0 1
0 0 0 1

⎤

⎦

4.

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
1 1 0 0
0 0 0 1

⎤

⎥
⎥
⎦

Problem 7.9.3: Write a procedure is echelon(A) that takes a matrix in list of row lists and
returns True if it is echelon form, and False otherwise.

Try out your procedure on the following matrices:

⎡

⎣

2 1 0
0 −4 0
0 0 1

⎤

⎦ (True),

⎡

⎣

2 1 0
−4 0 0
0 0 1

⎤

⎦ (False),

⎡

⎣

2 1 0
0 3 0
1 0 1

⎤

⎦ (False),

⎡

⎣

1 1 1 1 1
0 2 0 1 3
0 0 0 5 3

⎤

⎦ (True)

Solving a matrix-vector equation when the matrix is in echelon form

Consider solving the matrix-vector equation

a b c d e
0 1 1
1 2 3
2 1 9

∗ [xa, xb, xc, xd, xe] = [1, 1, 1]

where the matrix is in echelon form. The algorithm for solving this is very similar to the algorithm
for solving a triangular system. The difference is that the algorithm disregards some of the
columns. In particular, any column not containing the leftmost nonzero entry of some row is
disregarded.

For the above example, the algorithm should disregard columns c and e. Column a contains
the leftmost nonzero in row 0, column b contains the leftmost nonzero in row 1, and column d
contains the leftmost nonzero in row 2.



CHAPTER 7. GAUSSIAN ELIMINATION 412

Problem 7.9.4: For each of the following matrix-vector equations, find the solution:

(a)

[

10 2 −3 53
0 0 1 2013

]

∗ [x1, x2, x3, x4] = [1, 3]

(b)

⎡

⎣

2 0 1 3
0 0 5 3
0 0 0 1

⎤

⎦ ∗ [x1, x2, x3, x4] = [1,−1, 3]

(c)

⎡

⎣

2 2 4 3 2
0 0 −1 11 1
0 0 0 0 5

⎤

⎦ ∗ [x1, x2, x3, x4, x5] = [2, 0, 10]

The examples above have no rows that are zero. What do we do when the matrix has some
rows that are zero? Ignore them!

Consider an equation ai · x = bi where ai = 0.

• If bi = 0 then the equation is true regardless of the choice of x.

• If bi ̸= 0 then the equation is false regardless of the choice of x.

Thus the only disadvantage of ignoring the rows that are zero is that the algorithm will not
notice that the equations cannot be solved.

Problem 7.9.5: For each of the following matrix-vector equations, say whether the equation
has a solution. If so, compute the solution.

(a)

⎡

⎣

1 3 −2 1 0
0 0 2 −3 0
0 0 0 0 0

⎤

⎦ ∗ [x1, x2, x3, x4, x5] = [5, 3, 2]

(b)

⎡

⎢
⎢
⎣

1 2 −8 −4 0
0 0 2 12 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎦
∗ [x1, x2, x3, x4, x5] = [5, 4, 0, 0]

Problem 7.9.6: Give a procedure echelon solve(row list, label list, b) with the fol-
lowing spec:

• input: for some integer n, a matrix in echelon form represented by a list row list of n
vectors, a list of column-labels giving the order of the columns of the matrix (i.e. the
domain of the vectors), and a length-n list b of field elements
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• output: a vector x such that, for i = 0, 1, . . . , n − 1, the dot-product of row list[i] with
x equals b[i] if rowlist[i] is not a zero vector

Obviously your code should not use the solver module.
If you wanted to use this procedure with floating-point numbers, the procedure would have

to interpret very small numbers as zero. To avoid this issue, you should assume that the field is
GF (2). (The interested student can modify the solution to work for R.)

Hints for your implementation:

• The slickest way to write this procedure is to adapt the code of the procedure
triangular solve(rowlist, label list, b) in module triangular. As in that pro-
cedure, initialize a vector x to zero, then iterate through the rows of rowlist from last
row to first row; in each iteration, assign to an entry of x. In this procedure, however, you
must assign to the variable corresponding to the column containing the first nonzero entry
in that row. (If there are no nonzero entries in that row, the iteration should do nothing.)

This approach leads to a very simple implementation consisting of about seven lines. The
code closely resembles that for triangular solve.

• For those for whom the above approach does not make sense, here is an alternative ap-
proach that leads to about twice as many lines of code. Form a new matrix-vector equation
by removing

– zero rows and

– irrelevant columns,

and then use the procedure triangular solve in module triangular to solve the new
matrix-vector equation.

Removing zero rows: When you remove zero rows from the matrix, you must remove the
corresponding entries from the right-hand side vector b. Because the matrix is in echelon
form, all the zero rows come at the end. Find out which rows are zero, and form a new
rowlist from the old that omits those rows; form a new right-hand side vector b by removing
the corresponding entries.

Removing irrelevant columns: For each of the remaining rows, find out the position of
the leftmost nonzero entry. Then remove the columns that do not contain any leftmost
nonzero entries.

Let Ax = b be the original matrix-vector equation, and let Âx̂ = b̂ be the one resulting
from these operations. Finally, solve Âx̂ = b̂ using triangular solve, and let û be the
solution. The domain of û equals the column-label set of Â rather than that of A. From
û, construct a solution u to Ax = b. The domain of u is the column-label set of A,
and the extra entries of u (the ones not given by û) are set to zero (easy because of our
sparsity convention).

Here are some examples to test your procedure.



CHAPTER 7. GAUSSIAN ELIMINATION 414

•

’A’ ’B’ ’C’ ’D’ ’E’
one 0 one one 0
0 one 0 0 one
0 0 one 0 one
0 0 0 0 one

and b = [one, 0, one, one].

The solution is
’A’ ’B’ ’C’ ’D’ ’E’
one one 0 0 one

•

’A’ ’B’ ’C’ ’D’ ’E’
one one 0 one 0
0 one 0 one one
0 0 one 0 one
0 0 0 0 0

and b = [one, 0, one, 0].

The solution is
’A’ ’B’ ’C’ ’D’ ’E’
one 0 one 0 0

Problem 7.9.7: Now that you have developed a procedure for solving a matrix-vector equation
where the matrix is in echelon form, you can use this in a procedure for the general case. We
have already described the method. The code for the method is

def solve(A, b):
M = echelon.transformation(A)
U = M*A
col_label_list = sorted(A.D[1])
U_rows_dict = mat2rowdict(U)
row_list = [U_rows_dict[i] for i in sorted(U_rows_dict)]
return echelon_solve(row_list,col_label_list, M*b)

(Sorting is problematic when the column-labels include values of different types, e.g. ints and
strings.)

Suppose you have the matrix

A =

A B C D
a one one 0 one
b one 0 0 one
c one one one one
d 0 0 one one

and the right-hand side vector g=
a b c d
one 0 one 0

You are interested in finding the solution to the matrix-vector equation Ax = g. The first
step in using Gaussian elimination to find the solution is to find a matrix M such that MA is in
echelon form.
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In this case, M =

a b c d
0 one 0 0 0
1 one one 0 0
2 one 0 one 0
3 one 0 one one

and MA =

A B C D
0 one one 0 one
1 0 one 0 0
2 0 0 one 0
3 0 0 0 one

Use the above data and above procedure to figure out not the solution but what actual
arguments should be provided to echelon solve in order to obtain the solution to the original
matrix-vector equation.

Finding a basis for {u : u ∗ A = 0} = AT

Problem 7.9.8: We consider matrices over GF (2). Let

A =

A B C D E
a 0 0 0 one 0
b 0 0 0 one one
c one 0 0 one 0
d one 0 0 0 one
e one 0 0 0 0

.

Then the matrix

M =

a b c d e
0 0 0 one 0 0
1 one 0 0 0 0
2 one one 0 0 0
3 0 one one one 0
4 one 0 one 0 one

has the property that MA is a matrix in echelon form, namely

MA =

A B C D E
0 one 0 0 one 0
1 0 0 0 one 0
2 0 0 0 0 one
3 0 0 0 0 0
4 0 0 0 0 0

List the rows u of M such that u ∗A = 0. (Note that these are vectors in the null space of
the transpose AT .)
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Problem 7.9.9: We consider matrices over GF (2). Let

A =

A B C D E
a 0 0 0 one 0
b 0 0 0 one one
c one 0 0 one 0
d one one one 0 one
e one 0 0 one 0

Then the matrix

M =

a b c d e
0 0 0 one 0 0
1 0 0 one one 0
2 one 0 0 0 0
3 one one 0 0 0
4 0 0 one 0 one

has the property that MA is a matrix in echelon form, namely

MA =

A B C D E
0 one 0 0 one 0
1 0 one one one one
2 0 0 0 one 0
3 0 0 0 0 one
4 0 0 0 0 0

List the rows u of M such that u ∗A = 0. (Note that these are vectors in the null space of
the transpose AT .)



Chapter 8

The Inner Product

The purpose of computing is insight, not
numbers.

Richard Hamming

In this chapter, we learn how the notions of length and perpendicular are interpreted in
Mathese. We study the problem of finding the point on a given line closest to a given point. In
the next chapter, we study a generalization of this problem.

8.1 The fire engine problem

There is a burning house located at coordinates [2, 4]! A street runs near the house, along the
line through the origin and through [6, 2]—but is it near enough? The fire engine has a hose only
three and a half units long. If we can navigate the fire engine to the point on the line nearest
the house, will the distance be small enough to save the house?

We’re faced with two questions: what point along the line is closest to the house, and how
far is it?

417
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Let’s formulate this as a computational problem. Recall from Section 2.5.3 that a line through
the origin can be represented as the set of scalar multiples of a vector; in our example, the street
runs along the line {α[3, 1] : α ∈ R}. The fire engine problem can therefore be formulated as
follows.

Computational Problem 8.1.1: The vector in the span of one given vector closest to an-
other given vector, a.k.a. fire-engine problem:

• input: vectors v and b

• output: the point on the line {αv : α ∈ R} that is closest to b

This problem is not yet completely formulated because we have not said what we mean by closest.

8.1.1 Distance, length, norm, inner product

We will define the distance between two vectors p and b to be the length of the difference p− b.
This means that we must define the length of a vector. Instead of using the term “length” for
vectors, we typically use the term norm. The norm of a vector v is written ∥v∥. Since it plays
the role of length, it should satisfy the following norm properties:

Property N1: For any vector v, ∥v∥ is a nonnegative real number.

Property N2: For any vector v, ∥v∥ is zero if and only if v is a zero vector.

Property N3: For any vector v and any scalar α, ∥α v∥ = |α|∥v∥.

Property N4: For any vectors u and v, ∥u + v∥ ≤ ∥u∥ + ∥v∥
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One way to define vector norm is to define an operation on vectors called inner product. The
notation for the inner product of vectors u and v is

⟨u,v⟩

The inner product must satisfy certain axioms, which we outline later.
It turns out, however, that there is no way to define inner product for GF (2) so that it satisfies

the axioms. We will therefore regretfully leave aside GF (2) for the remainder of the book.
For the real numbers and complex numbers, one has some flexibility in defining the inner

product—but there is one most natural and convenient way of defining it, one that leads to
the norm of a vector over the reals being the length (in the geometrical sense) of the arrow
representing the vector. (Some advanced applications, not covered in this book, require more
complicated inner products.)

Once we have defined an inner product, the norm of a vector u is defined by

∥v∥ =
√

⟨v,v⟩ (8.1)

8.2 The inner product for vectors over the reals

Our inner product for vectors over R is defined as the dot-product:

⟨u,v⟩ = u · v

Some algebraic properties of the inner product for vectors over the reals follow easily from
properties of the dot-product (bilinearity, homogeneity, symmetry):

• linearity in the first argument: ⟨u + v,w⟩ = ⟨u,w⟩ + ⟨v,w⟩

• symmetry: ⟨u,v⟩ = ⟨v,u⟩

• homogeneity: ⟨αu,v⟩ = α ⟨u,v⟩

8.2.1 Norms of vectors over the reals

Let’s see what the resulting norm function looks like:

∥v∥ =
√

⟨v,v⟩

Suppose v is an n-vector, and write v = [v1, . . . , vn]. Then

∥v∥2 = ⟨v,v⟩ = v · v
= v21 + · · · + v2n

More generally, if v is a D-vector,

∥v∥2 =
∑

i∈D

v2i

so ∥v∥ =
√
∑

i∈D v2i .

Does this norm satisfy the norm properties of Section 8.1.1?



CHAPTER 8. THE INNER PRODUCT 420

1. The first property states that ∥v∥ is a real number. Is this true for every vector v over
the reals? Every entry vi is real, so its square v2i is a nonnegative real number. The sum
of squares is a nonnegative real number, so ∥v∥ is the square root of a nonnegative real
number, so ∥v∥ is a nonnegative real number.

2. The second property states that ∥v∥ is zero if and only if v is a zero vector. If v is a zero
vector then every entry is zero, so the sum of squares of entries is also zero. On the other
hand, if v is not a zero vector then there is at least one nonzero entry vi. Since ∥v∥2 is
the sum of squares, there is no cancellation—since at least one of the terms is positive, the
sum is positive. Therefore ∥v∥ is positive in this case.

3. The third property states that, for any scalar α, ∥α v∥ = |α|∥v∥. Let’s check this property:

∥α v∥2 = ⟨α v,α v⟩ by definition of norm

= α ⟨v,α v⟩ by homogeneity of inner product

= α (α ⟨v,v⟩) by symmetry and homogeneity (again) of inner product

= α2∥v∥2 by definition of norm

Thus ∥α v∥ = |α|, ∥v∥.

Example 8.2.1: Consider the example of 2-vectors. What is the length of the vector u =
[u1, u2]? Remember the Pythagorean Theorem: for a right triangle with side-lengths a, b, c,
where c is the length of the hypotenuse,

a2 + b2 = c2 (8.2)

We can use this equation to calculate the length of u:
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u

[u1, u2]

u1

u2

(length of u)2 = u2
1 + u2

2

So this notion of length agrees with the one we learned in grade school, at least for vectors in
R2.

8.3 Orthogonality

Orthogonal is Mathese for perpendicular.
Before giving the definition, I’ll motivate it. We will use the Pythagorean Theorem in reverse:

we will define the notion of orthogonality so that the Pythagorean Theorem holds. Let u and v
be vectors. Their lengths are ∥u∥ and ∥v∥. Think of these vectors as translations, and place the
tail of v at the head of u. Then the “hypotenuse” is the vector from the tail of u to the head of
v, which is u + v. (The triangle is not necessarily a right angle.)
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u

v
u+v

The squared length of the vector u + v (the “hypotenuse”) is

∥u + v∥2 = ⟨u + v,u + v⟩
= ⟨u,u + v⟩ + ⟨v,u + v⟩ by linearity of inner product in the first argument

= ⟨u,u⟩ + ⟨u,v⟩ + ⟨v,u⟩ + ⟨v,v⟩ by symmetry and linearity

= ∥u∥2 + 2 ⟨u,v⟩ + ∥v∥2 by symmetry

The last expression is ∥u∥2 + ∥v∥2 if and only if ⟨u,v⟩ = 0.
We therefore define u and v to be orthogonal if ⟨u,v⟩ = 0. From the reasoning above, we

obtain:

Theorem 8.3.1 (Pythagorean Theorem for vectors over the reals): If vectors u and
v over the reals are orthogonal then

∥u + v∥2 = ∥u∥2 + ∥v∥2

8.3.1 Properties of orthogonality

To solve the fire engine problem, we will use the Pythagorean Theorem in conjunction with the
following simple observations:

Lemma 8.3.2 (Orthogonality Properties): For any vectors u and v and any scalar α,

Property O1: If u is orthogonal to v then αu is orthogonal to α v for every scalar α.

Property O2: If u and v are both orthogonal to w then u + v is orthogonal to w.
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Proof

1. ⟨u,α v⟩ = α ⟨u,v⟩ = α 0 = 0

2. ⟨u + v,w⟩ = ⟨u,w⟩ + ⟨v,w⟩ = 0 + 0
!

Lemma 8.3.3: If u is orthogonal to v then, for any scalars α,β,

∥αu + β v∥2 = α2
1∥u∥2 + β2∥v∥2

Proof

(αu + β v) · (αu + β v) = αu · αu + β v · β v + αu · β v + β v · αu

= αu · αu + β v · β v + αβ (u · v) + βα (v · u)

= αu · αu + β v · β v + 0 + 0

= α2 ∥u∥2 + β2 ∥v∥2

!

Problem 8.3.4: Demonstrate using a numerical example that Lemma 8.3.3 would not be true
if we remove the requirement that u and v are orthogonal.

Problem 8.3.5: Using induction and Lemma 8.3.3, prove the following generalization: Suppose
v1, . . . ,vn are mutually orthogonal. For any coefficients α1, . . . ,αn,

∥α1v1 + · · · + αnvn∥2 = α2
1∥v1∥2 + · · · + α2

n∥vn∥2

8.3.2 Decomposition of b into parallel and perpendicular components

In order to state the solution to the fire engine problem, we first introduce a key concept.

Definition 8.3.6: For any vector b and any vector v, define vectors b||v and b⊥v to be,
respectively, the projection of b along v and the projection of b orthogonal to v if

b = b||v + b⊥v (8.3)
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and, for some scalar σ ∈ R,
b||v = σ v (8.4)

and
b⊥v is orthogonal to v (8.5)

b

b||v b! v

projection along v projection orthogonal to v

b = +

Example 8.3.7: Suppose we are working on the plane, and the line is the x-axis, i.e. the set
{(x, y) : y = 0}. Say b is (b1, b2), and v is (1, 0). The projection of b along v is (b1, 0), and
the projection of b orthogonal to v is (0, b2).

(b1,b2)

b||v

To verify this, consider the equations.

• Equation 8.3 requires that (b1, b2) = (b1, 0) + (0, b2), which is certainly true.

• Equation 8.4 requires that, for some scalar σ, we have (b1, 0) = σ (1, 0), which is true
when we choose σ to be b1.

• Equation 8.5 requires that (0, b1) is orthogonal to (1, 0), which is clearly true.

When v is the zero vector

What if v is the zero vector? In this case, the only vector b||v satisfying Equation 8.4 is the
zero vector. According to Equation 8.3, this would mean that b⊥ must equal b. Fortunately,
this choice of b⊥ does satisfy Equation 8.5, i.e. b⊥ is orthogonal to v. Indeed, every vector is
orthogonal to v when v is the zero vector.
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8.3.3 Orthogonality property of the solution to the fire engine problem

Orthogonality helps us solve the fire engine problem.

Lemma 8.3.8 (Fire Engine Lemma): Let b and v be vectors. The point in Span {v}
closest to b is b||v, and the distance is ∥b⊥v∥.

Example 8.3.9: Continuing with Example 8.3.7 (Page 424), Lemma 8.3.8 states that the point
on the line Span {(1, 0)} closest to (b1, b2) is b||v = (b1, 0).

(b1,b2)

pb||v

For any other point p, the points (b1, b2), b||v, and p form a right triangle. Since p is different
from b||v, the base is nonzero, and so, by the Pythagorean Theorem, the hypotenuse’s lengh is
greater than the height. This shows that p is farther from (b1, b2) than b||v is.

The proof uses the same argument as was used in the example. The proof works in any-
dimensional space but here is a figure in R2:

b

p = !  v

v b||v = ! "v

b! v

Proof

Let p be any point on L = Span {v}. The three points p, b||v, and b form a triangle. The
arrow from p to b||v is b||v − p. The arrow from b||v to b is b − b||v, which is b⊥v. The
arrow from p to b is b− p.

Since b||v and p are both on L, they are both multiples of v, so their difference b||v − p
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is also a multiple of v. Since b − b||v is orthogonal to v, therefore, it is also orthogonal to
b||v − p by Orthogonality Property 1 (Lemma 8.3.2).

Hence by the Pythagorean Theorem,

∥b− p∥2 = ∥b||v − p∥2 + ∥b− b||v∥2

If p ̸= b||v then ∥b||v − p∥2 > 0 so ∥b− b||v∥ < ∥b− p∥.
We have shown that the distance from b||v to b is less than the distance to b from any

other point on L. The distance is the length of the vector b− b||v, which is ∥b⊥v∥. !

Example 8.3.10: What about the case where v is the zero vector? In this case, L is not a
line at all: it is the set consisting just of the zero vector. It is clear that the point in L closest to
b is the only point in L, namely the zero vector, which is indeed b||v in this case (as discussed
at the end of Section 8.3.2). The vector b⊥v is just b in this case, and the distance is ∥b∥.

8.3.4 Finding the projection and the closest point

Now that we have characterized the solution and given it a new name, how can we actually
compute it? It suffices to compute the scalar σ in Equation 8.4. If v is the zero vector, we saw
that σ must be zero. Otherwise, we can derive what σ must be from the other two equations.
Equation 8.5 requires that

〈

b⊥v,v
〉

= 0. Using Equation 8.3 to substitute for b⊥v, we see that

this requires that
〈

b− b||v,v
〉

= 0. Using Equation 8.4 to substitute for b||v, we see that this
requires that ⟨b− σ v,v⟩ = 0. Using linearity and homogeneity of inner product (Section 8.2),
this requires that

⟨b,v⟩ − σ ⟨v,v⟩ = 0 (8.6)

Solving for σ, we obtain

σ =
⟨b,v⟩
⟨v,v⟩ (8.7)

In the special case in which ∥v∥ = 1, Equation 8.7 can be simplified: the denominator ⟨v,v⟩ = 1
so

σ = ⟨b,v⟩ (8.8)

Beware! We have shown that if b, b||v, and b⊥v satisfy Definition 8.3.6 then σ must satisfy
Equation 8.7. Formally, we must also prove the converse: Equation 8.7 implies that b||v = σ v
and b⊥v = b− b||v satisfy Definition 8.3.6.

The proof is just the reverse of the derivation: Equation 8.7 implies Equation 8.6, which
implies that ⟨b− σ v,v⟩ = 0, which means that b⊥v is orthogonal to v as required by the
definition.

We summarize our conclusions in a lemma.

Lemma 8.3.11: For any vector b and any vector v over the reals.

1. There is a scalar σ such that b− σ v is orthogonal to v.



CHAPTER 8. THE INNER PRODUCT 427

2. The point p on Span {v} that minimizes ∥b− p∥ is σ v.

3. The value of σ is ⟨b,v⟩
⟨v,v⟩ .

Quiz 8.3.12: In Python, write a procedure project_along(b, v) that returns the projection
of b onto the span of v.

Answer

def project_along(b, v):
sigma = ((b*v)/(v*v)) if v*v != 0 else 0
return sigma * v

The one-line version is

def project_along(b, v): return (((b*v)/(v*v)) if v*v != 0 else 0) * v

Mathematically, this implementation of project along is correct. However, because of
floating-point roundoff error, it is crucial that we make a slight change.

Often the vector v will be not a truly zero vector but for practical purposes will be zero. If
the entries of v are tiny, the procedure should treat v as a zero vector: sigma should be assigned
zero. We will consider v to be a zero vector if its squared norm is no more than, say, 10−20. So
here is our revised implementation of project along:

def project_along(b, v):
sigma = (b*v)/(v*v) if v*v > 1e-20 else 0
return sigma * v

Now we build on project along to write a procedure to find the orthogonal projection of b.

Quiz 8.3.13: In Python, write a procedure project_orthogonal_1(b, v) that returns the
projection of b orthogonal to v

Answer

def project_orthogonal_1(b, v): return b - project_along(b, v)

These procedures are defined in the module orthogonalization.

8.3.5 Solution to the fire engine problem
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Example 8.3.14: We return to the fire engine problem posed at the beginning of the chapter.
In that example, v = [6, 2] and b = [2, 4]. The closest point on the line {α v : α ∈ R} is the
point σ v where

σ =
v · b
v · v

=
6 · 2 + 2 · 4

6 · 6 + 2 · 2

=
20

40

=
1

2

Thus the point closest to b is 1
2 [6, 2] = [3, 1]. The distance to b is ∥[2, 4]− [3, 1]∥ = ∥[−1, 3]∥ =√

10, which is just under 3.5, the length of the firehose. The house is saved!

The fire engine problem can be restated as finding the vector on the line that “best approxi-
mates” the given vector b. By “best approximation”, we just mean closest. This notion of “best
approximates” will come up several times in future chapters:

• in least-squares/regression, a fundamental data analysis technique,

• image compression,

• in principal component analysis, another data analysis technique,

• in latent semantic analysis, an information retrieval technique, and

• in compressed sensing.

8.3.6 *Outer product and projection

Recall that the outer product of vectors u and v is defined as the matrix-matrix product uvT :

⎡

⎣ u

⎤

⎦
[

vT
]

We use this idea to represent projection in terms of a matrix-vector product.
For a nonzero vector v, define the projection function πv : Rn −→ Rn by

πv(x) = projection of x along v

Can we represent this function as a matrix-vector product? Is it a linear function?
Let us assume for now that ∥v∥ = 1, for, as we have seen, the formula for projection is simpler

under this assumption. Then
πv(x) = (v · x)v
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The first step is to represent the function in terms of matrix-matrix multiplications, using
the idea of row and column vectors. The dot-product is replaced by a row vector times a column
vector.

πv(x) =

⎡

⎣ v

⎤

⎦

⎛

⎝

[

vT
] ⎡

⎣ x

⎤

⎦

⎞

⎠ =

⎛

⎝

⎡

⎣ v

⎤

⎦

[

vT
] ⎞

⎠

︸ ︷︷ ︸

matrix

⎡

⎣ x

⎤

⎦

︸ ︷︷ ︸

vector

This shows that the projection function πv(x) is a matrix times a vector. Of course, it follows
(by Proposition 4.10.2) that therefore the function is linear.

We will later use outer product again, when we consider approximations to matrices.

Problem 8.3.15: Write a Python procedure projection_matrix(v) that, given a vector v,
returns the matrix M such that πv(x) = Mx. Your procedure should be correct even if ∥v∥ ≠ 1.

Problem 8.3.16: Suppose v is a nonzero n-vector. What is the rank of the matrix M such
that πv(x) = Mx? Explain your answer using appropriate interpretations of matrix-vector or
matrix-matrix multiplication.

Problem 8.3.17: Suppose v is a nonzero n-vector. Let M be the matrix such that πv(x) =
Mv.

1. How many scalar-scalar multiplications (i.e. ordinary multiplications) are required to mul-
tiply M times v? Answer the question with a simple formula in terms of n, and justify
your answer.

2. Suppose x is represented by a column vector, i.e. an n×1 matrix. There are two matrices
M1 and M2 such that computing πv(x) by computing M1(M2x) requires only 2n scalar-
scalar multiplications. Explain.

8.3.7 Towards solving the higher-dimensional version

A natural generalization of the fire engine problem is to find the vector in the span of several
given vectors that is closest to a given vector b. In the next lab, you will explore one approach
to this computational problem, based on gradient descent. In the next chapter, we will develop
an algorithm based on orthogonality and projection.
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8.4 Lab: machine learning

In this lab you will use a rudimentary machine-learning algorithm to learn to diagnose breast
cancer from features.

The core idea is the use of gradient descent, an iterative method to find a “best” hypoth-
esis. Gradient descent is useful in finding a point that nearly minimizes a nonlinear function.
In each iteration, it approximates the function by a linear function.

Disclaimer: For this particular function, there is a much faster and more direct way of
finding the best point. We will learn it in Orthogonalization. However, gradient descent is
useful more generally and is well worth knowing.

8.4.1 The data

You are given part of the Wisconsin Diagnostic Breast Cancer (WDBC) dataset. For each
patient, you are given a vector a giving features computed from digitized images of a fine
needle aspirate of a breast mass for that patient. The features describe characteristics of
the cell nuclei present in the image. The goal is to decide whether the cells are malignant
or benign.

Here is a brief description of the way the features were computed. Ten real-valued
quantities are computed for each cell nucleus:

• radius (mean of distances from center to points on the perimeter)

• texture (standard deviation of gray-scale values)

• perimeter

• area

• smoothness (local variation in radius lengths)

• compactness (perimeter2/ area)

• concavity (severity of concave portions of the contour)

• concave points (number of concave portions of the contour)

• symmetry

• fractal dimension (“coastline approximation”)

The mean, standard error, and a measure of the largest (mean of the three largest values) of
these features were computed for each image. Thus each specimen is represented by a vector
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a with thirty entries. The domain D consists of thirty strings identifying these features, e.g.
"radius (mean)", "radius (stderr)", "radius (worst)", "area (mean)", and so on.

We provide two files containing data, train.data and validate.data.
The procedure read_training_data in the cancer_data module takes a single argu-

ment, a string giving the pathname of a file. It reads the data in the specified file and
returns a pair (A, b) where:

• A is a Mat whose row labels are patient identification numbers and whose column-label
set is D

• b is a vector whose domain is the set of patient identification numbers, and b[r] is 1 if
the specimen of patient r is malignant and is -1 if the specimen is benign.

Task 8.4.1: Use read_training_data to read the data in the file train.data into the
variables A, b.

8.4.2 Supervised learning

Your goal is to write a program to select a classifier, a function C(y) that, given a feature
vector a, predicts whether the tissue is malignant or benign. To enable the program to select
a classifier that is likely to be accurate, the program is provided with training data consisting
of labeled examples (a1, b1), . . . , (am, bm). Each labeled example consists of a feature vector
ai and the corresponding label bi, which is +1 or -1 (+1 for malignant, -1 for benign). Once
the program has selected a classifier, the classifier is tested for its accuracy on unlabeled
feature vectors a for which the correct answers are known.

8.4.3 Hypothesis class

A classifier is selected from a set of possible classifiers (the hypothesis class). In this case
(as is often the case in machine learning), the hypothesis class consists of linear functions
h(·) from the space RD of feature vectors to R. The classifier is defined in terms of such a
function as follows:

C(y) =

{

+1 if h(y) ≥ 0
−1 if h(y) < 0

For each linear function h : RD −→ R, there is a D-vector w such that

h(y) = w · y

Thus selecting such a linear function amounts to selecting a D-vector w. We refer to w as
a hypothesis vector since choosing w is equivalent to choosing the hypothesis h.

You will write a procedure that calculates, for a given hypothesis vector w, the number
of labeled examples incorrectly predicted by the classifier that uses function h(y) = w · y.
To make this easier, you will first write a simple utility procedure.
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Task 8.4.2: Write the procedure signum(u) with the following spec:

• input: a Vec u

• output: the Vec v with the same domain as u such that

v[d] =

{

+1 if u[d] ≥ 0
−1 if u[d] < 0

For example, signum(Vec({'A','B'}, {'A':3, 'B':-2})) is
Vec({’A’, ’B’},{’A’: 1, ’B’: -1})

Task 8.4.3: Write the procedure fraction wrong(A, b, w) with the following spec:

• input: An R×C matrix A whose rows are feature vectors, an R-vector b whose entries
are +1 and −1, and a C-vector w

• output: The fraction of of row labels r of A such that the sign of (row r of A) · w
differs from that of b[r].

(Hint: There is a clever way to write this without any explicit loops using matrix-vector
multiplication and dot-product and the signum procedure you wrote.)

Pick a simple hypothesis vector such as [1, 1, 1, ..., 1] or a random vector of +1’s and
-1’s, and see how well it classifies the data.

8.4.4 Selecting the classifier that minimizes the error on the training data

How should the function h be selected? We will define a way of measuring the error of a
particular choice of h with respect to the training data, and the program will select the
function with the minimum error among all classifiers in the hypothesis class.

The obvious way of measuring the error of a hypothesis is by using the fraction of labeled
examples the hypothesis gets wrong, but it is too hard to find the solution that is best with
respect to this criterion, so other ways of measuring the error are used. In this lab, we use a
very rudimentary measure of error. For each labeled example (ai, bi), the error of h on that
example is (h(ai) − bi)2. If h(ai) is close to bi then this error is small. The overall error on
the training data is the sum of the errors on each of the labeled examples:

(h(a1) − b1)
2 + (h(a2) − b2)

2 + · · · + (h(am) − bm)2

Recall that choosing a function h(·) is equivalent to choosing a D-vector w and defining
h(y) = y · w. The corresponding error is

(a1 · w − b1)
2 + (a2 · w − b2)

2 + · · · + (am · w − bm)2
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Now we can state our goal for the learning algorithm. We define a function L : RD −→ R

by the rule
L(x) = (a1 · x− b1)

2 + (a2 · x− b2)
2 + · · · + (am · x− bm)2

This function is the loss function on the training data. It is used to measure the error of a
particular choice of the hypothesis vector w. The goal of the learning algorithm is to select
the hypothesis vector w that makes L(w) as small as possible (in other words, the minimizer
of the function L).

One reason we chose this particular loss function is that it can be related to the lin-
ear algebra we are studying. Let A be the matrix whose rows are the training examples
a1, . . . ,am. Let b be the m-vector whose ith entry is bi. Let w be a D-vector. By the dot-
product definition of matrix-vector multiplication, entry i of the vector Aw−b is ai ·w− bi.
The squared norm of this vector is therefore (a1 ·w− b1)2 + · · · + (am ·w− bm)2. It follows
that our goal is to select the vector w minimizing ∥Aw − b∥2.

In Orthogonalization, we learn that this computational problem can be solved by an
algorithm that uses orthogonality and projection.

Task 8.4.4: Write a procedure loss(A, b, w) that takes as input the training data A, b
and a hypothesis vector w, and returns the value L(w) of the loss function for input w.
(Hint: You should be able to write this without any loops, using matrix multiplication and
dot-product.)

Find the value of the loss function at a simple hypothesis vector such as the all-ones
vector or a random vector of +1’s and -1’s.

8.4.5 Nonlinear optimization by hill-climbing

In this lab, however, we use a generic and commonly used heuristic for finding the minimizer
of a function, hill-climbing. I call it generic because it can be used for a very broad class of
functions; however, I refer to it as a heuristic because in general it is not guaranteed to find
the true minimum (and often fails to do so). Generality of applicability comes at a price.

Hill-climbing maintains a solution w and iteratively makes small changes to it, in our
case using vector addition. Thus it has the general form

initialize w to something
repeat as many times as you have patience for:
w := w + change

return w

where change is a small vector that depends on the current value of w. The goal is that
each iteration improves the value of the function being optimized.

Imagine that the space of solutions forms a plane. Each possible solution w is assigned
a value by the function being optimized. Interpret the value of each solution as the altitude.
One can visualize the space as a three dimensional terrain.
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If we were trying to find a maximizer of the function, the algorithm gradually move the
solution w towards the top of the terrain, thus the name hill-climbing.

In our case, the goal is to find the lowest point, so it’s better to visualize the situation
thus:

In this case, the algorithm tries to climb down the hill.
The strategy of hill-climbing works okay when the terrain is simple, but it is often applied

to much more complicated terrains, e.g.
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In such cases, hill-climbing usually terminates with a solution that is not truly a minimum
for that function. Intuitively, the algorithm descends a hill until gets to the lowest point in a
valley. It has not reached the point of smallest elevation—that point is somewhere far from
the valley—but the algorithm cannot proceed because it is only allowed to descend, and
there is nowhere nearby that has lower elevation. Such a point is called a local minimum (as
opposed to a global minimum). This is an annoying aspect of hill-climbing but it is inevitable
since hill-climbing can be applied to functions for which finding the global minimum is a
computationally intractable problem.

8.4.6 Gradient

How should the change vector be selected in each iteration?

Example 8.4.5: Suppose the function to be minimized were a linear function, say f(w) =
c · w. Suppose we change w by adding some vector u for which c · u < 0. It follows that
f(w + u) < f(w) so we will make progress by assigning w + u to w. Moving in the
direction u decreases the function’s value.

In this lab, however, the function to be minimized is not a linear function. As a consequence,
the right direction depends on where you are. for each particular point w, there is in fact a
direction of steepest descent from that point. We should move in that direction! Of course,
once we’ve moved a little bit, the direction of steepest descent will have changed, so we
recompute it and move a little more. We can move only a little bit in each iteration before
we have to recompute the direction to move.

For a function f : Rn −→ R, the gradient of f , written ∇f , is a function from Rn to Rn.
Note that it outputs a vector, not a single number. For any particular input vector w, the
direction of steepest ascent of f(x) for inputs near w is ∇f(w), the value of the function
∇f applied to w. The direction of steepest descent is the negative of ∇f(w).

The definition of the gradient is the one place in this course where we use calculus. If
you don’t know calculus, the derivation won’t make sense but you can still do the lab.
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Definition 8.4.6: The gradient of f([x1, . . . , xn]) is defined to be

[
∂f

∂x1
, . . . ,

∂f

∂xn

]

Example 8.4.7: Let’s return once more to the simple case where f is a linear function:
f(x) = c · x. That means, of course, f([x1, . . . , xn]) = c1x1 + · · · + cnxn. The partial
derivative of f with respect to xi is just ci. Therefore ∇f([x1, . . . , xn]) = [c1, . . . , cn]. This
function disregards its argument; the gradient is the same everywhere.

Example 8.4.8: Let’s take a function that is not linear. For a vector a and a scalar b,
define f(x) = (a · x− b)2. Write x = [x1, . . . , xn]. Then, for j = 1, . . . , n,

∂f

∂xj
= 2(a · x− b)

∂

∂xj
(a · x− b)

= 2(a · x− b)aj

One reason for our choice of loss function

L(x) =
m
∑

i=1

(ai · x− bi)
2

is that partial derivatives of this function exist and are easy to compute (if you remember a
bit of calculus). The partial derivative of L(x) with respect to xj is

∂L

∂xj
=

m
∑

i=1

∂

∂xj
(ai · x− bi)

2

=
m
∑

i=1

2(ai · x− bi)aij

where aij is entry j of ai.
Thus the value of the gradient function for a vector w is a vector whose entry j is

m
∑

i=1

2(ai · w − bi)aij

That is, the vector is

∇L(w) =

[
m
∑

i=1

2(ai · w − bi)ai1, . . . ,
m
∑

i=1

2(ai · w − bi)ain

]
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which can be rewritten using vector addition as

m
∑

i=1

2(ai · w − bi)ai (8.9)

Task 8.4.9: Write a procedure find_grad(A, b, w) that takes as input the training
data A, b and a hypothesis vector w and returns the value of the gradient of L at the
point w, using Equation 8.9. (Hint: You can write this without any loops, by using matrix
multiplication and transpose and vector addition/subtraction.)

8.4.7 Gradient descent

The idea of gradient descent is to update the vector w iteratively; in each iteration, the
algorithm adds to w a small scalar multiple of the negative of the value of the gradient at
w. The scalar is called the step size, and we denote it by σ.

Why should the step size be a small number? You might think that a big step allows the
algorithm to make lots of progress in each iteration, but, since the gradient changes every
time the hypothesis vector changes, it is safer to use a small number to as not to overshoot.
(A more sophisticated method might adapt the step size as the computation proceeds.)

The basic algorithm for gradient descent is then

Set σ to be a small number
Initialize w to be some D-vector
repeat some number of times:
w := w + σ(∇L(w))

return w

Task 8.4.10: Write a procedure gradient descent step(A, b, w, sigma) that, given
the training data A, b and the current hypothesis vector w, returns the next hypothesis
vector.

The next hypothesis vector is obtained by computing the gradient, multiplying the gra-
dient by the step size, and subtracting the result from the current hypothesis vector. (Why
subtraction? Remember, the gradient is the direction of steepest ascent, the direction in
which the function increases.)
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Task 8.4.11: Write a procedure gradient descent(A, b, w, sigma, T) that takes
as input the training data A, b, an initial value w for the hypothesis vector, a step
size σ, and a number T of iterations. The procedure should implement gradient de-
scent as described above for T iterations, and return the final value of w. It should use
gradient descent step as a subroutine.

Every thirty iterations or so, the procedure should print out the value of the loss function
and the fraction wrong for the current hypothesis vector.

Task 8.4.12: Try out your gradient descent code on the training data! Notice that the
fraction wrong might go up even while the value of the loss function goes down. Eventually,
as the value of the loss function continues to decrease, the fraction wrong should also
decrease (up to a point).

The algorithm is sensitive to the step size. While in principle the value of loss should
go down in each iteration, that might not happen if the step size is too big. On the other
hand, if the step size is too small, the number of iterations could be large. Try a step size
of σ = 2 · 10−9, then try a step size of σ = 10−9.

The algorithm is also sensitive to the initial value of w. Try starting with the all-ones
vector. Then try starting with the zero vector.

Task 8.4.13: After you have used your gradient descent code to find a hypothesis vector
w, see how well this hypothesis works for the data in the file validate.data. What is
the percentage of samples that are incorrectly classified? Is it greater or smaller than the
success rate on the training data? Can you explain the difference in performance?

8.5 Review questions

• What is an inner product for vectors over R?

• How is norm defined in terms of dot-product?

• What does it mean for two vectors to be orthogonal?

• What is the Pythagorean Theorem for vectors?

• What is parallel-perpendicular decomposition of a vector?

• How does one find the projection of a vector b orthogonal to another vector v?

• How can linear algebra help in optimizing a nonlinear function?

8.6 Problems

Norm
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Problem 8.6.1: For each of the following problem, compute the norm of given vector v:

(a) v = [2, 2, 1]

(b) v = [
√

2,
√

3,
√

5,
√

6]

(c) v = [1, 1, 1, 1, 1, 1, 1, 1, 1]

Closest vector

Problem 8.6.2: For each of the following a, b, find the vector in Span {a} that is closest to
b:

1. a = [1, 2], b = [2, 3]

2. a = [0, 1, 0], b = [1.414, 1, 1.732]

3. a = [−3,−2,−1, 4], b = [7, 2, 5, 0]

Projection orthogonal to a and onto a

Problem 8.6.3: For each of the following a, b, find b⊥a and b||a.

1. a = [3, 0], b = [2, 1]

2. a = [1, 2,−1], b = [1, 1, 4]

3. a = [3, 3, 12], b = [1, 1, 4]



Chapter 9

Orthogonalization

There are two kinds of geniuses, the
“ordinary” and the “magicians.” An
ordinary genius is a fellow that you and I
would be just as good as if we were only
many times better. . . It is different with
the magicians. They are, to use
mathematical jargon, in the orthogonal
complement of where we are. . .

Mark Kac, Enigmas of Chance

In this chapter, our first goal is to give an algorithm for the following problem

Computational Problem 9.0.4: (Closest point in the span of several vectors) Given a vector
b and vectors v1, . . . ,vn over the reals, find the vector in Span {v1, . . . ,vn} closest to b.

Example 9.0.5:
Let v1 = [8,−2, 2] and v2 = [4, 2, 4]. These
span a plane. Let b = [5,−5, 2].

Our goal is to find the point in Span {v1,v2}
closest to b:

The closest point is [6,−3, 0].

Solving Computational Problem 9.0.4 is an important goal in its own right, but through
studying this goal we will also develop the techniques to solve several other computational prob-
lems.

In a significant modification, we will seek not just the closest point in Span {v1, . . . ,vn} but
also the coefficients linear of the combination with which to express that closest point.

440
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Let A =

⎡

⎣ v1 · · · vm

⎤

⎦. By the linear-combinations definition of matrix-vector multipli-

cation, the set of vectors in Span {v1, . . . ,vm} is exactly the set of vectors that can be written as
Ax. As a consequence, finding the coefficients is equivalent to finding the vector x that minimizes
∥b− Ax∥. This is the least-squares problem.

If the matrix-vector equation Ax = b has a solution then of course the closest vector is b itself,
and the solution to least squares is the solution to the matrix-vector equation. The advantage of
an algorithm for least-squares is that it can be used even when the matrix-vector equation has
no solution, as is often the case when the equation is formed based on real-world measurements.

Along the way to our solution to the least-squares problem, we will also discover algorithms

• for testing linear independence,

• for rank, for finding a basis of the span of given vectors, and

• for finding a basis of the null space, which as we know from Section 6.5 is equivalent to
finding a basis of the annihilator.

We will also learn about orthogonal complement, which for vectors over R brings together the
concepts of direct sum and annihilator.

9.1 Projection orthogonal to multiple vectors

Since the closest-point problem is a generalization of the Fire Engine Problem, you might think
that it could be solved using the same concepts as we used to solve the latter, namely orthogo-
nality and projection. You would be right.

9.1.1 Orthogonal to a set of vectors

Before stating the generalization of the Fire Engine Lemma, we need to extend the notion of
orthogonality. So far, we have defined what it means for a vector to be orthogonal to another
vector; now we define what it means for a vector to be orthogonal to a set of vectors.

Definition 9.1.1: A vector v is orthogonal to a set S of vectors if v is orthogonal to every
vector in S.

Example 9.1.2: The vector [2, 0,−1] is orthogonal to the set {[0, 1, 0], [1, 0, 2]} because it
is orthogonal to [0, 1, 0] and to [1, 0,−2]. Moreover, it is orthogonal to the infinite set V =
Span {[0, 1, 0], [1, 0, 2]} because every vector in V has the form α [0, 1, 0] + β [1, 0, 2], and

⟨[2, 0,−1],α [0, 1, 0] + β [1, 0, 2]⟩ = α ⟨[2, 0,−1], [0, 1, 0]⟩ + β ⟨[2, 0,−1], [1, 0, 2]⟩
= α 0 + β 0

The argument used in Example 9.1.2 (Page 441) is quite general:
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Lemma 9.1.3: A vector v is orthogonal to each of the vectors a1, . . . ,an if and only if it is
orthogonal to every vector in Span {a1, . . . ,an}.

Proof

Suppose v is orthogonal to a1, . . . ,an. Let w be any vector in Span {a1, . . . ,an}. We show
that v is orthogonal to w. By definition of span, there are coefficients α1, . . . ,αn such that

w = α1 a1 + · · · + αn an

Therefore, using orthogonality properties (Lemma 8.3.2),

⟨v,w⟩ = ⟨v,α1 a1 + · · · + αn an⟩
= α1 ⟨v,a1⟩ + · · · + αn ⟨v,an⟩
= α1 0 + · · · + αn 0

= 0

Thus v is orthogonal to w.
Now suppose v is orthogonal to every vector in Span {a1, . . . ,an}. Since the span

includes a1, . . . ,an, we infer that v is orthogonal to a1, . . . ,an. !

Because of Lemma 9.1.3, we tend to blur between a vector being orthogonal to a vector space
and being orthogonal to a set of generators for that vector space.

9.1.2 Projecting onto and orthogonal to a vector space

It is similarly natural to generalize the notion of projection.

Definition 9.1.4: For a vector b and a vector space V, we define the projection of b onto V
(written b||V) and the projection of b orthogonal to V (written b⊥V) so that

b = b||V + b⊥V (9.1)

and b||V is in V, and b⊥V is orthogonal to every vector in V.

b

b||V b! V

projection onto V projection orthogonal toV

b = +
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Example 9.1.5: Returning to Example 9.0.5 (Page 440), let V = Span {[8,−2, 2], [4, 2, 4]}
and let b = [5,−5, 2]. I claim that the projection of b onto V is b||V = [6,−3, 0], and the
projection of b orthogonal to V is b⊥V = [−1,−2, 2]. To prove this claim, I can show that these
vectors satisfy the requirements:

• b = b||V + b⊥V? Yes, [5,−5, 2] = [−1,−2, 2] + [6,−3, 0]. "

• b||V is in V? Yes, b||V = 1 [8,−2, 2] − 1
2 [4, 2, 4]. "

• b⊥V is orthogonal to V? Yes, [−1,−2, 2] · [8,−2, 2] = 0 and [−1,−2, 2] · [4, 2, 4] = 0. "

So this is the solution. But how can you calculate that solution? We need to do a bit more work
before we can answer that question.

Now we can state the generalization of the Fire Engine Lemma:

Lemma 9.1.6 (Generalized Fire Engine Lemma): Let V be a vector space, and let b
be a vector. The point in V closest to b is b||V , and the distance is ∥b⊥V∥.

Proof

The proof is a straightforward generalization of that of the Fire Engine Lemma (Lemma 8.3.8).
Clearly the distance between b and b||V is ∥b− b||V∥ which is ∥b⊥V∥. Let p be any point in
V. We show that p is no closer to b than b||V .

We write
b− p =

(

b− b||V
)

+
(

b||V − p
)

The first summand on the right-hand side is b⊥V . The second lies in V because it is the
difference of two vectors that are both in V. Since b⊥V is orthogonal to V, the Pythagorean
Theorem (Theorem 8.3.1) implies that

∥b− p∥2 = ∥b− b||V∥2 + ∥b||V − p∥2

This shows that ∥b− p∥ > ∥b− b||V∥ if p ̸= b||V . !

Our goal is now to give a procedure to find these projections. It suffices to find b⊥V , for we
can then obtain b||V using Equation 9.1.

9.1.3 First attempt at projecting orthogonal to a list of vectors

Our first goal is a procedure project_orthogonal with the following spec:

• input: a vector b, and a list vlist of vectors

• output: the projection of b orthogonal to Span vlist
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Recall the procedure we used in Section 8.3.4 to find the projection of b orthogonal to a single
vector v:

def project_orthogonal_1(b, v): return b - project_along(b, v)

To project orthogonal to a list of vectors, let’s try a procedure that mimics project_orthogonal_1:

def project_orthogonal(b, vlist):
for v in vlist:

b = b - project_along(b, v)
return b

Short, elegant—and flawed. It doesn’t satisfy the specification, as we now show. Consider a list

vlist consisting of the vectors [1, 0] and [
√
2
2 ,

√
2
2 ]. Let b be the vector [1, 1].

Let bi be the value of the variable b after i it-
erations. Then b0 denotes the initial value of
b, which is [1, 1]. The procedure carries out the
following calculations

b1 = b0 − (projection of [1, 1] along [1, 0])

= b0 − [1, 0]

= [0, 1]

b2 = b1 − (projection of [0, 1] along [

√
2

2
,

√
2

2
])

= b1 − [
1

2
,
1

2
]

= [−1

2
,
1

2
]

At the end, the procedure returns b2, which is
[− 1

2 , 1
2 ]. Unfortunately, this vector is not orthog-

onal to [1, 0], the first vector in vlist, which
shows that the procedure does not obey the spec-
ification.

(1,0)

(! 2/2, ! 2/2)

(1,1)

b

(1,0)

(! 2/2, ! 2/2)

(0,1)

b1

(1,0)

(! 2/2, ! 2/2)

(1,1)

b2

(-1/2,1/2)

How can we amend this flaw? Maybe the problem will go away if we first find the projection
of b along each of the vectors in vlist, and only then subtract these projections all from b. Here
is the procedure implementing that algorithm:

def classical_project_orthogonal(b, vlist):
w = all-zeroes-vector
for v in vlist:
w = w + project_along(b, v)

return b - w

Alas, this procedure also does not work: for the inputs specified earlier, the output vector is
[−1, 0], which is in fact orthogonal to neither of the two vectors in vlist.
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9.2 Projecting b orthogonal to a list of mutually orthogo-
nal vectors

Instead of abandoning this approach, let’s consider a special case in which it works.

Example 9.2.1:

Let v1 = [1, 2, 1] and v2 = [−1, 0,−1], and let
b = [1, 1, 2]. Again, let bi be the value of the
variable b after i iterations. Then

b1 = b− b · v1

v1 · v1
v1

= [1, 1, 2] − 5

6
[1, 2, 1]

=

[
1

6
,−4

6
,
7

6

]

b2 = b1 −
b1 · v2

v2 · v2
v2

=

[
1

6
,−4

6
,
7

6

]

− 1

2
[−1, 0, 1]

=

[
2

3
,−2

3
,
2

3

]

and note that b2 is orthogonal to both v1 and
v2.

Suppose v2 is orthogonal to v1. Then the projection of b along v2 is also orthogonal to v1

(since the projection is just a scalar multiple of v2). If b is orthogonal to v1 (which is true after
the first iteration), then subtracting off something else orthogonal to v1 preserves orthogonality.
Let’s see that formally:

Assume ⟨v1, b⟩ = 0 and ⟨v1,v2⟩ = 0. Then

⟨v1, b− σ v2⟩ = ⟨v1, b⟩ − ⟨v1,σ v2⟩
= ⟨v1, b⟩ − σ ⟨v1,v2⟩
= 0 + 0

Returning to our flawed procedure project_orthogonal(b,vlist), instead of trying to fix the
flaw by changing the procedure, we will change the spec we expect the procedure to fulfill. We
will only expect the correct answer when vlist consists of mutually orthogonal vectors, i.e. when
the ith vector in the list is orthogonal to the jth vector in the list for every i ̸= j. That is, the
new spec will be:

• input: a vector b, and a list vlist of mutually orthogonal vectors
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• output: the projection b⊥ of b orthogonal to the vectors in vlist

With this restriction on the input, the procedure is correct!

Problem 9.2.2: Using hand-calculation, show the steps carried out when project orthogonal
is called with b=[1, 1, 1] and vlist= [v1,v2] where v1 = [0, 2, 2] and v2 = [0, 1,−1].

9.2.1 Proving the correctness of project orthogonal

Theorem 9.2.3 (Correctness of project orthogonal): For a vector b and a list vlist
of mutually orthogonal vectors, the procedure project_orthogonal(b,vlist) returns a vector
b⊥ such that b⊥ is orthogonal to the vectors in vlist and b− b⊥ is in the span of the vectors
in vlist.

A procedure with a loop does not become correct all of a sudden at the end of a loop. To
prove such a procedure is correct, we show that, after i iterations, some statement involving i is
true, for i = 0, 1, 2, . . .. A statement used in this way is called a loop invariant. The following
lemma gives the loop invariant for the proof of correctness of project orthogonal. Intuitively,
the loop invariant states that, after i iterations, the current value of the variable b would be the
correct return value if vlist had only i vectors.

Lemma 9.2.4 (Loop Invariant for project orthogonal): Let k =len(vlist). For i =
0, . . . , k, let bi be the value of the variable b after i iterations. Then

• bi is orthogonal to the first i vectors of vlist, and

• b− bi is in the span of the first i vectors of vlist

The loop invariant implies correctness of the procedure

Note that the vector b⊥ returned by project_orthogonal is the value of b after all k iterations,
which is denoted bk. By plugging in k for i in the loop invariant, we obtain

bk is orthogonal to the first k vectors of vlist, and b− bk is in the span of the first
k vectors sof vlist.

Since vlist has exactly k vectors, this is equivalent to

bk is orthogonal to all vectors in vlist, and b− bk is in Span vlist

This is what is claimed by the theorem (taking into account that b⊥ = bk).

The proof of the loop invariant

Proof

The proof is by induction on i. For i = 0, the loop invariant is trivially true: b0 is orthogonal
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to each of the first 0 vectors (every vector is), and b− b0 is in the span of the first 0 vectors
(because b− b0 is the zero vector).

Assume the invariant holds for i − 1 iterations. We prove it holds for i iterations. We
write vlist as [v1, . . . ,vk].

In the ith iteration, the procedure computes

bi = bi−1 − project along(bi−1,vi)

Using our knowledge of the procedure project along, we can rewrite this as

bi = bi−1 − αi vi (9.2)

where αi = ⟨bi−1,vi⟩
⟨vi,vi⟩ . The induction hypothesis states that bi−1 is the projection of b0

orthogonal to the first i − 1 vectors.
We need to prove that bi is orthogonal to each vector in {v1, . . . ,vi−1,vi}. The choice

of αi ensures that bi is orthogonal to v∗
I . We still have to prove that bi is orthogonal to v∗

j

for each j < i.

⟨bi,vj⟩ = ⟨bi−1 − αivi,vj⟩
= ⟨bi−1,vj⟩ − αi ⟨vi,vj⟩
= 0 − αi ⟨vi,vj⟩ by the inductive hypothesis

= 0 − αi0 by mutual orthogonality

We also need to prove that b0 − bi is in the span of the first i vectors of vlist. By the
inductive hypothesis, b0 − bi−1 is in the span of the first i − 1 vectors. Therefore

b0 − bi = b0 − (bi−1 − αi vi) by Equation 9.2

= (b0 − bi−1) + αi vi

= (a vector in the span of the first i − 1 vectors) + αi vi

= a vector in the span of the first i vectors

This completes the proof of the loop invariant. !

We have shown that project_orthogonal satisfies the new spec.
Having completed the proof of the loop invariant, we have completed the proof of Theo-

rem 9.2.3, showing the correctness of the procedure.

Problem 9.2.5: In Section 9.1.3, we gave two procedures, project_orthogonal and
classical_project_orthogonal. In this section, we proved that
project_orthogonal(b,vlist) correctly computes the projection of b orthogonal to the vec-
tors in vlist if those vectors are mutually orthogonal. In this problem, you will show an analogous
result for classical_project_orthogonal(b, vlist).
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As in the proof of Lemma 9.2.4, let bi be the value of the variable b in project_orthogonal
after i iterations. Letwi be the value of w in classical_project_orthogonal after i iterations.
Use induction on i to prove the following claim, which shows that the procedures should return
the same vector:

Claim: For i = 0, 1, 2, . . .,
bi = b−wi

Problem 9.2.5 shows that project_orthogonal and classical_project_orthogonal are math-
ematically equivalent. That is, they would produce identical answers if arithmetic was perfectly
accurate.

Since computers use finite-precision (i.e., approximate) arithmetic, the answers you get in
reality are not the same. The classical version is slightly worse in accuracy.

9.2.2 Augmenting project orthogonal

We will now change to zero-based indexing for a while, in order to be more in tune with Python.
The fact that b− b⊥ is in the span of the vectors v0, . . . ,vk−1 can be written as

b = σ0 v0 + · · · + σk−1 vk−1 + 1 b⊥ (9.3)

The values of the coefficients σ0, . . . ,σk−1 in this equation are the coefficients specified in Equa-
tion 9.2: σi is the coefficient such that σi vi is the projection of bi−1 along vi.

Writing Equation 9.3 in matrix form, we have

⎡

⎢
⎢
⎢
⎢
⎣

b

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

v0 · · · vk−1 b⊥

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

σ0

σ2

. . .
σk−1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(9.4)

We now write an augmented version of project orthogonal(b, vlist),
called aug project orthogonal(b, vlist), with the following spec:

• input: a vector b and a list [v0, . . . ,vk−1] of mutually orthogonal vectors over the reals

• output: the pair (b⊥, sigmadict)) such that

– the first element in the pair is the projection b⊥ of b orthogonal to Span {v0, . . . ,vk−1},
and

– the second element in the pair is the dictionary sigmadict = {0 : σ0, 1 : σ1, . . . , (k−1) :
σk−1, k : 1} such that

b = σ0 v0 + σ1 v1 + . . . + σk−1 vk−1 + 1 b⊥ (9.5)

We are building on two prior procedures.
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def project_along(b, v):
sigma = ((b*v)/(v*v)) if v*v != 0 else 0
return sigma * v

and

def project_orthogonal(b, vlist):
for v in vlist:

b = b - project_along(b, v)
return b

The first procedure tells us how to compute the projection of a vector b onto another vector
b. Reviewing it reminds us of the formula:

b||v = σ v

where σ equals b·v
v·v if v ̸= 0 and equals 0 if v is the zero vector.

Remember that, for practical purposes in working with floating-point numbers, the first pro-
cedure should really be implemented to assign zero to sigma when the vector v is very close to
the zero vector:

def project_along(b, v):
sigma = ((b*v)/(v*v)) if v*v > 1e-20 else 0
return sigma * v

The second procedure tells us that the projection of b orthogonal to a list of mutually or-
thogonal vectors is obtained by subtracting off the projection onto each of the vectors in the
list.

The procedure aug project orthogonal(b, vlist) is based on project orthogonal(b,
vlist) except that it must create and populate a dictionary, sigmadict, with the values of the
coefficients in Equation 9.5. There is one coefficient for each vector in vlist, and one more, the
coefficient of b⊥, which is 1. The procedure therefore initializes sigmadict to consist just of the
entry for the coefficient of 1:

def aug_project_orthogonal(b, vlist):
sigmadict = {len(vlist):1}
...

Because the procedure needs to create entries in sigmadict with indices matching the indices
into vlist, we use enumerate(vlist) to iterate over the pairs i, v where i is an index into vlist
and v is the corresponding element:

def aug_project_orthogonal(b, vlist):
sigmadict = {len(vlist):1}
for i,v in enumerate(vlist):
sigma = (b*v)/(v*v) if v*v > 1e-20 else 0
sigmadict[i] = sigma
b = b - sigma*v

return (b, sigmadict)
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A more traditional but less Pythonic approach simply iterates over the indices:

def aug_project_orthogonal(b, vlist):
sigmadict = {len(vlist):1}
for i in range(len(vlist)):

v = vlist[i]
sigma = (b*v)/(v*v) if v*v > 1e-20 else 0
sigmadict[i] = sigma
b = b - sigma*v

return (b, sigmadict)

Remember, the procedures are mathematically correct if we replace 1e-20 with zero, but the
procedures given here are more likely to give correct solutions when working with floating-point
numbers.

The procedure aug project orthogonal is defined in the module orthogonalization.
Having completed the definition of this procedure, we return to one-based addressing to be

more consistent with mathematical convention. Sorry!

9.3 Building an orthogonal set of generators

Our goal was to project b orthogonal to the span of a set of arbitrary vectors v1, . . . ,vn, but
so far we have succeeded only in projecting b orthogonal to the span of a set of mutually or-
thogonal vectors. In order to project b orthogonal to the span of vectors v1, . . . ,vn that are not
necessarily mutually orthogonal, we would have to first find mutually orthogonal generators for
Span {v1, . . . ,vn}.

We therefore consider a new problem, orthogonalization:

• input: A list [v1, . . . ,vn] of vectors over the reals

• output: A list of mutually orthogonal vectors v∗
1 , . . . ,v

∗
n such that

Span {v∗1 , . . . ,v
∗
n} = Span {v1, . . . ,vn}

9.3.1 The orthogonalize procedure

The idea for solving this problem is to use project_orthogonal iteratively to make a longer and
longer list of mutually orthogonal vectors. First consider v1. We define v∗

1 := v1 since the set
{v∗1} is trivially a set of mutually orthogonal vectors. Next, we define v∗

2 to be the projection
of v2 orthogonal to v∗

1 . Now {v∗
1 ,v

∗
2} is a set of mutually orthogonal vectors. In the next step,

we define v∗
3 to be the projection of v3 orthogonal to v∗

1 and v∗
2 , and so on. In each step, we

use project_orthogonal to find the next orthogonal vector. In the ith iteration, we project vi

orthogonal to v∗
1 , . . . ,v

∗
i−1 to find v∗

i .

def orthogonalize(vlist):
vstarlist = []
for v in vlist:
vstarlist.append(project_orthogonal(v, vstarlist))

return vstarlist
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A simple induction using Theorem 9.2.3 proves the following lemma.

Lemma 9.3.1: Throughout the execution of orthogonalize, the vectors in vstarlist are
mutually orthogonal.

In particular, the list vstarlist at the end of the execution, which is the list returned, consists
of mutually orthogonal vectors.

Example 9.3.2: When orthogonalize is called on a vlist consisting of vectors

v1 = [2, 0, 0],v2 = [1, 2, 2],v3 = [1, 0, 2]

it returns the list vstarlist consisting of

v∗
1 = [2, 0, 0],v∗

2 = [0, 2, 2],v∗
3 = [0,−1, 1]

(1) In the first iteration, when v is v1, vstarlist is empty, so the first vector v∗
1 added to

vstarlist is v1 itself.

(2) In the second iteration, when v is v2, vstarlist consists only of v∗
1 . The projection of v2

orthogonal to v∗
1 is

v2 −
⟨v2,v∗

1⟩
⟨v∗

1 ,v
∗
1⟩

v∗
1 = [1, 2, 2] − 2

4
[2, 0, 0]

= [0, 2, 2]

(3) In the third iteration, when v is v3, vstarlist consists of v∗
1 and v∗

2 . The projection of v2

orthogonal to v∗
1 is [0, 0, 2], and the projection of [0, 0, 2] orthogonal to v∗

2 is

[0, 0, 2] − 1

2
[0, 2, 2] = [0,−1, 1]

Example 9.3.3: Returning to the problem posed in Examples 9.0.5 and 9.1.5, we need to run
orthogonalize on the list of vectors [v1,v2] where v1 = [8,−2, 2] and v2 = [4, 2, 4].
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We set v∗
1 = v1. Next, we compute v∗

2 as the projection of v2 orthogonal to v∗
1 :

v∗
2 = v2 − project along(v2,v

∗
1)

= v2 −
⟨v2,v∗

1⟩
⟨v∗

1 ,v
∗
1⟩

v∗
1

= v2 −
36

72
v∗
1

= v2 −
1

2
[8,−2, 2]

= [0, 3, 3]

We end up with [v∗
1 ,v

∗
2 ] = [[8,−2, 2], [0, 3, 3]].

Problem 9.3.4: Using hand-calculation, show the steps carried out when orthogonalize is
applied to [v1,v2,v3] where v1 = [1, 0, 2],v2 = [1, 0, 2], and v3 = [2, 0, 0].

9.3.2 Proving the correctness of orthogonalize

To show that orthogonalize satisfies its specification, we must also show that the span of the
list of vectors returned equals the span of the list of vectors provided as input.

We use the following loop invariant:

Lemma 9.3.5: Consider orthogonalize applied to an n-element list [v1, . . . ,vn]. After i
iterations of the algorithm, Span vstarlist = Span {v1, . . . ,vi}.

Proof

The proof is by induction on i. The case i = 0 is trivial. After i − 1 iterations, vstarlist
consists of vectors v∗

1 , . . . ,v
∗
i−1. Assume the lemma holds at this point.

This means that

Span {v∗
1 , . . . ,v

∗
i−1} = Span {v1, . . . ,vi−1}

By adding the vector vi to sets on both sides, we obtain

Span {v∗
1 , . . . ,v

∗
i−1,vi} = Span {v1, . . . ,vi−1,vi}

It therefore remains only to show that Span {v∗
1 , . . . ,v

∗
i−1,v

∗
i } = Span {v∗

1 , . . . ,v
∗
i−1,vi}.

The ith iteration computes v∗
i using project_orthogonal(vi, [v∗

1 , . . . ,v
∗
i−1]). By Equa-
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tion 9.3, there are scalars σi1,σi2, . . . ,σi,i−1 such that

vi = σ1iv
∗
1 + · · · + σi−1,iv

∗
i−1 + v∗

i (9.6)

This equation shows that any linear combination of

v∗
1 ,v

∗
2 . . . ,v∗

i−1,vi

can be transformed into a linear combination of

v∗
1 ,v

∗
2 . . . ,v∗

i−1,v
∗
i

and vice versa. !

The process of orthogonalization is often called Gram-Schmidt orthogonalization after the
mathematicians Jørgen Pedersen Gram and Erhard Schmidt.

Remark 9.3.6: Order matters! Suppose you run the procedure orthogonalize twice, once
with a list of vectors and once with the reverse of that list. The output lists will not be the
reverses of each other. This contrasts with project_orthogonal(b, vlist). The projection
of a vector b orthogonal to a vector space is unique, so in principlea the order of vectors in vlist
doesn’t affect the output of project_orthogonal(b, vlist).

aNote, however, that the exact vector returned might depend on the order due to the fact that numerical
calculations are not exact.

Following up on the matrix equation (9.4), we can write (9.6) in matrix form:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v1 v2 v3 · · · vn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v∗
1 v∗

2 v∗
3 · · · v∗

n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 σ12 σ13 σ1n

1 σ23 σ2n

1 σ3n

. . .
σn−1,n

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9.7)
Note that the two matrices on the right-hand side are special. The first one has mutually

orthogonal columns. The second one is square, and has the property that the ij entry is zero if
i < j. Such a matrix, you will recall, is called an upper-triangular matrix.

We shall have more to say about both kinds of matrices.

Example 9.3.7: For vlist consisting of vectors v1 = [2, 0, 0], v2 = [1, 2, 2] and v3 = [1, 0, 2],
the corresponding list of orthogonal vectors vstarlist consists of v∗

1 = [2, 0, 0], v∗
2 = [0, 2, 2]



CHAPTER 9. ORTHOGONALIZATION 454

and v∗
3 = [0,−1, 1]. The corresponding matrix equation is

⎡

⎣ v1 v2 v3

⎤

⎦ =

⎡

⎣

2 0 0
0 2 −1
0 2 1

⎤

⎦

⎡

⎣

1 0.5 0.5
1 0.5

1

⎤

⎦

9.4 Solving the Computational Problem closest point in
the span of many vectors

We can now give an algorithm for Computational Problem 9.0.4: finding the vector in
Span {v1, . . . ,vn} that is closest to b.

According to the Generalized Fire Engine Lemma (Lemma 9.1.6), the closest vector is b||V ,
the projection of b onto V = Span {v1, . . . ,vn}, which is b− b⊥V , where b⊥V is the projection
of b orthogonal to V.

There are two equivalent ways to find b⊥V ,

• One method: First, apply orthogonalize to v1, . . . ,vn, and we obtain v∗
1 , . . . ,v

∗
n. Second,

call
project_orthogonal(b, [v∗

1 , . . . ,v
∗
n])

and obtain b⊥V as the result.

• Another method: Exactly the same computations take place when orthogonalize is applied
to [v1, . . . ,vn, b] to obtain [v∗

1 , . . . ,v
∗
n, b∗]. In the last iteration of orthogonalize, the

vector b∗ is obtained by projecting b orthogonal to v∗
1 , . . . ,v

∗
n. Thus b∗ = b⊥V .

Then b||V = b− b⊥V is the closest vector to b in Span {v1, . . . ,vn}.

Example 9.4.1: We return to the problem posed in Examples 9.0.5 and 9.1.5. Let v1 =
[8,−2, 2] and v2 = [4, 2, 4]. In Example 9.3.3 (Page 451), we found that the vectors v∗1 =
[8,−2, 2] and v∗

2 = [0, 3, 3] span the same space and are orthogonal to each other. We can there-
fore find the projection of b = [5,−5, 2] onto this space using project orthogonal(b, [v∗

1 ,v
∗
2 ]).

For i = 0, 1, 2, let bi denote the value of the variable b in project orthogonal after i
iterations.

b1 = b0 −
⟨b0,v∗

1⟩
⟨v∗

1 ,v
∗
1⟩

v∗
1

= b0 −
3

4
[8,−2, 2]

= [−1,−3.5, 0.5]b2 = b1 −
⟨b0,v∗

2⟩
⟨v∗

2 ,v
∗
2⟩

v∗
2

= b1 −
−1

2
[0, 3, 3]

= [−1,−2, 2]
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The resulting vector b2 is the projection of b orthogonal to Span {v∗
1 ,v

∗
2} and therefore the

projection of b orthogonal to Span {v1,v2} since these two spans are the same set.

9.5 Solving other problems using orthogonalize

We’ve shown how orthogonalize can be used to find the vector in Span {v1, . . . ,vn} closest to b,
namely b||V . Later we will give an algorithm to find the coordinate representation of b|| in terms
of {v1, . . . ,vn}. First we will see how we can use orthogonalization to solve other computational
problems.

We need to prove something about mutually orthogonal vectors:

Proposition 9.5.1: Mutually orthogonal nonzero vectors are linearly independent.

Proof

Let v∗
1 ,v

∗
2 , . . . ,v

∗
n be mutually orthogonal nonzero vectors.

Suppose α1,α2, . . . ,αn are coefficients such that

0 = α1 v
∗
1 + α2 v

∗
2 + · · · + αn v

∗
n

We must show that therefore the coefficients are all zero.
To show that α1 is zero, take inner product with v∗

1 on both sides:

⟨v∗
1 ,0⟩ = ⟨v∗

1 ,α1 v
∗
1 + α2 v

∗
2 + · · · + αn v

∗
n⟩

= α1 ⟨v∗
1 ,v

∗
1⟩ + α2 ⟨v∗

1 ,v
∗
2⟩ + · · · + αn ⟨v∗

1 ,v
∗
n⟩

= α1∥v∗
1∥2 + α2 0 + · · · + αn 0

= α1∥v∗
1∥2

The inner product ⟨v∗
1 , 0⟩ is zero, so α1 ∥v∗

1∥2 = 0. Since v∗
1 is nonzero, its norm is nonzero,

so the only solution is α1 = 0.
One can similarly show that α2 = 0, · · · ,αn = 0. !

9.5.1 Computing a basis

The orthogonalize procedure does not require that the vectors of vlist be linearly independent.
What happens if they are not?

Let v∗
1 , . . . ,v

∗
n be the vectors returned by orthogonalize([v1, . . . ,vn]). They are mutu-

ally orthogonal and span the same space as v1, . . . ,vn. Some of them, however, might be
zero vectors. Let S be the subset of {v∗

1 , . . . ,v
∗
n} that are nonzero vectors. Clearly Span S =

Span {v∗
1 , . . . ,v

∗
n}. Moreover, by Proposition 9.5.1, the vectors of S are linearly independent.

Therefore they form a basis for Span {v∗
1 , . . . ,v

∗
n} and thus also for Span {v1, . . . ,vn}.

We have thus obtained an algorithm for Computational Problem 5.10.1: finding a basis of
the vector space spanned by given vectors.
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Here is pseudocode for the algorithm:

def find basis([v1, . . . ,vn]):
“Return the list of nonzero starred vectors”
[v∗

1 , . . . ,v
∗
n] = orthogonalize([v1, . . . ,vn])

return [v∗ for v∗ in [v∗
1 , . . . ,v

∗
n] if v∗ is not the zero vector]

As a bonus, we get algorithms for:

• finding the rank of a list of vectors, and

• testing whether vectors v1, . . . ,vn are linearly dependent, Computational Problem 5.5.5.

9.5.2 Computing a subset basis

With a bit more cleverness, we can find a basis of Span {v1, . . . ,vn} consisting of a subset of
the original vectors v1, . . . ,vn. Let k be the number of nonzero orthogonal vectors, and let
i1, i2, . . . , ik be the indices, in increasing order, of the nonzero orthogonal vectors. That is, the
nonzero orthogonal vectors are

v∗
i1 ,v

∗
i2 , . . . ,v

∗
ik

Then, I claim, the corresponding original vectors

vi1 ,vi2 , . . . ,vik

span the same space as the basis v∗
i1 ,v

∗
i2 , . . . ,v

∗
ik . Since they have the same cardinality as the

basis, the original k vectors must also be a basis.
To see why the claim is true, consider a thought experiment in which one calls

orthogonalize([vi1 ,vi2 , . . . ,vik ])
A simple induction shows that, for j = 1, . . . , k, the vector added to vstarlist is v∗

ij . The
reason is that project_orthogonal(v, vstarlist) effectively ignores the zero vectors within
vstarlist in computing the projection.

Here is pseudocode for the algorithm:

def find subset basis([v0, . . . ,vn]):
“Return the list of original vectors that correspond to nonzero starred vectors.”
[v∗

0 , . . . ,v
∗
n] = orthogonalize([v0, . . . ,vn])

Return [vi for i in {0, . . . , n} if v∗
i is not the zero vector]

9.5.3 augmented orthogonalize

Building on aug project orthgonal(b, vlist), we will write a procedure
aug_orthogonalize(vlist) with the following spec:
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• input: a list [v1, . . . ,vn] of vectors

• output: the pair ([v∗
1 , . . . ,v

∗
n], [u1, . . . ,un]) of lists of vectors such that

– v∗
1 , . . . ,v

∗
n are mutually orthogonal vectors whose span equals Span {v1, . . . ,vn}, and

– for i = 1, . . . , n,

⎡

⎢
⎢
⎢
⎢
⎣

v1 · · · vn

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

v∗
1 · · · v∗

n

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

u1 · · · un

⎤

⎥
⎥
⎥
⎥
⎦

def aug_orthogonalize(vlist):
vstarlist = []
sigma_vecs = []
D = set(range(len(vlist)))
for v in vlist:

(vstar, sigmadict)= aug_project_orthogonal(v, vstarlist)
vstarlist.append(vstar)
sigma_vecs.append(Vec(D, sigmadict))

return vstarlist, sigma_vecs

9.5.4 Algorithms that work in the presence of rounding errors

We have given algorithms find basis and find subset basis that are mathematically correct
but will not work in practice; because of rounding errors, the vectors produced by orthogonalize
that should be zero vectors will not really be zero vectors. We saw this before, in defining
project along. One solution is to consider a vector to be practically zero if its squared norm is
very small, e.g. less than 10−20.

9.6 Orthogonal complement

We have learned about projecting a vector b orthogonal to a vector space V. Next we (in a sense)
project a whole vector space orthogonal to another.

9.6.1 Definition of orthogonal complement

Definition 9.6.1: Let W be a vector space over the reals, and let U be a subspace of W. The
orthogonal complement of U with respect to W is defined to be the set V such that

V = {w ∈ W : w is orthogonal to every vector in U}

The set V is by its definition a subset of W, but we can say more:
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Lemma 9.6.2: V is a subspace of W .

Proof

For any two vectors v1 and v2 in V, we want to show that v1 +v2 is also in V. By definition
of V, the vectors v1 and and v2

1. are both in the vector space W, and

2. are orthogonal to every vector in U .

By 1, their sum is in W. By combining 2 with Orthogonality Property 2 of Lemma 8.3.2,
their sum is orthogonal to every vector in U . Thus the sum is in V.

Similarly, for any v ∈ V and any scalar α ∈ R, we must show that α v is in V. Since v is
in the vector space W, it follows that α v is also in W. Since v is orthogonal to every vector
in U , it follows from Orthogonality Property 1 that α v is also orthogonal to every vector in
U . Thus α v is in V. !

Example 9.6.3: Let U = Span {[1, 1, 0, 0], [0, 0, 1, 1]}. Let V denote the orthogonal comple-
ment of U in R4. What vectors form a basis for V?

Every vector in U has the form [a, a, b, b]. Therefore any vector of the form [c,−c, d,−d] is
orthogonal to every vector in U .

Every vector in Span {[1,−1, 0, 0], [0, 0, 1,−1]} is orthogonal to every vector in U , so
Span {[1,−1, 0, 0], [0, 0, 1,−1]} is a subspace of V, the orthogonal complement of U in R4. In
fact, it is the whole thing, as we show using the Dimension Principle. We know U ⊕ V = R4

so dim U + dim V = 4. We can tell that {[1, 1, 0, 0], [0, 0, 1, 1]} is linearly independent so
dim U = 2... so dim V = 2. We can tell that {[1,−1, 0, 0], [0, 0, 1,−1]} is linearly indepen-
dent so dim Span {[1,−1, 0, 0], [0, 0, 1,−1]} is also 2. By the Dimension Principle, therefore,
Span {[1,−1, 0, 0], [0, 0, 1,−1]} is equal to V.

9.6.2 Orthogonal complement and direct sum

Now we see the connection between orthogonal complement and direct sum.

Lemma 9.6.4: Let V be the orthogonal complement of U with respect to W. The only vector
in U ∩ V is the zero vector.

Proof

A vector u that is in V is orthogonal to every vector in U . If u is also in U , then u is
orthogonal to itself, i.e. ⟨u,u⟩ = 0. By the second norm property (see Section 8.1.1), this
implies that u is the zero vector. !
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Suppose V is the orthogonal complement of U with respect to W. By Lemma 9.6.4, we can
form the direct sum U ⊕ V (see Section 6.3), which is defined to be the set

{u + v : u ∈ U ,v ∈ V}

The following lemma shows that W is the direct sum of U and V, so U and V are complementary
subspaces of W.

Lemma 9.6.5: If the orthogonal complement of U with respect to W is V then

U ⊕ V = W

Proof

The proof has two directions.

1. Every element of U ⊕ V has the form u + v for u ∈ U and v ∈ V. Since U and V are
both subsets of the vector space W, the sum u + v is in W. This shows U ⊕ V ⊆ W.

2. For any vector b in W, write b = b||U + b⊥U where b||U is the projection of b onto U
and b⊥U is the projection of b orthogonal to U . Then b||U is in U and b⊥U is in V, so
b is the sum of a vector in U and a vector in V. This shows W ⊆ U ⊕ V .

!

In Chapter 10, we use the link between orthogonal complement and direct sum in defining a
wavelet basis, used in image compression.

9.6.3 Normal to a plane in R3 given as span or affine hull

You will often see the phrase “normal to a plane.” Used in this way, “normal” means perpendic-
ular. (Section 9.1.1).

Suppose the plane is specified as the span of two 3-vectors u1 and u2, in which case it is
a vector space U of dimension 2. In this case, a vector is perpendicular to the plane if it is
orthogonal to every vector in the plane.

Let n be a nonzero vector that is orthogonal to U . Then Span {n} is a subspace of the
orthogonal complement of U in R3. Moreover, by the Direct-Sum Dimension (Corollary 6.3.9),
the dimension of the orthogonal complement is dimR3 − dim U = 1, so, by the Dimension
Principle (Lemma 6.2.14), the orthogonal complement is exactly Span {n}. Thus any nonzero
vector in Span {n} serves as a normal. Often the vector chosen to serve that role is the vector
in Span {n} with norm one.

Example 9.6.6: As we learned in Example 9.4.1 (Page 454), one nonzero vector that is or-
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thogonal to Span {[8,−2, 2], [0, 3, 3]} is [−1,−2, 2], so that is a normal. To get a normal with
norm one, we divide by the norm of [−1,−2, 2], getting

[−1
9 , −2

9 , 2
9

]

.

Similarly, one can give a vector that is normal to a line in the plane R2. Suppose a line in
the plane is given as the span of a 2-vector u1. Any nonzero vector n that is orthogonal to u1

is a normal vector.
Now suppose a plane is specified as the affine hull of u1, u2, and u3. We know from Sec-

tion 3.5.3 that we can rewrite it, for example, as

u1 + Span {u2 − u1,u3 − u1}

that is, as a translation of a plane that contains the origin. A bit of geometric intution tells us
that a vector is perpendicular to this new plane if and only if it is perpendicular to the original
plane. Therefore, we find a normal n to the vector space Span {u2 − u1,u3 − u1} as described
above, and it will also be a normal to the original plane.

9.6.4 Orthogonal complement and null space and annihilator

Let A be a R × C matrix over R. Recall that the null space of A is the set of C-vectors u such
that Au is a zero vector. By the dot-product definition of matrix-vector multiplication, this is
the set of C-vectors u whose dot-product with each row of A is zero. Since our inner product
for vectors over R is dot-product, this means that the orthogonal complement of Row A in RC

is Null A.
We already saw (in Section 6.5.2) the connection between null space and annihilator: the

annihilator of Row A is Null A. This means that, for any subspace U of RC , the orthogonal
complement of U in RC is the annihilator Uo.

The Annihilator Theorem tells us that the annihilator is the original space. The argument
can be adapted to show that, for any vector space W over R (not just RC) and any subspace U ,
the orthogonal complement of the orthogonal complement of U with respect to W is U itself.

9.6.5 Normal to a plane in R3 given by an equation

Returning to the problem of finding a normal to a plane, suppose the plane is given as the solution
set for a linear equation:

{[x, y, z] ∈ R3 : [a, b, c] · [x, y, z] = d}

As we saw in Section 3.6.1, the solution set is a translation of the solution set to the corresponding
homogeneous linear equation:

{[x, y, z] ∈ R3 : [a, b, c] · [x, y, z] = 0}

Let U = Span {[a, b, c]}. The solution set {[x, y, z] ∈ R3 : [a, b, c] · [x, y, z] = 0} is the annihilator
Uo. We want a normal to the plane consisting of the vectors in the annihilator Uo. The set
of vectors orthogonal to the annihilator Uo is the annihilator of the annihilator, i.e. (Uo)o, but
the Annihilator Theorem (Theorem 6.5.15) tells us that the annihilator of the annihilatorl is the
original space U . Thus one candidate for the normal is the vector [a, b, c] itself.
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9.6.6 Computing the orthogonal complement

Suppose we have a basis u1, . . . ,uk for U and a basis w1, . . . ,wn for W. How can we compute
a basis for the orthogonal complement of U in W?

We will give a method that uses orthogonalize(vlist) with

vlist = [u1, . . . ,uk,w1, . . . ,wn]

Write the list returned as [u∗
1, . . . ,u

∗
k,w

∗
1 , . . . ,w

∗
n]

These vectors span the same space as input vectors u1, . . . ,uk,w1, . . . ,wn, namely W , which
has dimension n. Therefore exactly n of the output vectors u∗

1, . . . ,u
∗
k,w

∗
1 , . . . ,w

∗
n are nonzero.

The vectors u∗
1, . . . ,u

∗
k have same span as u1, . . . ,uk and are all nonzero since u1, . . . ,uk are

linearly independent. Therefore exactly n − k of the remaining vectors w∗
1 , . . . ,w

∗
n are nonzero.

Every one of them is orthogonal to u1, . . . ,un, so they are orthogonal to every vector in U , so
they lie in the orthogonal complement of U .

On the other hand, by the Direct-Sum Dimension Corollary (Corollary 6.3.9), the orthogonal
complement has dimension n−k, so the remaining nonzero vectors are a basis for the orthogonal
complement.

Here is pseudocode for the algorithm:

def find orthogonal complement(U basis, W basis):
“Given a basis U basis for U and a basis W basis for W,
Returns a basis for the orthogonal complement of U with respect to W”
[u∗

1, . . . ,u
∗
k,w

∗
1 , . . . ,w

∗
n] = orthogonalize(U basis, W basis)

Return [wi for i in {1, . . . , n} if w∗
i is not the zero vector]

Example 9.6.7: Let’s use this algorithm to find a basis for the orthogonal complement of
Span {[8,−2, 2], [0, 3, 3]} in R3. We use the standard basis for R3, namely [1, 0, 0], [0, 1, 0], and
[0, 0, 1].

>>> L = [list2vec(v) for v in [[8,-2,2], [0,3,3], [1,0,0], [0,1,0], [0,0,1]]]
>>> Lstar = orthogonalize(L)
>>> print(Lstar[2])

0 1 2
-------------------
0.111 0.222 -0.222
>>> print(Lstar[3])

0 1 2
----------------------------
-8.33E-17 1.67E-16 5.55E-17
>>> print(Lstar[4])
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0 1 2
---------------------------
8.33E-17 5.55E-17 1.67E-16

The third vector in Lstar,
[
1
9 , 2

9 , −2
9

]

, is the projection of [1, 0, 0] orthogonal to
Span {[8,−2, 2], [0, 3, 3]}. The fourth and fifth vectors in Lstar are zero vectors, so

[
1
9 , 2

9 , −2
9

]

is the sole vector in a basis for the orthogonal complement.

9.7 The QR factorization

We are now in a position to develop our first matrix factorization. Matrix factorizations play a
mathematical role and a computational role:

• Mathematical: They provide insight into the nature of matrices—each factorization gives
us a new way to think about a matrix.

• Computational: They give us ways to compute solutions to fundamental computational
problems involving matrices.

We will use the QR algorithm for solving a square matrix equation and for the least-squares
problem.

Equation 9.7 states that a matrix whose columns are v1, . . . ,vn can be expressed as the
product of two matrices:

• a matrix whose columns v∗
1 , . . . ,v

∗
n are mutually orthogonal, and

• a triangular matrix.

9.7.1 Orthogonal and column-orthogonal matrices

Definition 9.7.1: Mutually orthogonal vectors are said to be orthonormal if they all have
norm 1. A matrix is said to be column-orthogonal if the columns are orthonormal. A square
column-orthogonal matrix is said to be an orthogonal matrix.

Yes, the terms are confusing. One would think that a matrix with orthonormal columns
would be called an orthonormal matrix, but this is not the convention. Suppose Q is a column-
orthogonal matrix, and write its columns as q∗

1 , . . . , q
∗
n. Therefore the rows of QT are orthonor-

mal. Let’s see what happens when we take the matrix product QTQ, which we can write as

⎡

⎢
⎣

q∗
1
...
q∗
n

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

q∗
1 · · · q∗

n

⎤

⎥
⎥
⎥
⎥
⎦

By the dot-product definition of matrix-matrix multiplication, the ij entry of the product is
the dot-product of row i of the first matrix with column j of the second matrix. In this case,
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therefore the ij entry is q∗
i · q∗

j . If i = j then this is q∗
i · q∗

i , which is the square of the norm of
q∗
i , which is 1. If i ̸= j then this is the dot-product of two mutually orthogonal vectors, which is

zero. Thus the ij entry of the product is 1 if i = j and 0 otherwise. In other words, the product
is an identity matrix.

Lemma 9.7.2: If Q is a column-orthogonal matrix then QTQ is an identity matrix.

Now suppose in addition that Q is square, i.e. that Q is an orthogonal matrix. By Corol-
lary 6.4.10, QT and Q are inverses of each other.

We have shown:

Corollary 9.7.3 (Inverse of Orthogonal Matrix): If Q is an orthogonal matrix then its
inverse is QT .

9.7.2 Defining the QR factorization of a matrix

Definition 9.7.4: The QR factorization of an m × n matrix A (where m ≥ n) is A = QR
where Q is an m × n column-orthogonal matrix Q and R is a triangular matrix:

⎡

⎢
⎢
⎢
⎢
⎣

A

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

Q

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎣ R

⎤

⎦ (9.8)

(What I have described is sometimes called the reduced QR factorization, as opposed to the
full QR factorization.)

Later we see how having a QR factorization for a matrix A can help us solve computational
problems. For now, let us consider the problem of computing a QR factorization of an input
matrix A.

9.7.3 Requring A to have linearly independent columns

Let the columns of A be v1, . . . ,vn. The factorization of Equation 9.7 almost satisfies the
definition of a QR factorization—it fails only in that the columns v∗

1 , . . . ,v
∗
n do not generally

have norm 1. To remedy this, we propose to normalize the columns, i.e. divide column j by ∥v∗
j ∥.

To preserve the equality in Equation 9.7, we compensate by multiplying row j of the triangular
matrix by ∥v∗

j ∥.
Here then is pseudocode for our proposed method for computing the QR factorization of a

matrix A:

def qr.factor(A):
apply aug orthogonalize to the columns of A to get
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• mutually orthogonal vectors and
• corresponding coefficients

let Q = matrix with normalized versions of these vectors
let R = coefficient matrix with rows scaled
return Q and R

What can go wrong when we do this? If some vector v∗
j is a zero vector, ∥v∗

j ∥ = 0 so we
cannot divide by ∥v∗

j ∥.
To avoid division by zero, we will impose a precondition on QR: the columns v1, . . . ,vn of A

are required to be linearly independent, i.e. they form a basis of ColA

No divisions by zero

The precondition implies that, by the Basis Theorem, there is no set of generators for ColA that
has fewer than n vectors.

Consider the vectors v∗
1 , . . . ,v

∗
n returned by the orthogonalization procedure. They span

ColA. If any of them were the zero vector, the remaining n − 1 vectors would span Col A, a
contradiction.

Diagonal elements of R are nonzero

Linear independence of the columns of A has another consequence. The coefficient matrix re-
turned by the orthogonalization procedure is an upper-triangular matrix with diagonal entries
equal to 1. The procedure QR special obtains R from the coefficient matrix by multiplying its
rows by the norms of the corresponding vectors v∗

i . We just proved that these norms are nonzero
(assuming the columns of A are linearly independent). It follows that (under the same assump-
tion) the diagonal elements of R are nonzero. This will be important because we use backward
substitution to solve the triangular system.

Col Q = Col A

The mutually orthogonal vectors returned by aug orthogonalize span the same space as the
columns of A. Normalizing them does not change them, so we obtain the following:

Lemma 9.7.5: In the QR factorization of A, if A’s columns are linearly independent then
Col Q = Col A.

9.8 Using the QR factorization to solve a matrix equation
Ax = b

9.8.1 The square case

Consider the matrix equation Ax = b over the reals. For the case where the matrix A is square
and the columns of A are linearly independent, there is a method, based on QR factorization,
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for solving the equation.
Before giving the method and proving it obtains the correct answer, we give the intuition

behind the method.
Suppose the columns of A are linearly independent, and A = QR is the QR factorization of

A. We are looking for a vector that satisfies the equation

Ax = b

By substituting QR for A, we obtain
QRx = b

By left-multiplying both sides of the equation by QT , we obtain

QTQRx = QT b

Since the columns of Q are orthonormal, QTQ is the identity matrix 1, so

1Rx = QT b

which is equivalent to
Rx = QT b

We have shown that any vector x̂ that satisfies the equation Ax = b must also satisfy the
equation Rx = QT b. This reasoning suggest the following method.

def QR solve(A, b):
(assumes columns of A are linearly independent)

find the QR factorization QR = A
return the solution x̂ to Rx = QT b.

Let b′ = QT b. Since R is an upper-triangular square matrix with nonzero diagonal elements,
the solution to Rx = b′ can be found using backward substitution (see Section 2.11.2 and the
module triangular).

9.8.2 Correctness in the square case

Have we shown that QR solve actually finds the solution to Ax = b? No:

• We’ve shown that any solution to Ax = b is a solution to Rx = QT b. (This argument
applies even when A has more rows than columns. There might be no solutions to Ax = b
in this case.)

• We must instead show that a solution to Rx = QT b is a solution to Ax = b. (This is not
necessarily true when A has more rows than columns. However, we will later see that a
solution to Rx = QT b is, in a sense, a best approximate solution to Ax = b.)
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Theorem 9.8.1: Suppose A is a square matrix with linearly independent columns. The vector
x̂ found by the above algorithm satisfies the equation Ax = b.

Proof

We have
Rx̂ = QT b

Multiply both sides on the left by Q. We get

QRx̂ = QQT b

which is equivalent to
Ax̂ = QQT b

Because A is square, so is Q. Therefore Q is an orthogonal matrix (not just column-
orthogonal) so by Corollary 9.7.3, its inverse is QT .

Therefore QQT b = b, so we obtain

Ax̂ = b

!

We have given a solution to (a special case of) the computational problem solving a matrix
equation, and therefore to expressing a given vector as a linear combination of other given vectors.
We can solve Ax = b when

• the field is R,

• the columns of A are linearly independent, and

• A is square.

We will see how to avoid the latter two assumptions. First we study the case where A is not
square (but the other assumptions still hold).

9.8.3 The least-squares problem

We assume that the field is R and that the columns of A are linearly independent. First, let’s
consider what we can hope to achieve. Suppose A is an R × C matrix, and define the function
fA : RC −→ RR by fA(x) = Ax. The domain is RC so the dimension of the domain is |C|. The
dimension of the co-domain is |R|. In the case where A has more rows than columns, therefore,
the dimension of the co-domain is greater than that of the image. Therefore there are vectors in
the co-domain that are not in the image, so fA is not onto. Suppose the vector b is one of those
vectors. Then there is no solution to Ax = b.

What can we hope to find in this case? At the beginning of the chapter, we distinguished
between two problems:
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• finding the closest vector to b among the linear combinations of the columns of A, and

• finding the coefficients with which we can express that closest vector as such a linear
combination.

Orthogonalization enables us to solve the first problem: the point closest to b is b||, the projection
of b into the column space of A.

We addressed the second problem in Lab 8.4 but did not give a fully specified algorithm.

Computational Problem 9.8.2: Least squares

• input: an R × C matrix A and an R-vector b over the reals

• output: a vector x̂ that minimizes ∥Ax− b∥.

Recall from Section 4.5.4 that, for a given vector x̂, the vector b − Ax̂ is called the residual
vector. The goal of the least-squares problem is to find a vector x̂ that minimizes the norm of
the residual vector.

9.8.4 The coordinate representation in terms of the columns of a column-
orthogonal matrix

Before we prove that QR solve procedure solves the least-squares problem, we introduce a lemma
that is used in that proof and in many others.

Lemma 9.8.3: Let Q be a column-orthogonal basis, and let V = Col Q. Then, for any vector
b whose domain equals Q’s row-label set, QT b is the coordinate representation of b||V in terms
of the columns of Q, and QQT b is b||V itself.

Proof

Write b = b⊥V + b||V . Since b||V lies in V, it can be expressed as a linear combination of the
columns q1, . . . , qn of Q:

b||V = α1 q1 + · · · + αn qn (9.9)

Then the coordinate representation of b||V is [α1, . . . ,αn]. We must show that this vector
equals QT b.

By the dot-product definition of matrix-vector multiplication, entry j of QT b is the
dot-product of column j of Q with b. Is this dot-product equal to αj?

Column j of Q is qi, and the dot-product is our inner product. Let’s use Equation 9.9
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to calculate the inner product of qj with b:

⟨qj , b⟩ =
〈

qj , b⊥V + b||V
〉

=
〈

qj , b⊥V〉 +
〈

qj , b||V
〉

= 0 + ⟨qj ,α1 q1 + · · · + αj qj + · · · + αn qn⟩
= α1 ⟨qj , q1⟩ + · · · + αj ⟨qj , qj⟩ + · · · + αn ⟨qj , qn⟩
= αj

We have shown that αj = ⟨qj , b⟩ for j = 1, . . . , n. This shows that QT b is the coordinate
representation of b||V in terms of q1, . . . , qn.

To go from the coordinate representation of a vector to the vector itself, we multiply by
the matrix whose columns form the basis, which in this case is Q. Thus QQT b is b||V itself.
!

9.8.5 Using QR solve when A has more rows than columns

Here we see that the QR solve procedure solves the least-squares problem. The goal is to find a
vector x̂ that minimizes Ax−b. We know from the Generalized Fire Engine Lemma (Lemma 9.1.6
that Ax̂ should equal the projection b||V onto V, where V is the column space of A. Is this true
of the solution x̂ returned by QR solve(A)?

QR solve(A) returns a vector x̂ such that

Rx̂ = QT b

Multiplying both sides of this equation by Q gives us

QRx̂ = QQT b

Substituting A for QR gives us
Ax̂ = QQT b

By Lemma 9.7.5, V is also the column space of Q. By Lemma 9.8.3, therefore, QQT b = b||V , so
we obtain

Ax̂ = b||V

which proves that QR solve(A) solves the least-squares problem.

9.9 Applications of least squares

9.9.1 Linear regression (Line-fitting)

An example application of least-squares is finding the line that best fits some two-dimensional
data.

Suppose you collect some data on age versus brain mass. Here is some data from the Bureau
of Made-up Numbers:
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age brain mass
45 4 lbs.
55 3.8
65 3.75
75 3.5
85 3.3

Let f(x) be the function that best predicts brain mass for someone of age x. You hypothesize that,
after age 45, brain mass decreases linearly with age, i.e. that f(x) = a+cx for some numbers a, c.
Our goal will be to find a, c to minimize the sum of squares of prediction errors. The observations
are (x1, y1) = (45, 4), (x2, y2) = (55, 3.8), . . . , (x5, y5) = (85, 3.3). The prediction error on the the
ith observation is |f(xi) − yi|. The sum of squares of prediction errors is

∑

i(f(xi) − yi)2.
Here is a diagram (not a real plot of this data):

Note that, for each observation, we measure the difference between the predicted and observed
y-value. In this application, this difference is measured in pounds.

We don’t measure the distance from the point (xi, yi) to the line. Measuring the distance
from the point to the line wouldn’t make sense—in what units would you measure that distance?
The vertical distance is measured in pounds and the horizontal distance is measured in years.

But why do we try to minimize the sum of squares of prediction errors? One reason is that
we can handle it! A deeper reason is there is an interpretation based on probability theory for
why this is a good measure. If the error is modeled by a certain probability distribution called
a Gaussian (also called a normal distribution), minimizing this measure can be shown to be the
best way to find a, b.

Be warned, however, that it’s a bad model when there can be observations that are very far
from the line. Robust statistics is a field that addresses the case when outliers are common.

Let A be the matrix whose rows are (1, x1), (1, x2), . . . , (1, x5). The dot-product of row i with
the vector (a, c) is a + cxi, i.e. the value predicted by f(x) = a + cx for the ith observation.
Therefore, the vector of predictions is A ·(a, c). The vector of differences between predictions and
observed values is A(a, c) − (y1, y2, . . . , yk), and the sum of squares of differences is the squared
norm of this vector. Therefore the method of least squares can be used to find the pair (a, c)
that minimizes the sum of squares, i.e. the line that best fits the data. The squared norm of the
residual is a measure of how well the data fit the line model.

9.9.2 Fitting to a quadratic

Line-fitting is good when the data are expected to fit a line, but often you expect the data to
follow a slightly more complicated pattern. We’ll do an example of that.
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Suppose you are trying to find occurences of some specific structure within an image, e.g.
a tumor. You might have a linear filter that computes, for each pixel, some measure of how
tumorlike the region centered on that pixel looks.

Considering the image to be a huge vector in Rn, with one entry for each pixel, a linear filter
is just a linear transformation from Rn to Rn. The output of the filter assigns a signal strength
to each pixel.

Our goal is to find the locations of tumor centers from the results of the filter. Keeping in
mind that a pixel corresponds to an area on the sensor, not a single point, we don’t want to know
just which pixels are the centers of tumors, but exactly where in the pixel area. This is called
sub-pixel accuracy.

First, consider a one-dimensional image.

Suppose the pixel locations are x1, . . . , x5 and the corresponding signal strengths are y1, . . . , y5.
We expect the strengths to form a peak whose maximum occurs at the exact center of the tumor.
The maximum might not occur at the center of a pixel. We therefore find the quadratic function
f(x) = u0 + u1x + u2x2 that best fits the data. If the quadratic has the right form (i.e. it is
concave, so it has a maximum), we conclude that the x-location of the maximum is the center of
the tumor.

To find the best-fitting quadratic, we treat u0, u1, u2 as unknowns in a least-squares problem
in which we choose u to minimize the norm of the residual
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9.9.3 Fitting to a quadratic in two variables

A similar technique works for a two-dimensional (or even three-dimensional) image. For a two-
dimensional image, the data has the form (x1, y1, z1), . . . , (xm, ym, zm) where, for each i, zi is the
signal strength measured at pixel (x, y). We look for a quadratic in two variables:

f(x, y) = a + bx + cy + dxy + ex2 + fy2
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To find the best-fitting such function, we minimize the norm of the residual
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9.9.4 Coping with approximate data in the industrial espionage prob-
lem

Recall the industrial espionage problem. We were given a matrix M that specified how much of
each resource was consumed per unit manufactured of each product:

metal concrete plastic water electricity
garden gnome 0 1.3 .2 .8 .4

hula hoop 0 0 1.5 .4 .3
slinky .25 0 0 .2 .7

silly putty 0 0 .3 .7 .5
salad shooter .15 0 .5 .4 .8

The goal was to find the number of each product being produced from a vector b of measurements
of the amount of each resource consumed:

b =
metal concrete plastic water electricity
226.25 1300 677 1485 1409.5

To find the amount of each resource consumed, we can solve the vector-matrix equation uTM = b,
getting

gnome hoop slinky putty shooter
1000 175 860 590 75

In a more realistic scenario, we would get only approximate measurements of resources con-
sumed:

b̃ =
metal concrete plastic water electricity
223.23 1331.62 679.32 1488.69 1492.64

Solving with these approximate quantities gives us

gnome hoop slinky putty shooter
1024.32 28.85 536.32 446.7 594.34

which are fairly inaccurate numbers. How can we improve accuracy of output without more
accurate measurements? More measurements!

We have to measure something else, e.g. the amount of waste water produced. We would
start with a slightly larger matrix M :
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metal concrete plastic water electricity waste water
garden gnome 0 1.3 .2 .8 .4 .3

hula hoop 0 0 1.5 .4 .3 .35
slinky .25 0 0 .2 .7 0

silly putty 0 0 .3 .7 .5 .2
salad shooter .15 0 .5 .4 .8 .15

Now we have one additional measurement:

b̃ =
metal concrete plastic water electricity waste water
223.23 1331.62 679.32 1488.69 1492.64 489.19

Unfortunately, in adding a linear equation to our vector-matrix equation, we end up with an
equation that has no solution.

However, we can still use least squares to find a best solution:

gnome hoop slinky putty shooter
1022.26 191.8 1005.58 549.63 41.1

which is considerably closer to the true amounts. We have achieved better output accuracy with
same input accuracy.

9.9.5 Coping with approximate data in the sensor node problem

For another example, recall the sensor node problem: estimate current draw for each hardware
component. Define D = {’radio’, ’sensor’, ’memory’, ’CPU’}. Our goal was to compute a
D-vector u that, for each hardware component, gives the current drawn by that component.

We used four test periods. In each test period, we measured the total mA-seconds in these
test periods, obtaining b = [140, 170, 60, 170]. For each test period, we have a vector specifying
how long each hardware device was operating:

duration1 = {Vec(D, ’radio’:0.1, ’CPU’:0.3})
duration2 = {Vec(D, ’sensor’:0.2, ’CPU’:0.4})
duration3 = {Vec(D, ’memory’:0.3, ’CPU’:0.1})
duration4 = {Vec(D, ’memory’:0.5, ’CPU’:0.4})

To get u, we solve Ax = b where

A =

⎡

⎢
⎢
⎣

duration1

duration2

duration3

duration4

⎤

⎥
⎥
⎦

If measurement are exact, we get back the true current draw for each hardware component:

radio sensor CPU memory
500 250 300 100
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In a more realistic scenario, we would only get approximate measurements, such as

b̃ = [141.27, 160.59, 62.47, 181.25]

Solve Ax = b̃ gives us the vector

radio sensor CPU memory
421 142 331 98.1

How can we get more accurate results? Add more test periods and solve a least-squares
problem. Suppose we use eight test periods instead of four:

duration1 = Vec(D, {’radio’:0.1, ’CPU’:0.3})
duration2 = Vec(D, {’sensor’:0.2, ’CPU’:0.4})
duration3 = Vec(D, {’memory’:0.3, ’CPU’:0.1})
duration4 = Vec(D, {’memory’:0.5, ’CPU’:0.4})
duration5 = Vec(D, {’radio’:0.2, ’CPU’:0.5})
duration6 = Vec(D, {’sensor’:0.3, ’radio’:0.8, ’CPU’:0.9, ’memory’:0.8})
duration7 = Vec(D, {’sensor’:0.5, ’radio’:0.3 ’CPU’:0.9, ’memory’:0.5})
duration8 = Vec(D, {’radio’:0.2 ’CPU’:0.6})

Now, letting

A =

⎡

⎢
⎢
⎢
⎣

duration1

duration2

...
duration8

⎤

⎥
⎥
⎥
⎦

and using as our measurement vector b̃ = [141.27, 160.59, 62.47, 181.25, 247.74, 804.58, 609.10, 282.09],
we get a matrix-vector equation Ax = b̃ that has no solution.

However, the solution to least-squares problem is

radio sensor CPU memory
451.40 252.07 314.37 111.66

which is much closer to the true values. Again, we achieved better output accuracy with same
input accuracy by using more measurements.

9.9.6 Using the method of least squares in the machine-learning prob-
lem

In the breast-cancer machine-learning lab, the training data consisted of

• vectors a1, . . . ,am giving features of specimen, and

• values b1, . . . , bm specifying +1 (malignant) or -1 (benign)

Informally, the goal was to find a vector w such that sign of ai · w predicts sign of bi
We replaced that goal with a mathematically defined goal:
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find the vector w that minimizes sum of squared errors (b[1] − a1 · w)2 + · · · + (b[m] − am · w)2

where b = [b1, . . . , bm].

In the machine-learning lab, we used gradient descent, which is very generally applicable but
not always the best solution to a particular problem, and so it is with this problem.

It turns out that the optimization goal we posed could be addressed by a method for least
squares. The mathematical goal stated above is equivalent to the goal

find the vector w that minimizes
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This is the least-squares problem. Using the algorithm based on QR factorization takes a fraction
of the time of gradient descent, and is guaranteed to find the best solution, the one that truly
minimizes the quantity. (When using gradient descent for this problem, getting the optimal
solution depends on the step size.)

Machine learning provides even better solutions using more sophisticated techniques in linear
algebra:

• using gradient descent but with loss functions that do a better job of modeling the learning
problem,

• using an inner product that better reflects the variance of each of the features,

• using linear programming, a technique addressed in Chapter 13

• using convex programming, an even more general technique not addressed here.

9.10 Review questions

• What does it mean to normalize a vector?

• What does it mean for several vectors to be mutually orthogonal?

• What are orthonormal vectors? What is an orthonormal basis?

• How can one find the vector in Span {b1, . . . ,vn} closest to b?

• How does one find the projection of a vector b orthogonal to several mutually orthogonal
vectors v1, . . . ,vn?

• How does one find vectors that (i) span the same space as v1, . . . ,vn and that (ii) are
mutually orthogonal?

• What is a column-orthogonal matrix? An orthogonal matrix?

• What is the inverse of an orthogonal matrix?
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• How can you use matrix-vector multiplication to find the coordinate representation of a
vector in terms of an orthonormal basis?

• What is the QR factorization of a matrix?

• How can the QR factorization be used to solve a matrix equation?

• How can the QR factorization be computed?

• How can the QR factorization be used to solve a least-squares problem?

• How can solving a least-squares problem help in fitting data to a line or a quadratic?

• How can solving a least-squares problem help to get more accurate output?

• What is the orthogonal complement?

• What is the connection between orthogonal complement and direct sum?

9.11 Problems

Orthogonal Complement

Problem 9.11.1: Find generators for the orthogonal complement of U with respect to W
where

1. U = Span {[0, 0, 3, 2]} and W = Span {[1, 2,−3,−1], [1, 2, 0, 1], [3, 1, 0,−1], [−1,−2, 3, 1]}.

2. U = Span {[3, 0, 1]} and W = Span {[1, 0, 0], [1, 0, 1]}.

3. U = Span {[[−4, 3, 1,−2], [−2, 2, 3,−1]} and W = R4

Problem 9.11.2: Explain why each statement cannot be true.

1. U = Span {[0, 0, 1], [1, 2, 0]} and W = Span {[1, 0, 0], [1, 0, 1]}, and there is a vector
spaceV that is the orthogonal complement of U in W.

2. U = Span {[3, 2, 1], [5, 2,−3]} and W = Span {[1, 0, 0], [1, 0, 1], [0, 1, 1]} and the orthog-
onal complement V of U in W contains the vector [2,−3, 1].

Using orthogonal complement to get basis for null space

Problem 9.11.3: Let A =

[

−4 −1 −3 −2
0 4 0 −1

]

. Use orthogonal complement to find a

basis for the null space of A.
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Normal vector

Problem 9.11.4: Find a normal for each of the following lines in R2.

1. {α [3, 2] : α ∈ R}

2. {α [3, 5] : α ∈ R}

Problem 9.11.5: Find a normal for each of the following planes in R3.

1. Span {[0, 1, 0], [0, 0, 1]}

2. Span {[2, 1,−3], [−2, 1, 1]}

3. affine hull of [3, 1, 4], [5, 2, 6], and [2, 3, 5].

Problem 9.11.6: For each of the following vectors in R2, give a mathematical description of
a line that has this vector as the normal.

1. [0, 7]

2. [1, 2]

Problem 9.11.7: For each of the following vectors, provide a set of vectors that span a plane
in R3 for which the normal is the given vector.

1. [0, 1, 1]

2. [0, 1, 0]

Orthogonal complement and rank

Problem 9.11.8: In this problem, you will give an alternative proof of the Rank Theorem, a
proof that works for matrices over the reals.

Theorem: For a matrix A over the reals, the row rank equals the column rank.

Your proof should proceed as follows:

• The orthogonal complement of Row A is Null A.

• Using the connection between orthogonal complement and direct sum (Lemma 9.6.5) and
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the Direct Sum Dimension Corollary (Corollary 6.3.9), show that

dimRow A + dimNull A = number of columns of A

• Using the Kernel-Image Theorem (Theorem 6.4.7), show that

dimCol A + dimNull A = number of columns of A

• Combine these equations to obtain the theorem.

QR factorization

Problem 9.11.9: Write a module orthonormalization that defines a procedure
orthonormalize(L) with the following spec:

• input: a list L of linearly independent Vecs

• output: a list L∗ of len(L) orthonormal Vecs such that, for i = 1, . . . , len(L), the first i
Vecs of L∗ and the first i Vecs of L span the same space.

Your procedure should follow this outline:

1. Call orthogonalize(L),

2. Compute the list of norms of the resulting vectors, and

3. Return the list resulting from normalizing each of the vectors resulting from Step 1.

Be sure to test your procedure.
When the input consists of the list of Vecs corresponding to [4, 3, 1, 2], [8, 9,−5,−5],

[10, 1,−1, 5], your procedure should return the list of vecs corresponding approximately to
[0.73, 0.55, 0.18, 0.37], [0.19, 0.40,−0.57,−0.69], [0.53,−0.65,−0.51, 0.18].

Problem 9.11.10: Write a procedure aug orthonormalize(L) in your orthonormalization
module with the following spec:

• input: a list L of Vecs

• output: a pair Qlist, Rlist of lists of Vecs such that

– coldict2mat(L) equals coldict2mat(Qlist) times coldict2mat(Rlist), and

– Qlist = orthonormalize(L)

Your procedure should start by calling the procedure aug orthogonalize(L) defined in the
module orthogonalization. I suggest that your procedure also use a subroutine adjust(v,
multipliers) with the following spec:
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• input: a Vec v with domain {0, 1, 2, . . . , n − 1} and an n-element list multipliers of
scalars

• output: a Vec w with the same domain as v such that w[i] = multipliers[i]*v[i]

Here is an example for testing aug orthonormalize(L):

>>> L = [list2vec(v) for v in [[4,3,1,2],[8,9,-5,-5],[10,1,-1,5]]]
>>> print(coldict2mat(L))

0 1 2
---------

0 | 4 8 10
1 | 3 9 1
2 | 1 -5 -1
3 | 2 -5 5

>>> Qlist, Rlist = aug_orthonormalize(L)
>>> print(coldict2mat(Qlist))

0 1 2
---------------------

0 | 0.73 0.187 0.528
1 | 0.548 0.403 -0.653
2 | 0.183 -0.566 -0.512
3 | 0.365 -0.695 0.181

>>> print(coldict2mat(Rlist))

0 1 2
------------------

0 | 5.48 8.03 9.49
1 | 0 11.4 -0.636
2 | 0 0 6.04

>>> print(coldict2mat(Qlist)*coldict2mat(Rlist))

0 1 2
---------

0 | 4 8 10
1 | 3 9 1
2 | 1 -5 -1
3 | 2 -5 5

Keep in mind, however, that numerical calculations are approximate:
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>>> print(coldict2mat(Qlist)*coldict2mat(Rlist)-coldict2mat(L))

0 1 2
----------------------

0 | -4.44E-16 0 0
1 | 0 0 4.44E-16
2 | -1.11E-16 0 0
3 | -2.22E-16 0 0

Problem 9.11.11: Compute the QR factorization for the following matrices. You can use a
calculator or computer for the arithmetic.

1.

⎡

⎣

6 6
2 0
3 3

⎤

⎦

2.

⎡

⎣

2 3
2 1
1 1

⎤

⎦

Solving a matrix-vector equation with QR factorization

Problem 9.11.12: Write and test a procedure QR solve(A, b). Assuming the columns of A
are linearly independent, this procedure should return the vector x̂ that minimizes ∥b− Ax̂∥.

The procedure should use

• triangular solve(rowlist, label list, b) defined in the module triangular, and

• the procedure factor(A) defined in the module QR, which in turn uses the procedure
aug orthonormalize(L) that you wrote in Problem 9.11.9.

Note that triangular solve requires its matrix to be represented as a list of rows. The row-
labels of the matrix R returned by QR factor(R) are 0,1,2,... so it suffices to use the dictionary
returned by mat2rowdict(R).

Note also that triangular solve must be supplied with a list label list of column-labels
in order that it know how to interpret the vectors in rowlist as forming a triangular system.
The column-labels of R are, of course, the column-labels of A. The ordering to provide here
must match the ordering used in QR factor(A), which is sorted(A.D[1], key=repr).

Demonstrate that your procedure works on some 3× 2 and 3× 3 matrices. Include the code
and a transcript of your interaction with Python in testing it.

You can try your procedure on the examples given in Problem 9.11.13 and on the following
example:
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>>> A=Mat(({'a','b','c'},{'A','B'}), {('a','A'):-1, ('a','B'):2,
('b','A'):5, ('b','B'):3,('c','A'):1, ('c','B'):-2})

>>> print(A)

A B
-------

a | -1 2
b | 5 3
c | 1 -2

>>> Q, R = QR_factor(A)

>>> print(Q)

0 1
--------------

a | -0.192 0.68
b | 0.962 0.272
c | 0.192 -0.68

>>> print(R)

A B
----------

0 | 5.2 2.12
1 | 0 3.54

>>> b = Vec({'a','b','c'}, {'a':1,'b':-1})
>>> x = QR_solve(A,b)
>>> x
Vec({'A', 'B'},{'A': -0.269..., 'B': 0.115...})

A good way to test your solution is to verify that the residual is (approximately) orthogonal to
the columns of A:

>>> A.transpose()*(b-A*x)
Vec({'A', 'B'},{'A': -2.22e-16, 'B': 4.44e-16})

Least squares

Problem 9.11.13: In each of the following parts, you are given a matrix A and a vector b.
You are also given the approximate QR factorization of A. You are to

• find a vector x̂ that minimizes ||Ax̂− b||2,
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• prove to yourself that the columns of A are (approximately) orthogonal to the residual
b− Ax̂ by computing the inner products, and

• calculate the value of ∥Ax̂− b∥.

1. A =

⎡

⎣

8 1
6 2
0 6

⎤

⎦ and b = [10, 8, 6]

A =

⎡

⎣

0.8 −0.099
0.6 0.132
0 0.986

⎤

⎦

︸ ︷︷ ︸

Q

[

10 2
0 6.08

]

︸ ︷︷ ︸

R

2. A =

⎡

⎣

3 1
4 1
5 1

⎤

⎦ and b = [10, 13, 15]

A =

⎡

⎣

0.424 .808
0.566 0.115
0.707 −0.577

⎤

⎦

︸ ︷︷ ︸

Q

[

7.07 1.7
0 0.346

]

︸ ︷︷ ︸

R

Problem 9.11.14: For each of the following, find a vector x̂ that minimizes ||Ax̂ − b||. Use
the algorithm based on the QR factorization.

1. A =

⎡

⎣

8 1
6 2
0 6

⎤

⎦ and b = (10, 8, 6)

2. A =

[

3 1
4 1

]

and b = (10, 13)

Linear regression

In this problem, you will find the “best” line through a given set of points, using QR factorization
and solving a matrix equation where the matrix is upper triangular. (You can use the solver
module if your QR solve(A,b) procedure is not working.)

Module read data defines a procedure read vectors(filename) that takes a filename and
reads a list of vectors from the named file.

The data we provide for this problem relates age to height for some young people in Kalam, an
Egyptian village. Since children’s heights vary a great deal, this dataset gives for each age from
18 to 29 the average height for the people of that age. The data is in the file age-height.txt
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Problem 9.11.15: Use Python to find the values for parameters a and b defining the line
y = ax + b that best approximates the relationship between age (x) and height (y).

Least squares in machine learning

Problem 9.11.16: Try using the least-squares approach on the problem addressed in the ma-
chine learning lab. Compare the quality of the solution with that you obtained using gradient
descent.



Chapter 10

Special Bases

There cannot be a language more
universal and more simple, more free
from errors and obscurities...more worthy
to express the invariable relations of all
natural things [than mathematics].

Joseph Fourier

In this chapter, we discuss two special bases. Each of them consists of orthonormal vectors.
For each, change of basis can be done much more quickly than by computing matrix-vector
multiplication or solving a matrix-vector equation. Each of them is important in applications.

10.1 Closest k-sparse vector

Recall that we say a vector b is k-sparse if b has at most k nonzero entries. A k-sparse vector
can be represented compactly. Suppose we want to compactly represent a vector b that is not
k-sparse. We will have to give up accuracy. We represent not b but a vector that is similar to b.
This suggests the following computational problem:

• input: a vector b, an integer k

• output: a k-sparse vector b̃ that is closest to b.

If our field is R, the measure of closeness, as usual, is the norm of the difference ||b− b̃||.
There is a simple procedure to solve this problem, compression by suppression: to get b̃ from

b, suppress (i.e. zero out) all but the largest k entries. It can be proved that this procedure
indeed finds the closest k-sparse vector. We will prove something more general that this, however,
and more useful. Consider applying the compression-through-suppression procedure to an image.

483
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photo by William Fehr, the top of the Creeper Trail in Virginia

The procedure zeroes out all but the k whitest pixels. Here is the result when k is one-quarter
of the total number of pixels:

Catastrophic compression failure!

10.2 Closest vector whose representation with respect to
a given basis is k-sparse

The problem is that, for a typical image vector, even the nearest k-sparse image vector looks
nothing like the original image vector. It is part of the nature of images that suppressing lots
of pixels destroys our perception of the image. Our perceptual system cannot fill in the missing
data.

Here is the trick. Our usual way of storing or transmitting an image specifies each pixel; think
of this format as the representation of the image vector in terms of the standard basis. Instead,
consider storing or transmitting the representation of the image vector in terms of an alternative
basis. If the representation in terms of the alternative basis is sparse, the representation requires
few numbers so we achieve our goal of compression.
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If the representation in terms of the standard basis is not sparse, we can make it so by
suppressing entries of the representation that are close to zero.

Here is the new problem we face.

Computational Problem 10.2.1: closest vector whose representation in a given basis is
sparse

• input: a D-vector b, an integer k, a basis u1, . . . ,u|D| for R
D

• output: the vector b̃ that is closest to b among all vectors whose representation with
respect to u1, . . . ,u|D| is k-sparse

10.2.1 Finding the coordinate representation in terms of an orthonor-
mal basis

The first step in applying compression-by-suppression is converting from the original image vector
to the representation in terms of the basis u1, . . . ,un. Let b be the original image vector. Let
x be the representation. Let Q be the matrix whose columns are u1, . . . ,un. Then, by the
linear-combinations interpretation of matrix-vector multiplication, Qx = b.

It appears that computing the representation x involves solving a matrix equation. We could
in principle use QR.solve to solve such an equation. However, the number of scalar operations
is roughly n3. For a one-megapixel image, this is 1018 operations.

We will study the special case of Computational Problem 10.2.1 in which the basis u1, . . . ,u|D|
is orthonormal. Let n = |D|.

In this case, Q is an orthogonal matrix. By Corollary 9.7.3, the inverse of Q is QT . Therefore
we can more easily solve the equation Qx = b. Multiplying this equation on the left by QT and
invoking the lemma, we obtain x = QT b. Thus to compute the representation we need only
carry out a matrix-vector multiplication. This requires only about n2 scalar operations.

Furthermore, we plan to transmit the sparse representation of an image. Suppose a user
downloads the sparse representation x̃. In order to allow the user to view the image, the user’s
browser must convert the representation to an image vector. This involves computing Qx̃, which
also takes about n2 scalar operations.

Even n2 operations is somewhat impractical when dealing with megapixel images. Further-
more, suppose the real goal is to compress a movie, which is a long sequence of still images! The
time would be even greater.

We will use a particular orthonormal basis for which there is a computational shortcut, a
wavelet basis.

10.2.2 Multiplication by a column-orthogonal matrix preserves norm

Orthonormal bases have another nice property: they preserve norm.

Lemma 10.2.2: Let Q be a column-orthogonal matrix. Multiplication of vectors by Q preserves
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inner-products: For any vectors u and v,

⟨Qu, Qv⟩ = ⟨u,v⟩

Proof

Our inner product is defined to be dot-product Recall that the dot-product of two vectors
a and b can be written as

[

aT
]

⎡

⎣ b

⎤

⎦

which we write as aT b.
Thus ⟨Qu, Qv⟩ can be written as

⎛

⎝

⎡

⎣ Q

⎤

⎦

⎡

⎣ u

⎤

⎦

⎞

⎠

T ⎡

⎣ Q

⎤

⎦

⎡

⎣ v

⎤

⎦

We can rewrite

⎛

⎝

⎡

⎣ Q

⎤

⎦

⎡

⎣ u

⎤

⎦

⎞

⎠

T

as

⎡

⎣ u

⎤

⎦

T ⎡

⎣ QT

⎤

⎦, getting

⎛

⎝

⎡

⎣ Q

⎤

⎦

⎡

⎣ u

⎤

⎦

⎞

⎠

T ⎡

⎣ Q

⎤

⎦

⎡

⎣ v

⎤

⎦

=

⎡

⎣ u

⎤

⎦

T ⎡

⎣ QT

⎤

⎦

⎡

⎣ Q

⎤

⎦

⎡

⎣ v

⎤

⎦

=
[

uT
]

⎡

⎣ QT

⎤

⎦

⎡

⎣ Q

⎤

⎦

⎡

⎣ v

⎤

⎦

=
[

uT
]

⎡

⎣ v

⎤

⎦

which is the dot-product of u and v. !

Because vector norm is defined in terms of inner product, we obtain

Corollary 10.2.3: For any column-orthogonal matrix Q and vector u, ||Qu|| = ||u||.
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Let b and b̃ be two vectors, and let x and x̃ be the representations of b and b̃ with respect to

an orthonormal basis u1, . . . ,un. Let Q =

⎡

⎢
⎢
⎢
⎢
⎣

u1 · · · un

⎤

⎥
⎥
⎥
⎥
⎦

. Since Qx = b and Qx̃ = b̃, the

corollary imples that ||b− b̃|| = ||x− x̃||. This means that finding a vector close to b is equivalent
to finding a representation close to x.

10.3 Wavelets

We’ll discuss standard and alternative representations of signals such as images and sound. The
representations are in terms of different bases for the same vector space.

For some purposes (including compression), it is convenient to use orthonormal bases.
Let’s think about black-and-white images. A 512× 512 image has an intensity–a number–for

each pixel. (In a real image, the intensity is an integer, but we’ll treat the intensities as real
numbers.)

You might be familiar with the idea of downsampling an image. A 512 × 512 image can be
downsampled to obtain a 256 × 256 image; the higher-dimensional image is divided into little
2× 2 blocks of pixels, and each block is replaced by a pixel whose intensity is the average of the
intensities of the pixels it replaces. The 256×256 image can be further downsampled, and so on,
down to a 1 × 1 image. The intensity is the average of all the intensities of the original image.
This idea of repeated subsampling gives rise to the notion of wavelets.

10.3.1 One-dimensional “images” of different resolutions

However, instead of directly studying wavelets for true images, we will study wavelets for one-
dimensional “images”. The traditional representation of an n-pixel one-dimensional image is as
a sequence x0, x1, . . . , xn−1 of pixel intensities.

We will derive wavelets for an image by considering subsamples at different resolutions (differ-
ent numbers of pixels). It is natural to consider a 512-pixel image as represented by a 512-vector,
to consider a 256-pixel image as represented by a 256-vector, and so on. However, we will use
a linear-algebra trick to enable us to view all such images as vectors in a single vector space, so
that we can use the notion of orthogonal complement.

In order to carry out this trick, we select one basic resolution n, the highest resolution to be
considered. To make things easy, we require that n be a power of two. In your lab, you will take
n to be 512. In this lecture, we will work through an example with n = 16. We will use V16 to
denote the space R16.

For our orthogonal basis for V16, we choose to use the standard basis. In this context, we
refer to this basis as the box basis for V16, and we name the vectors b160 , b161 , . . . , b1615. Instead of
the usual way of writing the vectors, I will write them using little squares to remind us that they
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represent images (albeit one-dimensional images). The basis vectors look like this:

b160 = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b161 = 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

...

b1615 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Any one-dimensional 16-pixel image can be represented as a linear combination of these basis
vectors. For example, the image

can be represented as

4 ×
+ 5 ×
+
...

+ 0 ×
What about 8-pixel images obtained from 16-pixel images by downsampling by a factor of

2? We want these 8-pixel images to “look” like 16-pixel images, only with less fine detail. For
example, downsampling the image above yields

That is, we want to represent them as vectors in R16. We therefore define V8 to be the set of
vectors in R16 such that intensity 0 equals intensity 1, intensity 2 equals intensity 3, intensity 4
equals intensity 5, and so on. The natural basis to use for V8 is

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

We name these vectors b80, b
8
1, . . . , b

8
7. We will call this the box basis for V8. Note that these are

mutually orthogonal.
We similarly define V4, V2, V1. An image in V4 (the one obtained by downsampling an earlier

image) is

An image in V2 looks like

and, finally, an image in V1 looks like

You can probably figure out the box bases for V4, V2, V1. In general, the box basis for Vk
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consists of k vectors; vector i has ones in positions ki, ki + 1, ki + 2, . . . , ki + (k − 1) and zeroes
elsewhere.

10.3.2 Decomposing Vn as a direct sum

Wavelets arise from considering the orthogonal complements of subspaces of low-res images in the
vector spaces of high-res images. For any positive integer k < n that is a power of two, define the
wavelet space Wk to be the orthogonal complement of Vk in V2k. By the Orthogonal-Complement
Theorem,

V2k = Vk ⊕ Wk (10.1)

By plugging in k = 8, 4, 2, 1, we get

V16 = V8 ⊕ W8

V8 = V4 ⊕ W4

V4 = V2 ⊕ W2

V2 = V1 ⊕ W1

By using substitution repeatedly, we infer

V16 = V1 ⊕ W1 ⊕ W2 ⊕ W4 ⊕ W8 (10.2)

Therefore one basis for V16 is the union of:

• a basis for V1,

• a basis for W2,

• a basis for W4, and

• a basis for W8.

We will derive such a basis, the Haar basis. We will refer to the vectors forming this basis as
wavelet vectors.

More generally,

Vn = Vn/2 ⊕ Wn/2

Vn/2 = Vn/4 ⊕ Wn/4

...

V4 = V2 ⊕ W2

V2 = V1 ⊕ W1

so
Vn = V1 ⊕ W1 ⊕ W2 ⊕ W4 · · · ⊕ Wn/2

We get the Haar basis for Vn by choosing a particular basis for each of V1, W1, W2, W4, . . . , Wn/2,
and taking the union.
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10.3.3 The wavelet bases

We derive the bases for W8, W4, W2, W1. Recall that Wk is the orthogonal complement of Vk

in V2k. Let’s just use our method for computing generators for the orthogonal complement of a
space for which we have an orthogonal basis. For example, to get generators for W8, we project
the basis of V16 orthogonal to our basis for V8. We get a bunch of orthogonal vectors, of which
half are zero; the other half form our basis for W8. We name them w8

0,w
8
1, . . . ,w

8
7. What form

do they have?
The first wavelet vector is the projection of b160 orthogonal to the basis b80, . . . , b

8
7 of V8. That

is, the projection of

b160 = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

orthogonal to

b80 = 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b81 = 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

...

b87 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

The projection of b160 along b80 is

((b160 · b80)/(b80 · b80))b80

The numerator is 1 and the denominator is 2, so the projection of b160 along b80 is

.5 .5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Subtracting this vector from b160 yields

.5 -.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ordinarily, project orthogonal would continue, projecting the result orthogonal to b81, . . . , b
8
7,

but the result is already orthogonal to those vectors, so this is our first basis vector, w8
0.

Projecting b161 orthogonal to the box basis for V8 just gives the negative of w8
0, so we proceed

to project w16
2 orthogonal to that basis, b80, . . . , b

8
7. Note that w16

2 is orthogonal to all these
vectors except b81. The result is our second basis vector

w8
1 = 0 0 .5 -.5 0 0 0 0 0 0 0 0 0 0 0 0

We similarly obtain w8
2,w

8
3, . . . ,w

8
7. Each of these basis vectors has the same form: two adjacent

entries having values .5 and -.5, and all other entries having value zero.
Note that the squared norm of each such vector is

(
1

2
)2 + (

1

2
)2 =

1

4
+

1

4
=

1

2
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The wavelet vectors w8
0, . . . ,w

8
7 are an orthogonal basis for the orthogonal complement W8

of V8 in V16. Combining these vectors with the box vectors for V8 yields an orthogonal basis for
V16.

We use the same approach to derive the vectors that comprise a basis for W4, the orthogonal
complement of V4 in V8: project the basis vectors of V8 orthogonal to the basis vectors of V4.
The resulting basis for W4 is

w4
0 = .5 .5 -.5 -.5 0 0 0 0 0 0 0 0 0 0 0 0

w4
1 = 0 0 0 0 .5 .5 -.5 -.5 0 0 0 0 0 0 0 0

w4
2 = 0 0 0 0 0 0 0 0 .5 .5 -.5 -.5 0 0 0 0

w4
3 = 0 0 0 0 0 0 0 0 0 0 0 0 .5 .5 -.5 -.5

The squared norm of each such vector is

(.5)2 + (.5)2 + (.5)2 + (.52 = 4(.25) = 1

The basis for W2 is

w2
0 = .5 .5 .5 .5 -.5 -.5 -.5 -.5 0 0 0 0 0 0 0 0

w2
1 = 0 0 0 0 0 0 0 0 .5 .5 .5 .5 -.5 -.5 -.5 -.5

and the squared norms of these vectors is 8(.5)2 = 2.
The basis for W1 consists of the single vector

w1
0 = .5 .5 .5 .5 .5 .5 .5 .5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5

which has squared norm 16(.5)2 = 4.

10.3.4 The basis for V1

The basis for V1, the space of one-pixel images, consists of the single vector

b10 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

and its squared norm is 16.
The vector b10, together with the wavelet vectors

w8
0,w

8
1,w

8
2,w

8
3,w

8
4,w

8
5,w

8
6,w

8
7,

w4
0,w

4
1,w

4
2,w

4
3,

w2
0,w

2
1,

w1
0

form the Haar wavelet basis for V16.
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10.3.5 General n

We will want to consider the Haar wavelet basis for values of n other than 16.
For every power of two s ≤ n, the basis vectors for Wk are written ws

0, . . . ,w
s
k−1. The vector

ws
i has value one-half in entries (n/k)i, (n/k)i + 1, . . . , (n/k)i + n/2k − 1, and value negative

one-half in entries (n/k)i + n/2k, (n/k)i + n/2k + 1, . . . , (n/k)i + n/k − 1, and value zero in all
other entries.

The squared norm of each such vector is therefore

∥ws
i ∥2 = (n/k)

(
1

2

)2

= n/4s (10.3)

The basis vector b10 for V1 has a one in each of the n entries. Its squared norm is therefore

∥b10∥2 = n (10.4)

10.3.6 The first stage of wavelet transformation

Our initial basis for V16 is the box basis. The decomposition V16 = V8 ⊕ W8 corresponds to
another basis for V16, namely the union of the box basis for V8 and the wavelet basis for W8.
Given a vector represented in terms of the initial basis, the first level of the transform produces
a representation in terms of the other basis.

For example, let v be the one-dimensional image vector

[

4 5 3 7 4 5 2 3 9 7 3 5 0 0 0 0
]

which looks like this:

We represent this over the initial basis as

v = 4 b160 + 5 b161 + 3 b162 + · · · + 0b1615

The input vector is represented as the list

>>> v = [4,5,3,7,4,5,2,3,9,7,3,5,0,0,0,0]

of coefficients in this linear combination.
Our goal is to represent this vector in terms of the basis b80, . . . , b

8
7,w

8
0, . . .w

8
7. That is, we

want x0, . . . , x7, y0, . . . , y7 such that

v = x0 b
8
0 + · · · + x7 b

8
7 + y0 w

8
0 + · · · + y7 w

8
7

Since the vectors on the right-hand side are mutually orthogonal, each term on the right-hand
side is the projection of v along the corresponding vector, so the coefficient can be found using
the project-along formula:

xi = (v · b8i )/(b8i · b8i )
yi = (v · w8

i )/(w8
i · w8

i )
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For example, consider b80. It has ones in entries 0 and 1, so its coefficient is

(v · b80)/(b80 · b80) = (4 + 5)/(1 + 1)

= 4.5

That is, the coefficient of b80 is the average of the first two entries, which is 4.5. In general, for
i = 0, 1, 2, . . . , 7, the coefficient of b8i is the average of entries 2i and 2i + 1. Here’s how the
computation looks:

4 5 3 7 4 5 9 7

9/2 10/2 9/2 8

2 3 3 5 0 0 0 0

5/2 4 0 0
You could use a comprehension to obtain the list consisting of coefficients of b80, . . . , b

8
7:

vnew = [(v[2*i]+v[2*i+1])/2 for i in range(len(v)//2)]

Next, to find the coefficient of w8
0, we again use the project-along formula:

(v · w8
0)/(w8

0 · w8
0) =

(
1

2
4 − 1

2
5

)

/

(
1

2

1

2
+

1

2

1

2

)

= 4 − 5

because the 1
2 in the denominator cancels out a 1

2 in the numerator.
That is, the coefficient of w8

0 is entry 0 minus entry 1. In general, for i = 0, 1, 2, . . . , 7, the
coefficient of w8

i is entry 2i minus entry 2i + 1.
Intuitively, the coefficients of the box vectors are the averages of pairs of intensities, and the

coefficients of the wavelet vectors are the differences.

10.3.7 The subsequent levels of wavelet decomposition

We have so far described only one level of wavelet decomposition. We have shown

• how to get from a list of coefficients of box vectors b160 , . . . , b1615 to a list of coefficients of
box vectors b80, . . . , b

8
7, and

• how to calculate the corresponding eight wavelet coefficients, the coefficients of w8
0, . . . ,w

8
7.

Just as the coefficients of box vectors b160 , . . . , b1615 are the pixel intensities of a sixteen-pixel one-
dimensional image, it is helpful to think of the coefficients of box vectors b80, . . . , b

8
7 as the pixel

intensities of the eight-pixel one-dimensional image obtained by subsampling from the sixteen-
pixel image:

The next level of wavelet decomposition consists of performing the same operation on the
eight-pixel image. This results in a four-pixel image

and four more wavelet coefficients.
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Another level of wavelet decomposition operates on the four-pixel image, yielding a two-pixel
image

andtwo more wavelet coefficients.
A final level of wavelet decomposition operates on the two-pixel image, yielding a one-pixel

image

and one more wavelet coefficient.
The computation of the box-vector coefficients is shown in the following diagram:

4 5 3 7 4 5 9 7

9/2 10/2 9/2 8

2 3 3 5 0 0 0 0

5/2 4 0 0

19/4 25/4 13/4 0

44/8 13/8

57/16
The next diagram shows the computation of the box-vector coefficients and also the wavelet
coefficients (shown in ovals):
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4 5 3 7 4 5 9 7

9/2 10/2 9/2 8

2 3 3 5 0 0 0 0

5/2 4 0 0

19/4 25/4 13/4 0

44/8 13/8

57/16

-1

0

43/8

-6/4

0

-1 -4 -1 2 -1 -2 0 0

-3/2-7/2-1/2

13/4

31/8

There are in total 8 + 4 + 2 + 1 = 15 wavelet coefficients. Since the original vector space had
dimension sixteen, we need one more number to represent the image uniquely: the intensity of
the one pixel comprising the one-pixel image.

This, then, is the wavelet transform for V16. The input is the list of intensities of the original
one-dimensional image. The output consists of

• the fifteen wavelet coefficients, the coefficients of the wavelet vectors

w8
0,w

8
1,w

8
2,w

8
3,w

8
4,w

8
5,w

8
6,w

8
7,

w4
0,w

4
1,w

4
2,w

4
3,

w2
0,w

2
1,

w1
0

• together with the intensity of the pixel of the one-pixel image (the overall average intensity).

For an n-pixel one-dimensional image (where n is a power of two), the input is the list of
intensities of the original image, and the output is

• the wavelet coefficients, the number of which is

n/2 + n/4 + n/8 + · · · + 2 + 1 = n − 1
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• together with the overall average intensity.

10.3.8 Normalizing

The bases we have described are not orthonormal because the vectors do not have norm one. For
the purpose of compression (e.g.), it is better to represent vectors in terms of an orthonormal basis.
Normalizing a basis vector consists of dividing it by its norm. To compensate, the corresponding
coefficient must be multiplied by the norm of the basis vector. That is, given a representation of
a vector v in terms of vectors that are not necessarily unit-norm,

v = α1v1 + · · · + αnvn

the representation in terms of the normalized versions is:

v = (||v1||α1)
v1

||v1||
+ · · · + (||vn||αn)

vn

||vn||

The procedure we have described for finding the wavelet coefficients produces coefficients of
unnormalized basis vectors. There is a final step, therefore, in which the coefficients must be
adjusted so that they are coefficients of normalized basis vectors.

• The squared norm of the unnormalized Haar wavelet basis vector ws
i is n/4s, according to

Equation 10.3, so the coefficient must be multiplied by
√

n/4s.

• The squared norm of the box vector b10 that forms the basis for V1 is n, according to
Equation 10.4, so the coefficient must be multiplied by

√
n.

10.3.9 The backward transform

The wavelet transform’s output consists of the coefficients of a set of vectors that form a basis for
the original vector space. We have lost no information, so we can reverse the process. The back-
ward transform uses the wavelet coefficients to find the coefficients of box basis of V2, V4, V8, . . .
in succession.

10.3.10 Implementation

In the lab, you will implement the forward and backward transformations. You will also see how
these can be used in tranforming real, 2-dimensional images, and experiment with lossy image
compression.

10.4 Polynomial evaluation and interpolation

A degree-d polynomial is a single-variable function of the form

f(x) = a01 + a1x
1 + a2x

2 + · · · + adx
d

where a0, a1, . . . , ad are scalar values. These are called the coefficients of the polynomial. You can
specify a degree-d polynomial by the d + 1-vector consisting the coefficients: (a0, a1, a2, . . . , ad).
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The value of a polynomial at a number r is just the image of r under the function, i.e. plug r
in for x, and find the value. Evaluating the polynomial means obtaining that value. For example,
evaluating the polynomial 2 + 3x + x2 at 7 yields 72.

If for a given number r the value of the polynomial is zero, we call r a root of the polynomial.

Theorem 10.4.1: For any nonzero polynomial f(x) of degree d, there are at most d values of
x whose images under f is zero.

Unless all coefficients except a1 are zero, a polynomial is not a linear function. However,
there are linear functions lurking here: for a given number r, the function that takes a vector
(a0, a1, a2, . . . , ad) of coefficients and outputs the value of the corresponding polynomial at r. For
example, say r is 2 and d is 3. The corresponding linear function is

g((a0, a1, a2, a3)) = a0 + a12 + a24 + a38

The function can be written as a matrix-by-column-vector product:

[

1 2 4 8
]

⎡

⎢
⎢
⎣

a0

a1

a2

a3

⎤

⎥
⎥
⎦

For an arbitrary value r, the matrix on the left would be

[

r0 r1 r2 r3
]

More generally, suppose we have k numbers r0, r1, . . . , rk−1. The corresponding linear function
takes a vector (a0, . . . , ad) of coefficients specifying a degree-d polynomial, and outputs the vector
consisting of

• the value of the polynomial at r0,

• the value of the polynomial at r1,

•
...

• the value of the polynomial at rk−1

For the case d = 3, here is this linear function as a matrix-by-column-vector product:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r00 r10 r20 r30
r01 r11 r21 r31
r02 r12 r22 r32
r03 r13 r23 r33
...

r0k−1 r1k−1 r2k−1 r3k−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

a0

a1

a2

a3

⎤

⎥
⎥
⎦
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For arbitrary d, the linear function can be written this way:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r00 r10 r20 · · · rd0
r01 r11 r21 · · · rd1
r02 r12 r22 · · · rd2
r03 r13 r23 · · · rd3
...

r0k−1 r1k−1 r2k−1 · · · rdk−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a0

a1

a2
...

ad

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Theorem 10.4.2: In the case that k = d + 1 and the numbers r0, . . . , rk−1 are all distinct,
the function is invertible.

Proof

Suppose that there were two degree-d polynomials f(x) and g(x) for which f(r0) = g(r0), f(r1) =
g(r1), . . . , f(rd) = g(rd). Define a third polynomial h(x) = f(x) − g(x). Then h has degree
at most d, and h(r0) = h(r1) = · · · = h(rd) = 0. By the earlier theorem, therefore, h(x) is
the zero polynomial, which shows f(x) = g(x). !

There is a function that, given the values of a degree-d polynomial at r0, . . . , rd, returns the
coefficients of the polynomial. The process of obtaining the coefficients from the values is called
polynomial interpolation. Thus polynomial evaluation and polynomial interpolation are inverse
functions.

We defined degree-d polynomials in terms of coefficients, but an alternative representation
is in terms of the values at r0, . . . , rd. Each of these two representations has its strengths. For
example:

• If you want to evaluate the polynomial at a completely new number, it’s convenient to have
the coefficients.

• If you want to multiply two polynomials, it’s easier to do it using the values representation:
just multiply the corresponding values.

In fact, the fastest algorithm known for multiplying two degree-d polynomials given in terms of
their coefficients consists of (a) converting their representations to the value-based representation,
(b) performing the multiplication using those representations, and (c) converting the result back
to the coefficient representation.

For this to be a fast algorithm, however, one cannot evaluate the polynomials at just any
numbers; the numbers must be carefully chosen. The key subroutine is the Fast Fourier Transform
Algorithm.
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10.5 Fourier transform

A sound clip can be stored digitally as a sequence of amplitude samples. Connect a microphone to
an analog-to-digital converter, and the converter will output a sequence of amplitudes represented
digitally at a certain rate (say forty thousand samples per second). Say you have two seconds
of sound. That’s eighty-thousand numbers. You can represent that as an 80,000-vector. This is
the representation in terms of the standard basis.

A pure tone is a sine wave. The Discrete Fourier basis consists of sine waves. If the sound
sample is the result of sampling a pure tone and the frequency of the pure tone is carefully
chosen, the representation of the sound sample in the Fourier basis will be very sparse—just one
nonzero. More generally, if the sound sample consists of just a few pure tones added together,
the Fourier representation will still be sparse.

Here is an example of a signal obtained by mixing two pure tones:
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Here is a plot of the signal’s coordinate representation in terms of the Fourier basis:
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Here is a signal produced by a random-number generator. A randomly generated signal is called
noise:



CHAPTER 10. SPECIAL BASES 500
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When the noise is added to the signal consisting of two pure tones, it still looks pretty random,
but the ear can pick out the two tones about the noise. So can the Fourier transform; here’s a
plot of the noise-plus-signal’s coordinate representation in terms of the Fourier basis:
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When we suppress the coefficients that are small, we obtain:
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Transforming from this representation to the representation in terms of the standard basis, we
obtain
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which looks (and sounds) just like the original signal.

10.6 Discrete Fourier transform

10.6.1 The Laws of Exponentiation

Exponentials are nice to work with because of the two familiar Laws of Exponentiation. We saw
the First Law back in Section 1.4.9:

euev = eu+v (multiplication of two exponentials (with the same base ) is equivalent
to addition of the exponents).

The Second Law of Exponentiation is

(eu)v = euv (composition of exponentiation is equivalent to multiplication of the
exponents).

10.6.2 The n stopwatches

Let ω denote e(2π/n)i. Consider the function F : R −→ C defined by F (t) = ωt. At t = 0, F (t)
is located at 1 + 0i. As t increases, F (t) winds around the unit circle, returning to 1 + 0i at
t = n, 2n, 3n, . . .. Thus F (t) has a period of n (and therefore its frequency is 1/n). Think of F (t)
as a stopwatch that runs counterclockwise.
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Figure 10.1: Fourier (http://xkcd.com/26/)

Building on this idea, we define n stopwatches, each running at a different rate. However,
these n stopwatches are much smaller than F (t). Their radii of the circles are all 1√

n
instead

of 1. (We choose to have them be smaller so that, as you will see, a vector of values of these
functions will have norm 1.)
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We define F1 : R −→ C by

F1(t) =
1√
n
ωt (10.5)

so F1(t) is just like F (t), only smaller. For example, F (0) = 1√
n

+ 0i. Note that the period of

F1(t), like that of F (t), is n.
For k = 0, 1, 2, . . . , n − 1, we define Fk(t) = 1√

n
(ωk)t.

Each of the functions F0(t), F1(t), F2(t), . . . , Fn−1(t) has value 1√
n

+ 0i at t = 0, but as t

increases they all go around the radius- 1√
n

circle at different rates.

• F2(t) first returns to 1√
n

+ 0i when t reaches n/2,

• F3(t) first returns when t = n/3, and so on.

Thus the period of Fk(t) is n/k.

• The period of F0(t) is n/0, i.e. infinity, because F0(t) never moves—its hand perpetually
points to 1√

n
+ 0i.

10.6.3 Discrete Fourier space: Sampling the basis functions

Fourier analysis allows us to represent functions as linear combinations of such clocks. Here we
study discrete Fourier analysis, which represents a function s(t) sampled at t = 0, 1, 2, . . . , n − 1
using a linear combination of the clocks clocks F0(t), F1(t), F2(t), . . . , Fn−1(t) sampled at the
same times.

The samples of the signal s(t) are stored in a vector

s =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s(0)
s(1)
s(2)

...
s(n − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Similarly, we write the samples of clock Fj(t) in a vector

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Fj(0)
Fj(1)
Fj(2)

...
Fj(n − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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Our goal is to write an equation showing how the vector s consisting of the samples of the signal
can be represented as a linear combination of the vectors consisting of the samples of the clocks.
The coefficients in this linear combination are called Fourier coefficients.

Fortunately, we know how to formulate this: we construct a matrix F with the clock-vectors
as columns, we construct a vector φ of the Fourier coefficients φ0,φ1,φ2, . . . ,φn−1 (one for each
clock), and, drawing on the linear-combinations interpretation of matrix-vector multiplication,
we write the matrix equation Fnφ = s. Written more explicitly, the equation is:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F0(0) F1(0) F2(0) Fn−1(0)
F0(1) F1(1) F2(1) Fn−1(1)
F0(2) F1(2) F2(2) Fn−1(2)
F0(3) F1(3) F2(3) Fn−1(3)
F0(4) F1(4) F2(4) Fn−1(4)
F0(5) F1(5) F2(5) · · · Fn−1(5)

...
...

...
...

F0(n − 1) F1(n − 1) F2(n − 1) Fn−1(n − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ0

φ1

φ2
...

φn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s(0)
s(1)
s(2)
s(3)
s(4)
s(5)

...
s(n − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This equation relates two representations of a signal: a representation in terms of samples of the
signal, and a representation as a weighted sum of (sampled) clocks.

Each representation is useful.

• A .wav file represents a sound signal in terms of samples of the signal, and the representation
in terms of clocks tells us which frequencies are most prominent in the sound. The signal
is acquired in the first form (a microphone connected to an analog-to-digital converter
produces samples) but often analyzing the signal involves converting to the second.

• In magnetic resonance imaging, the signal is acquired roughly as the vector φ of the Fourier
coefficients, but creating a digital image requires the samples s.

The equation Fnφ = s tells us how to convert between the two representations.

• Given φ, we can obtain s by left-multiplication by Fn.

• Given s, we can obtain φ by solving a matrix equation—or by left-multiplying s by the
inverse matrix F−1

n .

10.6.4 The inverse of the Fourier matrix

Ordinarily, solving a linear system is preferable to computing a matrix inverse and multiplying
by it. The Fourier matrix, however, is very special; its inverse is very similar to the Fourier
matrix itself.

Our first step will be to describe the Fourier matrix as a scalar multiple of a special kind of
matrix. Let ω be a complex number of the form eθi. We denote by W (ω, n) the matrix

• whose row-label and column-label set is {0, 1, 2, 3, . . . , n − 1}, and

• whose entry rc equals ωr·c.
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That is,

W (ω, n) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ω0·0 ω0·1 ω0·2 ω0·(n−1)

ω1·0 ω1·1 ω1·2 ω1·(n−1)

ω2·0 ω2·1 ω2·2 ω2·(n−1)

ω3·0 ω3·1 ω3·2 · · · ω3·(n−1)

ω4·0 ω4·1 ω4·2 ω4·(n−1)

ω5·0 ω5·1 ω5·2 ω5·(n−1)

...
...

...
...

ω(n−1)·0 ω(n−1)·1 ω(n−1)·2 ω(n−1)·(n−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In Python,

def W(w, n):
R=set(range(n))
return Mat((R,R), {(r,c):w**(r*c) for r in R for c in R})

although there is never any reason for actually representing this matrix explicitly in a computer.
We can then write Fn = 1√

n
W (e2πi/n, n)

Theorem 10.6.1 (Fourier Inverse Theorem): F−1
n = 1√

n
W (e−2πi/n, n).

To prove the Fourier Inverse Theorem, it suffices to prove the following lemma.

Lemma 10.6.2: W (e2πi/n, n)W (e−2πi/n, n) = n1.

Proof

Let ω denote e2πi/n. Note that e−2πi/n = (e2πi/n)−1 = ω−1. By the dot-product definition
of matrix-matrix multiplication, entry rc of this product is the dot-product of row r of
W (e2πi/n, n) with column c of W (e−2πi/n, n), which is

ωr0ω−0c + ωr1ω−1c + ωr2ω−2c + · · ·ωr(n−1)ω−(n−1)c (10.6)

= ω0(r−c) + ω1(r−c) + ω2(r−c) + · · · + ω(n−1)(r−c) by the addition-of-exponents Law

There are two possibilities. If r = c then each of the exponents in the expression 10.6 equals
0, so the expression equals

ω0 + ω0 + ω0 + · · · + ω0

= 1 + 1 + 1 + · · · + 1

= n
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Suppose r ̸= c. By the multiplication-of-exponents Law, expression 10.6 equals

(ωr−c)0 + (ωr−c)1 + (ωr−c)2 + · · · + (ωr−c)n−1 (10.7)

Let z be the value of this expression. We prove that z is zero. Since r ̸= c and both r
and c are between 0 and n − 1, we know ωr−c is not equal to one. We show, however, that
multiplying z by ωr−c gives us z. That is,

ωr−cz = z

so
(ωr−c − 1)z = 0

so z = 0.
Now we complete the proof by showing that multiplying z by ωr−c gives z:

ωr−cz = ωr−c((ωr−c)0 + (ωr−c)1 + (ωr−c)2 + · · · + (ωr−c)n−2 + (ωr−c)n−1)

= (ωr−c)1 + (ωr−c)2 + (ωr−c)3 + · · · + (ωr−c)n−1 + (ωr−c)n

= (ωr−c)1 + (ωr−c)2 + (ωr−c)3 + · · · + (ωr−c)n−1 + (ωn)r−c

= (ωr−c)1 + (ωr−c)2 + (ωr−c)3 + · · · + (ωr−c)n−1 + 1r−c

= (ωr−c)1 + (ωr−c)2 + (ωr−c)3 + · · · + (ωr−c)n−1 + (ωr−c)0

= z

!

10.6.5 The Fast Fourier Transform Algorithm

In applications the number n of samples is usually very large, so we need to think about the
time required by these computations. Left-multiplication by F or by F−1 would seem to take
n2 multiplications. However,

• we can multiply by F by multiplying by W (e2πi/n, n) and then scaling by 1√
n
.

• Similarly, we can multiply by F−1 by first multiplying by W (e−2πi/n, n) and then scaling.

There is a fast algorithm, called the Fast Fourier Transform (FFT), for multiplying by W (ω, n)
if the following preconditions hold:

FFT Preconditions

• n is a power of two, and

• ωn = 1.

The algorithm requires O(n log n) time, which for large n is much faster than naive matrix-
vector multiplication. The FFT is a central part of modern digital signal processing.
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10.6.6 Deriving the FFT

Here is the specification of FFT(ω, s):

• input:, a list s = [s0, s1, s2, . . . , sn−1] of n complex numbers where n is a power of two, and
a complex number ω such that ωn = 1

• output: the list [z0, z1, z2, . . . , zn−1] of complex numbers where

zk = s0(ω
k)0 + s1(ω

k)1 + s2(ω
k)2 + · · · + sn−1(ω

k)n−1 (10.8)

for k = 0, 1, 2, . . . , n − 1

It is convenient to interpret the list s as representing a polynomial function:

s(x) = s0 + s1x + s2x
2 + · · · + sn−1x

n−1

for then Equation 10.8 states that element k of the output list is the value of s(x) on input ωk.
The first step of the algorithm is to divide up the list s = [s0, s1, s2, . . . , sn−1] into two lists,

each consisting of half the elements:

• seven consists of the even-numbered elements of s:

seven = [s0, s2, s4, . . . , sn−2]

and

• sodd consists of the odd-numbered elements of s:

sodd = [s1, s3, s5, . . . , sn−1]

We can interpret seven and sodd as representing polynomial functions:

seven(x) = s0 + s2x + s4x
2 + s6x

3 + · · · + sn−2x
n−2
2

sodd(x) = s1 + s3x + s5x
2 + s7x

3 + · · · + sn−1x
n−2
2

The basis of the FFT is the following equation, in which we express the polynomial s(x) in terms
of the polynomials seven(x) and sodd(x):

s(x) = seven(x2) + x · sodd(x
2) (10.9)

This equation allows us to achieve the goal of the FFT (evaluate s(x) at ω0,ω1,ω2, . . . ,ωn−1)
by evaluating seven(x) and sodd at (ω0)2, (ω1)2, (ω2)2, . . . , (ωn−1)2 and combining corresponding
values:

s(ω0) = seven((ω0)2) + ω0sodd((ω
0)2)

s(ω1) = seven((ω1)2) + ω1sodd((ω
1)2)

s(ω2) = seven((ω2)2) + ω2sodd((ω
2)2)

s(ω3) = seven((ω3)2) + ω3sodd((ω
3)2)

... (10.10)

s(ωn−1) = seven((ωn−1)2) + ωn−1sodd((ω
n−1)2)
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It would seem as if the FFT would need to evaluate seven(x) and sodd(x) at n different values,
but in fact

(ω0)2, (ω1)2, (ω2)2, (ω3)2, . . . , (ωn−1)2

are not all distinct! Because of Precondition 10.6.5, ωn = 1 so

(ω0)2 = (ω0)2(ω
n
2 )2 = (ω0+n

2 )2

(ω1)2 = (ω1)2(ω
n
2 )2 = (ω1+n

2 )2

(ω2)2 = (ω2)2(ω
n
2 )2 = (ω2+n

2 )2

(ω3)2 = (ω3)2(ω
n
2 )2 = (ω3+n

2 )2

...
(ω

n
2
−1)2 = (ω

n
2 )2(ω

n
2 )2 = (ω

n
2
−1+n

2 )2

(10.11)

which shows that there are only n/2 distinct numbers at which seven(x) and sodd(x) must be
evaluated, namely

(ω0)2, (ω1)2, (ω2)2, (ω3)2, . . . , (ω
n
2
−1)2

which are the same as
(ω2)0, (ω2)1, (ω2)2, (ω2)3, . . . , (ω2)

n
2
−1

Furthermore, the resulting values can be obtained using recursive calls to FFT:

• the values of seven(x) at each of these numbers can be obtained by calling

f0 = FFT(ω2, [s0, s2, s4, . . . , sn−2])

and

• the values of sodd(x) at each of these numbers can be obtained by calling

f1 = FFT(ω2, [s1, s3, s5, . . . , sn−1])

After these statements have been executed,

f0 = [seven((ω2)0), seven((ω2)1), seven((ω2)2), seven((ω2)3), . . . , seven((ω2)
n
2
−1)]

and
f1 = [sodd((ω

2)0), sodd((ω
2)1), sodd((ω

2)2), sodd((ω
2)3), . . . , sodd((ω

2)
n
2
−1)]

Once these values have been computed by the recursive call, the FFT combines them using
Equations 10.10 to obtain

[s(ω0), s(ω1), s(ω2), s(ω3), . . . , s(ω
n
2
−1), s(ω

n
2 ), s(ω

n
2
+1), s(ω

n
2
+2), . . . , s(ωn−1)]

The first n/2 values are computed as you would expect:
[

s(ω0), s(ω1), s(ω2), s(ω3), . . . , s(ω
n
2
−1)
]

=
[

seven(((ω2)0) + ω0 · sodd((ω2)0),
seven((ω2)1) + ω1 · sodd((ω2)1),
seven((ω2)2 + ω2 · sodd((ω2)2),
seven((ω2)3) + ω3 · sodd((ω2)3),

...
seven((ω2)

n
2
−1) + ω

n
2
−1 · sodd((ω2)

n
2
−1)
]
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which can be computed using a comprehension:
[

f0[j] + ωj ∗ f0[j] for j in range(n//2)
]

The last n/2 values are computed similarly, except using the Equations 10.11:

[s(ω
n
2 ), s(ω

n
2
+1), s(ω

n
2
+2), s(ω

n
2
+3), . . . , s(ωn−1)] =

[

seven((ω2)0) + ω
n
2 · sodd((ω2)0),

seven((ω2)1) + ω
n
2
+1 · sodd((ω2)1),

seven((ω2)2 + ω
n
2
+2 · sodd((ω2)2),

seven((ω2)3) + ω
n
2
+3 · sodd((ω2)3),

...
seven((ω2)

n
2
−1) + ωn−1 · sodd((ω2)

n
2
−1)
]

which can also be computed using comprehension:
[

f0[j] + ωj+n
2 ∗ f0[j] for j in range(n//2)

]

.

10.6.7 Coding the FFT

Finally we give the Python code for FFT. There is a base case for the recursion, the case where
the input list s is [s0]. In this case, the polynomial s(x) is just s0, so the value of the polynomial
at any number (and in particular at 1) is s0. If the base case does not hold, FFT is called
recursively on the even-numbered entries of the input list and the odd-numbered entries. The
values returned are used in accordance with Equation 10.9 to compute the values of s(x).

def FFT(w, s):
n = len(s)
if n==1: return [s[0]]
f0 = FFT(w*w, [s[i] for i in range(n) if i % 2 == 0])
f1 = FFT(w*w, [s[i] for i in range(n) if i % 2 == 1])
return [f0[j]+w**j*f1[j] for j in range(n//2)] +

[f0[j]-w**(j+n//2)*f1[j] for j in range(n//2)]

The analysis of the running time of FFT resembles that of, e.g., Mergesort (an algorithm
commonly analyzed in introductory algorithms classes). The analysis shows that the number of
operations is O(n log n).

Remark: For the case where the list length n is not a power of two, one option is to “pad” the
input sequence s with extra zeroes until the length is a factor of two. FFT can also be tuned to
specific values of n.

10.7 The inner product for the field of complex numbers

We have defined the inner product for the field of real numbers to be just dot-product. One
requirement of inner product is that the inner product of a vector with itself is the norm, and
one requirement for norm is that it be a nonnegative real number. However, the dot-product
of a vector over the field C of complex numbers is not necessarily nonnegative! For example,
the dot-product of the 1-vector [i] with itself is -1. Fortunately, there is a simple change to the
definition of inner product that gives the same result as before if the vectors happen to have all
real entries.
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Recall that the conjugate of a complex number z, written z̄, is defined as z.real− z.imag, and
that the product of z and z̄ is the absolute value of z, written |z|, which is a nonnegative real
number.

Example 10.7.1: The value of eθi is the point on the complex plane that is located on the unit
circle and has argument θ, i.e. the complex number cos θ + (sin θ)i. The conjugate is therefore
cos θ − (sin θ)i, which is the same as cos(−θ) + (sin(−θ))i, which is e−θi. Thus conjugation is
the same as negating the imaginary exponent.

For z = eθi, what is the product of z and z̄? Using the addition-of-exponents Law, zz̄ =
eθie−θi = eθi−θi = e0 = 1

For a vector v = [z1, . . . , zn] over C, we denote by v̄ the vector derived from v by replacing
each entry by its conjugate:

v̄ = [z̄1, . . . , z̄n]

Of course, if the entries of v happen to be real numbers then v̄ is the same as v.

Definition 10.7.2: We define the inner product for vectors over the field of complex numbers
as

⟨u,v⟩ = ū · v

Of course, if the entries of u happen to be real numbers then the inner product is just the
dot-product of u and v.

This definition ensures that the inner product of a vector with itself is nonnegative. Suppose
v = [z1, . . . , zn] is an n-vector over C. Then

⟨v,v⟩ = [z̄1, . . . , z̄n] · [z1, . . . , zn] (10.12)

= z̄1z1 + · · · + z̄nzn

= |z1|2 + · · · + |zn|2 (10.13)

which is a nonnegative real number

Example 10.7.3: Let ω be a complex number of the form eθi. Let v be column c of W (ω, n).
Then

v = [ω0·c,ω1·c, . . . ,ω(n−1)·c]

so
v̄ = [ω−0·c,ω−1·c, . . . ,ω−(n−1)·c]
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so

⟨v,v⟩ = ω0·cω−0·c + ω1·cω−1·c + · · · + ω(n−1)·cω−(n−1)·c

= ω0 + ω0 + · · · + ω0

= 1 + 1 + · · · + 1

= n

This is the first case in the proof of Lemma 10.6.2.

Having defined an inner product, we define the norm of a vector just as we did in Equation 8.1:

∥v∥ =
√

⟨v,v⟩

Equation 10.13 ensures that the norm of a vector is nonnegative (Norm Property N1), and is
zero only if the vector is the zero vector (Norm Property N2).

Example 10.7.3 (Page 510) shows that the squared norm of a column of W (ω, n) is n, so the
norm of a column of Fn is one.

Recal the convention for interpreting a vector as a column vector (a one-column matrix).
Recall that the product uTv is therefore the matrix whose only entry is u · v. Analogously, for
vectors over C, the product uHv is the matrix whose only entry is ⟨u,v⟩. In fact, the equation

uHv =
[

⟨u,v⟩
]

(10.14)

holds whether the vectors are over C or over R.
Whereas the inner product for vectors over R is symmetric, this is not true of the inner

product for vectors over C.

Example 10.7.4: Let u = [1 + 2i, 1] and v = [2, 1]. Then

[

⟨u,v⟩
]

=
[

1 − 2i 1
]
[

2
1

]

=
[

2 − 4i + 1
]

[

⟨v,u⟩
]

=
[

2 1
]
[

1 + 2i
1

]

=
[

2 + 4i + 1
]

We define orthogonality for vectors over C just as we did for vectors over R: two vectors are
orthogonal if their inner product is zero.

Example 10.7.5: Let u = [e0·πi/2, e1·πi/2, e2·πi/2, e3·πi/2] and let v = [e0·πi, e1·πi, e2·πi, e3·πi].
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Then

⟨u,v⟩ = ū · v
= [e−0·πi/2, e−1·πi/2, e−2·πi/2, e−3·πi/2] · [e0·πi, e1·πi, e2·πi, e3·πi]

= e−0·πi/2e0·πi + e−1·πi/2e1·πi + e−2·πi/2e2·πi + e−3·πi/2e3·πi

= e0·πi/2 + e1·πi/2 + e2·πi/2 + e3·πi/2

and the last sum is zero (try it out in Python or see the argument at the end of the proof of
Lemma 10.6.2).

Example 10.7.6: More generally, the second case in the proof of Lemma 10.6.2 shows that
two distinct columns of W (e2πi/n, n) are orthogonal.

Definition 10.7.7: The Hermitian adjoint of a matrix A over C, written AH , is the matrix
obtained from A by taking the transpose and replacing each entry by its conjugate.

Definition 10.7.8: A matrix A over C is unitary if A is square and AHA is an identity matrix.

The Fourier Inverse Theorem (Theorem 10.6.1) shows that the Fourier matrix is unitary.
Unitary matrices are the complex analogue of orthogonal matrices. Just as the tranpose of

an orthogonal matrix is its inverse, we have the following lemma.

Lemma 10.7.9: The Hermitian adjoint of a unitary matrix is its inverse.

Moreover, just as multiplication by an orthogonal matrix preserve norms, so does multiplica-
tion by a unitary matrix.

The results we presented in Chapters 8 and 9 can be adapted to hold for vectors and matrices
over C, by replacing transpose with Hermitian adjoint.

10.8 Circulant matrices

For numbers (real or imaginary) a0, a1, a2, a3, consider the matrix

A =

⎡

⎢
⎢
⎣

a0 a1 a2 a3

a3 a0 a1 a2

a2 a3 a0 a1

a1 a2 a3 a0

⎤

⎥
⎥
⎦

Note that the second row can be obtained from the first row by a cyclic shift one position to the
right. The third row is similarly obtained from the second row, and the fourth row is similarly
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obtained from the third row.

Definition 10.8.1: A {0, 1, . . . , n−1}×{0, 1, . . . , n−1} matrix A is called a circulant matrix
if

A[i, j] = A[0, (i − j) mod n]

that is, if A has the form
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0 a1 a2 · · · an−3 an−2 an−1

an−1 a0 a1 · · · an−4 an−3 an−2

an−2 an−1 a0 · · · an−3 an−2 an−3
...

a2 a3 a4 · · · an−1 a0 a1

a1 a2 a3 · · · an−2 an−1 a0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Perhaps you think that a circulant matrix is a curiousity: nice to look at but irrelevant
to applications. Consider Example 4.6.6 (Page 203), in which we are trying to compute many
dot-products in order match an audio clip against a longer audio segment. As mentioned in
that example, finding all these dot-products can be formulated as matrix-vector multiplication
where the matrix is circulant. Each row is responsible for matching the short sequence against a
particular subsequence of the long sequence.

We show in this section that the matrix-vector multiplication can be done much faster than
the obvious algorithm. The obvious algorithm involves n2 multiplications. We will see that you
can do the computation with a couple of calls to the FFT at O(n log n) time per call, plus n
multiplications. (There is an additional cost since the multiplications have to be done using
complex numbers—but the sophisticated algorithm is still much faster when n is large.)

A similar phenomenon occurs when computing many dot-products of a pattern against an
image, only in two dimensions. We won’t go into it here, but it is not hard to extend the
FFT-based algorithm to handle this.

10.8.1 Multiplying a circulant matrix by a column of the Fourier ma-
trix

Let A be an n × n circulant matrix. Something interesting happens when we multiply A times
a column of the matrix W (ω, n). Let’s start with a small example, n = 4. Let [a0, a1, a2, a3] be
the first row of A. W (ω, 4) is

⎡

⎢
⎢
⎣

ω0·0 ω0·1 ω0·2 ω0·3

ω1·0 ω1·1 ω1·2 ω1·3

ω2·0 ω2·1 ω2·2 ω2·3

ω3·0 ω3·1 ω3·2 ω3·3

⎤

⎥
⎥
⎦

For j = 0, 1, 2, 3, column j of W (ω, 4) is the vector [ω0·j ,ω1·j ,ω2·j ,ω3·j ]. The first entry in the
matrix-vector product is the dot-product of the first row of A with that column, which is

a0ω
j·0 + a1ω

j·1 + a2ω
j·2 + a3ω

j·3 (10.15)
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The second row of A is [a3, a0, a1, a2], so the second entry in the matrix-vector product is

a3ω
j·0 + a0ω

j·1 + a1ω
j·2 + a2ω

j·3 (10.16)

Note that this second entry can be obtained from the first by multiplying by ωj . Similarly, the
third entry can be obtained from the first by multiplying by ωj·2 and the fourth entry can be
obtained from the first by multiplying by ωj·3.

Letting λj denote the first entry of the matrix-vector product, that product has the form
[λjωj·0,λjωj·1,λjωj·2,λjωj·3]. That is, the product of A with column j of W (ω, 4) is the scalar-
vector product λj times column j of W (ω, 4).

This is a very special property, and one we will explore at greater length in Chapter 12. For
now, let’s write this result as an equation:

λj

⎡

⎢
⎢
⎣

ω0·j

ω1·j

ω2·j

ω3·j

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

a0 a1 a2 a3

a3 a0 a1 a2

a2 a3 a0 a1

a1 a2 a3 a0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

ω0·j

ω1·j

ω2·j

ω3·j

⎤

⎥
⎥
⎦

We have an equation for each column of W (ω, n). We will try to put these four equations together
to form a single equation, using the matrix-vector definition of matrix-matrix multiplication.

The matrix whose columns are

λ0

⎡

⎢
⎢
⎣

ω0·0

ω1·0

ω2·0

ω3·0

⎤

⎥
⎥
⎦

+ λ1

⎡

⎢
⎢
⎣

ω0·1

ω1·1

ω2·1

ω3·1

⎤

⎥
⎥
⎦

+ λ2

⎡

⎢
⎢
⎣

ω0·2

ω1·2

ω2·2

ω3·2

⎤

⎥
⎥
⎦

+ λ3

⎡

⎢
⎢
⎣

ω0·3

ω1·3

ω2·3

ω3·3

⎤

⎥
⎥
⎦

can be written as ⎡

⎢
⎢
⎣

ω0·0 ω0·1 ω0·2 ω0·3

ω1·0 ω1·1 ω1·2 ω1·3

ω2·0 ω2·1 ω2·2 ω2·3

ω3·0 ω3·1 ω3·2 ω3·3

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

λ0 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

⎤

⎥
⎥
⎦

so we write the equation as
⎡

⎢
⎢
⎣

ω0·0 ω0·1 ω0·2 ω0·3

ω1·0 ω1·1 ω1·2 ω1·3

ω2·0 ω2·1 ω2·2 ω2·3

ω3·0 ω3·1 ω3·2 ω3·3

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

λ0 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

a0 a1 a2 a3

a3 a0 a1 a2

a2 a3 a0 a1

a1 a2 a3 a0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

ω0·0 ω0·1 ω0·2 ω0·3

ω1·0 ω1·1 ω1·2 ω1·3

ω2·0 ω2·1 ω2·2 ω2·3

ω3·0 ω3·1 ω3·2 ω3·3

⎤

⎥
⎥
⎦

or, more briefly, as
W (ω, 4) Λ = A W (ω, 4)

where Λ is the diagonal matrix

⎡

⎢
⎢
⎣

λ0 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

⎤

⎥
⎥
⎦

Since the Fourier matrix F4 is 1
2W (ω, 4),

we can write the equation as
F4Λ = A F4
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where we have canceled out the 1
2 on each side. Multiplying on the right on both sides of the

equation by the inverse of F4, we obtain

F4 Λ F−1
4 = A

Now suppose A is an n×n matrix. All the algebra we have done carries over to this case to show
the following important equation:

Fn Λ F−1
n = A (10.17)

where Λ is some n × n diagonal matrix.
Suppose we want to compute the matrix-vector product Av. We know from the equation

that this is equal to Fn Λ F−1
n v, which can be written using associativity as

Fn(Λ(F−1
n v))

Thus we have replaced a single matrix-vector multiplication, Av, with a series of three successive
matrix-vector multiplications. What good is that? Well, each of the new matrix-vector multi-
plications involves a very special matrix. Multiplying a vector by F−1

n or by Fn can be done
using the FFT in O(n log n) time. Multiplying a vector by Λ is easy: each entry of the vector is
multiplied by the corresponding diagonal entry of Λ. Thus the total time to carry out all these
multiplications is O(n log n), which is much faster than the O(n2) required using the obvious
matrix-vector multiplication algorithm.

10.8.2 Circulant matrices and change of basis

Equation 10.17 has an important interpretation. Transform the equation by multiplying it on
the left by F−1

n and multiplying it on the right by F . The result is the equation

Λ = F−1
n AFn (10.18)

The columns of Fn form a basis, the discrete Fourier basis. Multiplying a vector by Fn corre-
sponds to rep2vec, to converting from the vector’s coordinate representation in terms of this
basis to the vector itself. Multiplying by F−1

n corresponds to vec2rep, to converting from a
vector to the vector’s coordinate representation in terms of the discrete Fourier basis. Equa-
tion 10.18 states that the function x )→ Ax is very simple when viewed in terms of the discrete
Fourier basis: it just multiplies each of the coordinates by some number.

Equation 10.18 is called a diagonalization of the matrix A. Diagonalization is the focus of
Chapter 12.

10.9 Lab: Using wavelets for compression

In this lab, we will not use our vector class Vec. We will use lists and dictionaries to store
vectors. For simplicity, we will require every vector’s number of elements to be a power of
two.

Note: Even though the goal of this lab is achieving sparse representations, for simplicity
we will retain all values, even zeroes.
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• The coordinate representation in terms of the standard basis will be stored as a list.
In particular, each row of an image will be represented by a list.

• The coordinate representation in terms of the Haar wavelet basis will be represented
by a dictionary.

For example, let n = 16. The representation of a vector v in terms of the standard basis
looks like this

>>> v = [4,5,3,7,4,5,2,3,9,7,3,5,0,0,0,0]

in which v[i] is the coefficient of the standard basis vector b16i .
The (unnormalized) Haar wavelet basis consists of the vectors

w8
0,w

8
1,w

8
2,w

8
3,w

8
4,w

8
5,w

8
6,w

8
7,

w4
0,w

4
1,w

4
2,w

4
3,

w2
0,w

2
1,

w1
0,

b10

For notational convenience, we use w0
0 to denote b10.

The representation of v in terms of the Haar wavelet basis is stored in a dictionary with
the following keys:

(8, 0), (8, 1), (8, 2), (8, 3), (8, 4), (8, 5), (8, 6), (8, 7),

(4, 0), (4, 1), (4, 2), (4, 3),

(2, 0), (2, 1),

(1, 0),

(0, 0)

where the value associated with key (8, 0) is the coefficient of w8
0, ..., the value associated with

key (1, 0) is the coefficient of w1
0, and the value associated with key (0, 0) is the coefficient

of w0
0 (i.e. the overall intensity average)

For example, for the vector v given earlier, the representation is

{(8, 3): -1, (0, 0): 3.5625, (8, 2): -1, (8, 1): -4, (4, 1): 2.0,
(4, 3): 0.0, (8, 0): -1, (2, 1): 6.0, (2, 0): 1.25, (8, 7): 0,
(4, 2): 4.0, (8, 6): 0, (1, 0): 1.125, (4, 0): -0.5, (8, 5): -2,
(8, 4): 2}

Remember, this is the representation with respect to unnormalized basis vectors. You will
write a procedure to find this representation. You will then use this procedure in another
procedure that returns the representation in terms of normalized basis vectors.
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10.9.1 Unnormalized forward transform

Task 10.9.1: Write a procedure forward_no_normalization(v) with the following spec-
ification:

• input: a list representing a vector in Rn where n is some power of two.

• output: a dictionary giving the representation of the input vector in terms of the
unnormalized Haar wavelet basis. The key for the coefficient of wj

i should be the
tuple (j, i).

Here is some pseudocode to get you started

def forward_no_normalization(v):
D = {}
while len(v) > 1:

k = len(v)
# v is a k-element list
vnew = ... compute downsampled 1-d image of size k//2 from v ...
# vnew is a k//2-element list
w = ... compute unnormalized coefficients of basis for W(k/2) ...
# w is a list of coefficients
D.update( ...dictionary with keys (k//2, 0), (k//2, 1), ...,

(k//2, k//2-1) and values from w ...)
v = vnew

# v is a 1-element list
D[(0,0)] = v[0] #store the last coefficient
return D

Here are some examples for you to test against.

>>> forward_no_normalization([1,2,3,4])
{(2, 0): -1, (1, 0): -2.0, (0, 0): 2.5, (2, 1): -1}
>>> v=[4,5,3,7,4,5,2,3,9,7,3,5,0,0,0,0]
>>> {(8,3): -1, (0,0): 3.5625, (8,2): -1, (8,1): -4, (4,1): 2.0, (4,3): 0.0,
(8,0): -1, (2,1): 6.0, (2,0): 1.25, (8,7): 0, (4,2): 4.0, (8,6): 0,
(1,0): 1.125, (4,0): -0.5, (8,5): -2, (8,4): 2}

Test it out on some small one-dimensional images in which there is a lot of similarity between
nearby pixels, e.g. [1, 1, 2, 2] and [0, 1, 1, 1,−1, 1, 0, 1, 100, 101, 102, 100, 101, 100, 99, 100].
Then test on some images in which nearby pixels vary wildly. Do you notice any difference
in the magnitude of the coefficients that result?
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10.9.2 Normalization in the forward transform

As we calculated in introducing the wavelet basis, the unnormalized squared norm of the
wavelet basis vector ws

i is n/(4s). The special basis vector w0
0 corresponding to the overall

average intensity is
[1, 1, . . . , 1]

so its squared norm is 12 + 12 + · · · + 12, which is n.
As we have seen, to convert from the coefficient of an unnormalized basis vector to

the coefficient of the corresponding normalized basis vector, we multiply by the norm of
the unnormalized basis vector. Thus normalizing the coefficients means multiplying the
coefficient of ws

i by
√

n/(4s), except that the coefficient of w0
0 must be multiplied by

√
n.

Task 10.9.2: Write a procedure normalize_coefficients(n, D) that, given the di-
mension n of the original space and a dictionary D of the form returned by
forward_no_normalization(v), returns the corresponding dictionary with the coefficients
normalized.

Here are examples:

>>> normalize_coefficients(4, {(2,0):1, (2,1):1, (1,0):1, (0,0):1})
{(2, 0): 0.707..., (1, 0): 1.0, (0, 0): 2.0, (2, 1): 0.707...}
>>> normalize_coefficients(4, forward_no_normalization([1,2,3,4]))
(2, 0): -0.707, (1, 0): -2.0, (0, 0): 5.0, (2, 1): -0.707}

Task 10.9.3: Write a procedure forward(v) to find the representation with respect to
the normalized Haar wavelet basis. This procedure should simply combine
forward_no_normalization with normalize_coefficients.

As an example, try finding the forward transform of [1, 2, 3, 4]. The unnormalized coef-
ficients of w2

0 and w2
1 are -1 and -1. The squared norms of these vectors are 1/2, so these

raw coefficients must be multiplied by
√

1/2.
The subsampled 2-pixel image is [1.5, 3.5], which is the value assigned to v for the next

iteration. The unnormalized coefficient of w1
0 is -2. The squared norm of w1

0 is 1, so the
raw coefficient must be multiplied by

√
1.

The subsampled 1-pixel image is [2.5], so the coefficient of w0
0 = b10 is 2.5. The squared

norm of w0
0 is 4, so this coefficient must be multiplied by

√
4.

Therefore the output dictionary should be

{(2, 0): -sqrt(1/2), (2,1): -sqrt(1/2), (1, 0): -2, (0, 0): 5}

Again try your procedure out on one-dimensional images with small and large variations
between nearby pixel values.
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10.9.3 Compression by suppression

Our compression method is to zero out all coefficients whose absolute values are less than a
given threshold.

Task 10.9.4: Write a procedure suppress(D, threshold) that, given a dictionary D
giving the representation of a vector with respect to the normalized basis, returns a dictionary
of the same form but where every value whose absolute value is less than threshold is
replaced with zero. You should be able to use a simple comprehension for this.

Example:

>>> suppress(forward([1,2,3,4]), 1)
{(2, 0): 0, (1, 0): -2.0, (0, 0): 5.0, (2, 1): 0}

Task 10.9.5: Write a procedure sparsity(D) that, given such a dictionary, returns the
percentage of its values that are nonzero. The smaller this value, the better the compression
achieved.

>>> D = forward([1,2,3,4])
>>> sparsity(D)
1.0
>>> sparsity(suppress(D, 1))
0.5

10.9.4 Unnormalizing

We now have the procedures we need to compress a one-dimensional image, obtaining a
sparse representation by suppressing values close to zero. However, we also want to recover
the original image from the compressed representation. For that, we need a procedure
backward(D) that calculates the list corresponding to a dictionary of wavelet coefficients.

The first step is undoing the normalization.

Task 10.9.6: Write a procedure unnormalize_coefficients(n, D) that corresponds
to the functional inverse of normalize_coefficients(n, D).

10.9.5 Unnormalized backward transform
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Task 10.9.7: Write a procedure backward_no_normalization(D) that, given a dictio-
nary of unnormalized wavelet coefficients, produces the corresponding list. It should be the
inverse of foward_no_normalization(v).

Here is pseudocode to get you started.

def backward_no_normalization(D):
n = len(D)
v = (the one-element list whose entry is the coefficient of b00)
while len(v) < n:
k = 2 * len(v)
v = (a k-element list)

return v

Test your procedure to make sure it is the functional inverse of forward_no_normalization(v).

10.9.6 Backward transform

Task 10.9.8: Write the procedure backward(D) that computes the inverse wavelet trans-
form. This involves just combining unnormalize coefficients(n, D) and
backward no normalization(D).

Test your procedure to make sure it is the inverse of forward(v).

Handling two-dimensional images

There is a two-dimensional Haar wavelet basis. We will use an approach that differs slightly
from the two-dimensional basis.

10.9.7 Auxiliary procedure

Back in Problem 4.17.20, you wrote the procedure dictlist helper(dlist, k) with the
following spec:

• input:

– a list dlist of dictionaries which all have the same keys, and

– a key k.

• output: a list whose ith element is the value corresponding to the key k in the ith

dictionary of dlist

In case you don’t still have this procedure, it is a straightforward comprehension.
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10.9.8 Two-dimensional wavelet transform

Our goal is to find a representation in terms of wavelets for a two-dimensional image.
We start with file of an image with m rows and n columns. Using the image module, we

obtain a list-of-lists representation, an m-element list each element of which is an n-element
list:

...

[           ]

[           ]
[           ]

The forward(v) procedure will be used to apply the transformation to each row of the
image. The output of forward(v) is a dictionary, so the result will be a dictlist, an m-
element list of n-element dictionaries:

{ {

{ {
{ {

...

Next, our goal is to obtain columns to which we can again apply forward(v). For each
key k, each dictionary has a corresponding value; thus for each key k, we can extract an
m-element list consisting of

• entry k of the first dictionary,

• entry k of the second dictionary,
...

• entry k of the mth dictionary.

and we create a dictionary mapping each key k to the corresponding m-element list. This is
a listdict representation:
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{ ...

[           ]
[           ]

[           ] {: (0,0)(8,0) (8,1): :

Finally, we will apply forward(v) to transform each list to a dictionary, resulting in a
dictdict:

{ ... {: (0,0)(8,0) (8,1): :{            }

{            }

{            }

This is our representation of the wavelet transform of the image.

10.9.9 Forward two-dimensional transform

Now you will write the procedure forward2d(listlist) that transforms the listlist repre-
sentation of an image into the dictdict representation of the wavelet coefficients.

The input listlist is an m-element list of n-element lists. Each inner list is a row of pixel
intensities. We assume for simplicity that m and n are powers of two.

Step 1: Use forward(v) to transform each row of the image. For each row, the result is a
dictionary. All the dictionaries have the same set of keys. Store these dictionaries
in an m-element list D_list.

Step 2: This is a “transpose”-type step, to give you access to the columns. For each key k,
construct an m-element list of consisting of

• entry k of the first dictionary,

• entry k of the second dictionary,
...

• entry k of the mth dictionary.

Store this list in a dictionary L_dict under key k. Thus L_dict is an n-element
dictionary each element of which is an m-element list.

Step 3: Use forward(v) to transform each of those lists, obtaining a dictionary D_dict in
which each list is replaced by a dictionary.



CHAPTER 10. SPECIAL BASES 523

The result, then, is an n-element dictionary of m-element dictionaries.

Task 10.9.9: Write a procedure forward2d(vlist) to carry this out.

• Step 1 is a simple list comprehension.

• Step 2 is a dictionary comprehension that uses the procedure dictlist helper(dlist,
k).

• Step 3 is a dictionary comprehension.

First, test your procedure on a 1 × 4 image such as [[1, 2, 3, 4]]. On such an image, it
should agree with the one-dimensional transform. The first step should give you

[{(2,0): -0.707..., (1,0): -2.0, (0,0): 5.0, (2,1): -0.707...}]

The second step, the “transpose” step, should give you

{(2,0): [-0.707...], (1,0): [-2.0], (0,0): [5.0], (2,1): [-0.707...]}

The third and final step should give you

{(2,0): {(0,0): -0.707...}, (1,0): {(0,0): -2.0},
(0,0): {(0,0): 5.0}, (2,1): {(0,0): -0.707...}}

{(2,0): {(0,0): -0.35...}, (1,0): {(0,0): -1.0},
(0,0): {(0,0): 5.0}, (2,1): {(0,0): -0.35...}}

Next, test it on the 2 × 4 image [[1, 2, 3, 4], [2, 3, 4, 3]]. The first step should give you

{(2, 0): -0.707..., (1, 0): -2.0, (0, 0): 5.0, (2, 1): -0.707...},
{(2, 0): -0.707..., (1, 0): -1.0, (0, 0): 6.0, (2, 1): 0.707...}]

The second step, the “transpose”, should give you

{(2, 0): [-0.707..., -0.707...], (1, 0): [-2.0, -1.0],
(0, 0): [5.0, 6.0], (2, 1): [-0.707..., 0.707...]}

The third and final step should give you

{(2, 0): {(1, 0): 0.0, (0, 0): -1}, (1, 0): {(1, 0): -0.707...,
(0, 0): -2.121...}, (0, 0): {(1, 0): -0.707..., (0, 0): 7.778...},
(2, 1): {(1, 0): -1, (0, 0): 0.0}}

Task 10.9.10: Write suppress2d(D_dict, threshold), a two-dimensional version of
suppress(D,threshold) that suppresses values with absolute value less than threshold
in a dictionary of dictionaries such as is returned by forward2d(vlist).
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Task 10.9.11: Write sparsity2d(D_dict), a two-dimensional version of sparsity(D).

10.9.10 More auxiliary procedures

Task 10.9.12: Write a procedure listdict2dict(L dict, i) with the following spec:

• input: a dictionary L dict of lists, all the same length, and an index i into such a list

• output: a dictionary with the same keys as L dict, in which key k maps to element i
of L dict[i]

Task 10.9.13: Write a procedure listdict2dictlist(listdict) that converts from a
listdict representation (a dictionary of lists) to a dictlist representation (a list of dictionaries):

{ ...

[           ]
[           ]

[           ] {: (0,0)(8,0) (8,1): : { {

{ {
{ {

...

10.9.11 Two-dimensional backward transform

You will write the two-dimensional backward transform. To review the process:

Step 1: The input is a dictdict. This step applies backward(D) to transform each inner
dictionary to a list, resulting in a listdict.

{ ... {: (0,0)(8,0) (8,1): :{            }

{            }

{            } { ...

[           ]
[           ]

[           ] {: (0,0)(8,0) (8,1): :
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Step 2: This is a “transpose”-type step that transforms from a listdict to a dictlist:

{ ...

[           ]
[           ]

[           ] {: (0,0)(8,0) (8,1): : { {

{ {
{ {

...

Step 3: This step applies backward(D) to each inner dictionary, resulting in a listlist:

{ {

{ {
{ {

...
...

[           ]

[           ]
[           ]

Task 10.9.14: Write backward2d(dictdict), the functional inverse of forward2d(vlist).
Test it to make sure it is really the inverse.

10.9.12 Experimenting with compression of images

Task 10.9.15: Select a .png representing an image whose dimensions are powers of two.a

We provide some example .png files at resources.codingthematrix.com. Use an
application on your computer to display the image.

aYou can, if you choose, adapt the code to “pad” an image, adding zeroes as necessary.
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Task 10.9.16: Write a procedure image_round(image) with the following spec:

• input: a grayscale image, represented as a list of lists of floats

• output: the corresponding grayscale image, represented as a list of lists of integers,
obtained by rounding the floats in the input image and taking their absolute values,
and replacing numbers greater than 255 with 255.

Task 10.9.17: Import the procedures file2image(filename) and color2gray(image)
from the image Use them in the expression color2gray(file2image(filename)) to read
the image into a list of lists.

Try using the procedure image2display from the image module to display the image.
Compute the 2-D Haar wavelet transform using forward2d. Then apply backward2d
to get a list-of-lists representation. Round this representation using image_round, and
display the result either using image2display or by writing it to a file using the procedure
image2file(filename,vlist) and then displaying the file you wrote. Make sure it looks
like the original image.

Task 10.9.18: Finally, use suppress2d(D_dict, threshold) and sparsity2d(D_dict)
to come up with a threshold that achieves the degree of compression you would like.
Apply the backward transform and round the result using image_round, and then use
image2display or image2file to view it to see how close it is to the original image.

Task 10.9.19: Try other images. See if the same threshold works well.

10.10 Review Questions

• Why does the function x )→ Qx preserve dot-products when Q is a column-orthogonal
matrix? Why does it preserve norms?

• How does one find the closest vector whose representation in a given basis is k-sparse? Why
would you want to do so?

• Why might you want a basis such that there are fast algorithms for converting between a
vector and the vector’s coordinate representation?

• What is a wavelet basis? How does it illustrate the notions of direct sum and orthogonal
complement?

• What is the process for computing a vector’s representation in the wavelet basis?

• What is the inner product for vectors over C?

• What is the Hermitian adjoint?

• What does the discrete Fourier basis have to do with circulant matrices?
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10.11 Problems

Projections and representations in different bases

These problems seem to involve giving elaborate algorithms but your solutions must involve just
simple operations: matrix-vector, vector-matrix, and matrix-matrix multiplication; dot-product,
maybe transpose. Your code should not use any subroutines. (Of course, your code should make
use of the operations defined on Mats and Vecs.)

You will find that in each problem the body of the procedure is very short. If the body of
your procedure is at all complicated (e.g. involves a loop or even a comprehension), you’re doing
it wrong!

Try making very short solutions. In my solutions the average length of the body of the
procedure (not counting def ... return .... is about five characters! :) I will admit, how-
ever, that one of my solutions involves cheating a little: I use an expression that would not be
mathematically acceptable if the vectors were translated into row and column vectors.

Use your understanding of linear algebra to give solutions that are as simple and pure as
possible.

Problem 10.11.1: Write a procedure orthogonal vec2rep(Q, b) for the following:

• input: An orthogonal matrix Q, and a vector b whose label set equals the column-label set
of Q

• output: the coordinate representation of b in terms of the rows of Q.

Your code should use the mat module and no other module and no other procedures.

Test case: For Q =

⎡

⎢
⎣

1√
2

1√
2

0
1√
3

− 1√
3

1√
3

− 1√
6

1√
6

2√
6

⎤

⎥
⎦, b =

[

10 20 30
]

,

you should get [21.213, 11.547, 28.577].

Problem 10.11.2: Write a procedure orthogonal change of basis(A, B, a) for the fol-
lowing:

• input:

– two orthogonal matrices A and B, such that the row-label set of A equals its column-
label set which equals the row and column-label sets of B as well.

– the coordinate representation a of a vector v in terms of the rows of A.

• output: the coordinate representation of v in terms of the columns of B.

Just for fun, try to limit your procedure’s body to about five characters (not counting return).
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Test case: For A = B =

⎡

⎢
⎣

1√
2

1√
2

0
1√
3

− 1√
3

1√
3

− 1√
6

1√
6

2√
6

⎤

⎥
⎦, a = [

√
2, 1√

3
, 2√

6
], you should get

[0.876, 0.538, 1.393].

Problem 10.11.3: Write a procedure orthonormal projection orthogonal(W, b) for the
following spec.

• input: a matrix W whose rows are orthonormal, and a vector b whose label set is the
column-label set of W

• output: the projection of b orthogonal to the row space of W .

Just for fun, try to limit your procedure’s body to about seven characters (not counting return).
This is cheating, in that the expression would not be considered good mathematical syntax;
without cheating, you can do it in nineteen characters.

(Hint: First find the projection of b onto the row space of W .)

Test case: For W =

[
1√
2

1√
2

0
1√
3

− 1√
3

1√
3

]

, b = [10, 20, 30], you should get
[

−11 2
3 11 2

3 23 1
3

]

.



Chapter 11

The Singular Value
Decomposition

One singular sensation...

A Chorus Line, lyrics by Edward Kleban

In the last chapter, we studied special matrices—a Haar basis matrix, a Fourier matrix, a
circulant matrix—such that multiplying by such a matrix was fast. Moreover, storage for such a
matrix is very cheap. The Haar and Fourier matrices can be represented implicitly, by procedures,
and a circulant matrix can be represented by storing just its first row, for the other rows can be
derived from that one row.

11.1 Approximation of a matrix by a low-rank matrix

11.1.1 The benefits of low-rank matrices

A low-rank matrix has the same benefits. Consider a matrix whose rank is one. All the rows
lie in a one-dimensional space. Let {v} be a basis for that space. Every row of the matrix is
some scalar multiple of v. Let u be the vector whose entries are these scalar multiples. Then
the matrix can be written as uvT . Such a representation requires small storage—just m + n
numbers have to be stored for a rank-one m × n matrix. Moreover, to multiply the matrix uvT

by a vector w, we use the equation

⎛

⎝

⎡

⎣ u

⎤

⎦
[

vT
]

⎞

⎠

⎡

⎣ w

⎤

⎦ =

⎡

⎣ u

⎤

⎦

⎛

⎝
[

vT
]

⎡

⎣ w

⎤

⎦

⎞

⎠

which shows that the matrix-vector product can be computed by computing two dot-products.
Even if a matrix has rank more than one, if the rank of a matrix is small, we get some of the

529
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same benefits. A rank-two matrix, for example, can be written as

⎡

⎣ u1 u2

⎤

⎦

[

vT
1

vT
2

]

so it can be stored compactly and can be multiplied by a vector quickly.
Unfortunately, most matrices derived from observed data do not have low rank. Fortunately,

sometimes a low-rank approximation to a matrix will do nearly as well as the the matrix it-
self; sometimes even better! In this chapter, we will learn about how to find the best rank-k
approximation to a given matrix, the rank-k matrix that is closest to the given matrix. There
are a variety of applications, including two analytical methods, one called principal components
analysis (PCA) and the other called latent semantic indexing.

11.1.2 Matrix norm

In order to define the problem of finding the rank-k matrix closest to a given matrix, we need to
define a distance for matrices. For vectors, distance is given by the norm, which is in turn defined
by the inner product. For vectors over R, we defined inner product to be dot-product. We saw
in Chapter 10 that the inner product for complex numbers was somewhat different. For this
chapter, we will leave aside complex numbers and return to vectors and matrices over R. Our
inner product, therefore, is once again just dot-product, and so the norm of a vector is simply
the square root of the sum of the squares of its entries. But how can we define the norm of a
matrix?

Perhaps the most natural matrix norm arises from interpreting a matrix A as a vector. An
m× n matrix is represented by an mn-vector, i.e. the vector has one entry for each entry of the
matrix. The norm of a vector is the square root of the sum of the entries, and so that is how we
measure the norm of a matrix A. This norm is called the Frobenius norm:

||A||F =

√
∑

i

∑

j

A[i, j]2

Lemma 11.1.1: The square of the Frobenius norm of A equals the sum of the squares of the
rows of A.

Proof

Suppose A is an m×n matrix. Write A in terms of its rows: A =

⎡

⎢
⎣

a1

...
am

⎤

⎥
⎦. For

each row label i,
∥ai∥2 = ai[1]2 + ai[2]2 + · · · + ai[n]2 (11.1)
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We use this equation to substitute in the definition of Frobenius norm:

∥A∥2F =
(

A[1, 1]2 + A[1, 2]2 + · · · + A[1, n]2
)

+ · · · +
(

A[m, 1]2 + A[m, 2]2 + · · · + A[m, n]2
)

= ∥a1∥2 + · · · ∥am∥2

!

The analogous statement holds for columns as well.

11.2 The trolley-line-location problem

We start with a problem that is in a sense the opposite of the fire-engine problem. I call it the
trolley-line-location problem. Given the locations of m houses, specified as vectors a1, . . . ,am,

a1

a2

a4

a3

we must choose where to locate a trolley-line. The trolley-line is required to go through downtown
(which we represent as the origin) and is required to be a straight line.

v

The goal is to locate the trolley-line so that it is as close as possible to the m houses.
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distance to a1 distance 
to a3

distance to a4

distance to a2

So far the problem is not fully specified. If there is only one house (i.e. one vector a1) then
the solution is obvious: build a trolley-line along the line going through the origin and a1. In
this case, the distance from the one house to the trolley-line is zero. If there are many vectors
a1, . . . ,am, how should we measure the distance from these vectors to the trolley-line? Each
vector ai has its own distance di from the trolley-line—how should we combine the numbers
[d1, . . . , dm] to get a single number to minimize? As in least squares, we minimize the norm of
the vector [d1, . . . , dm]. This is equivalent to minimizing the square of the norm of this vector,
i.e. d21 + · · · + d2m.

And in what form should the output line be specified? By a unit-norm vector v. The line of
the trolley-line is then Span {v}.

Computational Problem 11.2.1: Trolley-Line-location problem:

• input: vectors a1, . . . ,am

• output: a unit vector v that minimizes

(distance from a1 to Span {v})2 + · · · + (distance from am to Span {v})2 (11.2)

11.2.1 Solution to the trolley-line-location problem

For each vector ai, write ai = a
∥v
i + a⊥v

i where a
∥v
i is the projection of ai along v and a⊥v

i is
the projection orthogonal to v. Then

a⊥v
1 = a1 − a

∥v
1

...

a⊥v
m = am − a∥v

m

By the Pythagorean Theorem,

∥a⊥v
1 ∥2 = ∥a1∥2 − ∥a∥v

1 ∥2
...

∥a⊥v
m ∥2 = ∥am∥2 − ∥a∥v

m ∥2
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Since the distance from ai to Span {v} is ∥a⊥v
i ∥, we have

(distance from a1 to Span {v})2 = ∥a1∥2 − ∥a∥v
1 ∥2

...

(distance from am to Span {v})2 = ∥am∥2 − ∥a∥v
m ∥2

Adding vertically, we obtain

∑

i(distance from ai to Span {v})2 = ∥a1∥2 + · · · + ∥am∥2 −
(

∥a∥v
1 ∥2 + · · · + ∥a∥v

m ∥2
)

= ∥A∥2F −
(

∥a∥v
1 ∥2 + · · · + ∥a∥v

m ∥2
)

where A is the matrix whose rows are a1, . . . ,am, by Lemma 11.1.1.

Using the fact that a∥v
i = ⟨ai,v⟩ v because v is a norm-one vector, we have ∥a∥v

i ∥2 = ⟨ai,v⟩2,
so

∑

i(distance from ai to Span {v})2 = ||A||2F −
(

⟨a1,v⟩2 + ⟨a2,v⟩2 + · · · + ⟨am,v⟩2
)

(11.3)

Next, we show that
(

⟨a1,v⟩2 + ⟨a2,v⟩2 + · · · + ⟨am,v⟩2
)

can be replaced by ∥Av∥2. By our

dot-product interpretation of matrix-vector multiplication,

⎡

⎢
⎣

a1

...
am

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

v

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

⟨a1,v⟩
...

⟨am,v⟩

⎤

⎥
⎦ (11.4)

so
∥Av∥2 =

(

⟨a1,v⟩2 + ⟨a2,v⟩2 + · · · + ⟨am,v⟩2
)

Substituting into Equation 11.3, we obtain

∑

i(distance from ai to Span {v})2 = ||A||2F − ∥Av∥2 (11.5)

Therefore the best vector v is a unit vector that maximizes ||Av||2 (equivalently, maximizes
||Av||). We now know a solution, at least in principle, for the trolley-line-location problem,
Computational Problem 11.2.1:

def trolley_line_location(A):
Given a matrix A, find the vector v1

minimizing
∑

i(distance from row i of A to Span {v1})2

v1 = arg max{||Av|| : ||v|| = 1}
σ1 = ||Av1||
return v1
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The arg max notation means the thing (in this case the norm-one vector v) that results in the
largest value of ∥Av∥.

So far, this is a solution only in principle since we have not specified how to actually compute
v1. In Chapter 12, we will describe a method for approximating v1.

Definition 11.2.2: We refer to σ1 as the first singular value of A, and we refer to v1 as the
first right singular vector.

Example 11.2.3: Let A =

[

1 4
5 2

]

, so a1 = [1, 4] and a2 = [5, 2]. In this case, a unit vector

maximizing ||Av|| is v1 ≈
[

0.78
0.63

]

. We use σ1 to denote ||Av1||, which is about 6.1:

a1=[1,4]

a2=[5,2]

v1=[.777, .629]

We have proved the following theorem, which states that trolley_line_location(A) finds
the closest vector space.

Theorem 11.2.4: Let A be an m×n matrix over R with rows a1, . . . ,am. Let v1 be the first
right singular vector of A. Then Span {v1} is the one-dimensional vector space V that minimizes

(distance from a1 to V)2 + · · · + (distance from am to V)2

How close is the closest vector space to the rows of A?
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Lemma 11.2.5: The minimum sum of squared distances is ||A||2F − σ2
1 .

Proof

According to Equation 11.5, the squared distance is
∑

i ||ai||2−
∑

i ||a
∥v
i ||2. By Lemma 11.1.1,

the first sum is ||A||2F . The second sum is the square of the quantity ||Av1||, a quantity we
have named σ1. !

Example 11.2.6: Continuing with Example 11.2.3 (Page 534), we calculate the sum of squared
distances.

First we find the projection of a1 orthogonal to v1:

a1 − ⟨a1,v1⟩ v1 ≈ [1, 4] − (1 · 0.78 + 4 · 0.63)[0.78, 0.63]

≈ [1, 4] − 3.3 [0.78, 0.63]

≈ [−1.6, 1.9]

The norm of this vector, about 2.5, is the distance from a1 to Span {v1}.
Next we find the projection of a2 orthogonal to v1:

a2 − ⟨a1,v1⟩ v1 ≈ [5, 2] − (5 · 0.78 + 2 · 0.63)[0.78, 0.63]

≈ [5, 2] − 5.1 [0.78, 0.63]

≈ [1,−1.2]

The norm of this vector, about 1.6, is the distance from a2 to Span {v1}.
Thus the sum of squared distances is about 2.52 + 1.62, which is about 8.7.
According to Lemma 11.2.5, the sum of squared distances should be ||A||2F −σ2

1 . The squared
Frobenius of A is 12 +42 +52 +22 = 46, and the first singular value is about 6.1, so ||A||2F −σ2

1

is about 8.7. Lemma 11.2.5 is correct in this example!

Warning: We are measuring the error by distance to the subspace. The norm of a vector
treats every entry equally. For this technique to be relevant, the units for the entries need to be
appropriate.

Example 11.2.7: Let a1, . . . ,a100 be the voting records for US Senators (same data as you
used in the politics lab). These are 46-vectors with ±1 entries.

We find the unit-norm vector v that minimizes least-squares distance from a1, . . . ,a100 to
Span {v}, and we plot the projection along v of each of these vectors:
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The results are not so meaningful. Moderates and conservatives have very similar projections:

Snowe 0.106605199 moderate Republican from Maine
Lincoln 0.106694552 moderate Republican from Rhode Island
Collins 0.107039376 moderate Republican from Maine
Crapo 0.107259689 conservative moderate Republican from Idaho
Vitter 0.108031374 conservative moderate Republican from Louisiana

There is that one outlier, way off to the left. That’s Russ Feingold.
We’ll later return to this data and try again....

11.2.2 Rank-one approximation to a matrix

Building on our solution to the trolley-line-location problem, we will obtain a solution to another
computational problem: finding the best rank-one approximation to a given matrix. In finding
the best k-sparse approximation to a vector (Chapter 10), “best” meant “closest to the original
vector”, where distance between vectors is measured in the usual way, by the norm. Here we
would like to similarly measure the distance between the original matrix and its approximation.
For that, we need a norm for matrices.

11.2.3 The best rank-one approximation

We are now in a position to define the problem rank-one approximation.

Computational Problem 11.2.8: Rank-one approximation:

• input: a nonzero matrix A

• output: the rank-one matrix Ã that is closest to A according to Frobenius norm

Equivalently, the goal is to find the rank-one matrix Ã that minimizes ||A − Ã||F :

Ã = arg min{||A − B||F : B has rank one}

Suppose we have some rank-one matrix Ã. How close is it to A? Let’s look at the squared
distance between A and Ã. By Lemma 11.1.1,

∥A − Ã∥2F = ∥row 1 of A − Ã∥2 + · · · + ∥row m of A − Ã∥2 (11.6)

This tells us that, in order to minimize the distance to A, we should choose each row of Ã to
be as close as possible to the corresponding row of A. On the other hand, we require that Ã
have rank one. That is, we require that, for some vector v, each row of Ã lies in Span {v}. To
minimize the distance to A, therefore, once v has been chosen, we should choose Ã thus:

Ã =

⎡

⎢
⎣

vector in Span {v} closest to a1

...
vector in Span {v} closest to am

⎤

⎥
⎦ (11.7)
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Accordingly, for i = 1, . . . , m,

∥row i of A − Ã∥F = distance from ai to Span {v}

Combining with Equation 11.6 tells us that, once we have chosen v, the best approximation Ã
satisfies

∥A − Ã∥2 = (distance from a1 to Span {v})2 + · · · + (distance from am to Span {v})2

Theorem 11.2.4 tells us that, to minimize the sum of squared distances to Span {v}, we should
choose v to be v1, the first right singular value. By Lemma 11.2.5, the sum of squared distances
is then ||A||2F − σ2

1 . We therefore obtain

Theorem 11.2.9: The rank-one matrix Ã that minimizes ∥A − Ã∥F is

Ã =

⎡

⎢
⎣

vector in Span {v1} closest to a1

...
vector in Span {v1} closest to am

⎤

⎥
⎦ (11.8)

and, for this choice, ∥A − Ã∥2F = ∥A∥2F − σ2
1 .

11.2.4 An expression for the best rank-one approximation

Equation 11.8 specifies Ã but there is a slicker way of writing it. The vector in Span {v1} closest

to ai is a
∥v1

i , the projection of ai onto Span {v1}. Using the formula a
∥v1

i = ⟨ai,v1⟩v1, we
obtain

Ã =

⎡

⎢
⎣

⟨a1,v1⟩vT
1

...
⟨am,v1⟩vT

1

⎤

⎥
⎦

Using the linear-combinations interpretation of vector-matrix multiplication, we can write this
as an outer product of two vectors:

Ã =

⎡

⎢
⎣

⟨a1,v1⟩
...

⟨am,v1⟩

⎤

⎥
⎦

[

vT
1

]

(11.9)

By Equation 11.4, the first vector in the outer product can be written as Av1. Substituting into
Equation 11.9, we obtain

Ã =

⎡

⎢
⎢
⎢
⎢
⎣

Av1

⎤

⎥
⎥
⎥
⎥
⎦

[

vT
1

]

(11.10)
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We have defined σ1 to be the norm ∥Av1∥. We define u1 to be the norm-one vector such that
σ1 u1 = Av1. Then we can rewrite Equation 11.10 as

Ã = σ1

⎡

⎢
⎢
⎢
⎢
⎣

u1

⎤

⎥
⎥
⎥
⎥
⎦

[

vT
1

]

(11.11)

Definition 11.2.10: The first left singular vector of A is defined to be the vector u1 such
that σ1 u1 = Av1, where σ1 and v1 are, respectively, the first singular value and the first right
singular vector.

Theorem 11.2.11: The best rank-one approximation to A is σ1 u1v
T
1 where σ1 is the first

singular value, u1 is the first left singular vector, and v1 is the first right singular vector of A.

Example 11.2.12: We saw in Example 11.2.3 (Page 534) that, for the matrix A =

[

1 4
5 2

]

,

the first right singular vector is v1 ≈
[

0.78
0.63

]

and the first singular value σ1 is about 6.1. The

first left singular vector is u1 ≈
[

0.54
0.84

]

, meaning σ1 u1 = Av1.

We then have

Ã = σ1 u1v
T
1

≈ 6.1

[

0.54
0.84

]
[

0.78 0.63
]

≈
[

2.6 2.1
4.0 3.2

]

Then

A − Ã ≈
[

1 4
5 2

]

−
[

2.6 2.1
4.0 3.2

]

≈
[

−1.56 1.93
1.00 −1.23

]

so the squared Frobenius norm of A − Ã is

1.562 + 1.932 + 12 + 1.232 ≈ 8.7
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Does this agree with Theorem 11.2.9? That theorem states that ||A − Ã||2F = ||A||2F − σ2
1 ,

which we calculated to be about 8.7 in Example 11.2.6 (Page 535).

11.2.5 The closest one-dimensional affine space

When we defined the trolley-line-location problem in Section 11.2, we stipulated that the trolley-
line go through the origin. This was necessary in order that the trolley-line-location problem
correspond to finding the closest one-dimensional vector space. A one-dimensional vector space
is a line through the origin. Recall from Chapter 3 that an arbitrary line (one not necessarily
passing through the origin) is an affine space.

We can adapt the trolley-line-location techniques to solve this problem as well. Given points
a1, . . . ,am, we choose a point ā and translate each of the input points by subtracting ā:

a1 − ā, . . . ,am − ā

We find the one-dimensional vector space closest to these translated points, and then translate
that vector space by adding back ā.

Whether the procedure we have just described correctly finds the closest affine space depends
on how ā is chosen. The best choice of ā, quite intuitively, is the centroid of the input points,
the vector

ā =
1

m
(a1 + · · · + am)

We omit the proof.
Finding the centroid of given points and then translating those points by subtracting off the

centroid is called centering the points.

Example 11.2.13: We revisit Example 11.2.7 (Page 535), in which a1, . . . , a100 were the
voting records for US Senators. This time, we center the data, and only then find the closest
one-dimensional vector space Span {v1}.

Now projection along v gives a better spread:

Only three of the senators to the left of the origin are Republican:

>>> {r for r in senators if is_neg[r] and is_Repub[r]}
{'Collins', 'Snowe', 'Chafee'}

and these are perhaps the most moderate Republicans in the Senate at that time. Similarly, only
three of the senators to the right of the origin are Democrat.

11.3 Closest dimension-k vector space

The generalization of the trolley-line-location problem to higher dimensions is this:
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Computational Problem 11.3.1: closest low-dimensional subspace:

• input: Vectors a1, . . .am and positive integer k

• output: basis for the k-dimensional vector space Vk that minimizes

∑

i

(distance from ai to Vk)
2

The trolley-line-location problem is merely the special case in which k = 1. In this spe-
cial case, we seek the basis for a one-dimensional vector space. The solution, embodied in
trolley line location(A), is a basis consisting of the unit-norm vector v that maximizes ||Av||
where A is the matrix whose rows are a1, . . . ,am.

11.3.1 A Gedanken algorithm to find the singular values and vectors

There is a natural generalization of this algorithm in which an orthonormal basis is sought. In the
ith iteration, the vector v selected is the one that maximizes ||Av|| subject to being orthogonal
to all previously selected vectors:

• Let v1 be the norm-one vector v maximizing ||Av||,

• let v2 be the norm-one vector v orthogonal to v1 that maximizes ||Av||,

• let v3 be the norm-one vector v orthogonal to v1 and v2 that maximizes ||Av||,

and so on.

Here is the same algorithm in pseudocode:

Given an m × n matrix A, find vectors v1, . . . ,vrank A such that, for k = 1, 2, . . . , rank (A),
the k-dimensional subspace V that minimizes

∑

i(distance from row i of A to Vk)2

is Span {v1, . . . ,vk}

def find_right_singular_vectors(A):
for i = 1, 2, . . .
vi = arg max{∥Av∥ : ∥v∥ = 1,v is orthogonal to v1,v2, . . .vi−1}
σi = ∥Avi∥

until Av = 0 for every vector v orthogonal to v1, . . . ,vi

let r be the final value of the loop variable i.
return [v1,v2, . . . ,vr]

Like the procedure trolley_line_location(A), so far this procedure is not fully specified
since we have not said how to compute each arg max. Indeed, this is not by any stretch the
best algorithm for computing these vectors, but it is very helpful indeed to think about. It is a
Gedanken algorithm.
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Definition 11.3.2: The vectors v1,v2, . . . ,vr are the right singular vectors of A, and the
corresponding real numbers σ1,σ2, . . . ,σr are the singular values of A.

11.3.2 Properties of the singular values and right singular vectors

The following property is rather obvious.

Proposition 11.3.3: The right singular vectors are orthonormal.

Proof

In iteration i, vi is chosen from among vectors that have norm one and are orthogonal to
v1, . . . ,vi−1. !

Example 11.3.4: We revisit the matrix A =

[

1 4
5 2

]

of Examples 11.2.3, 11.2.6 and 11.2.12.

We saw that the first right singular vector is v1 ≈
[

0.78
0.63

]

and the first singular value σ1 is about

6.1. The second right singular vector must therefore be chosen among the vectors orthogonal to
[

0.78
0.63

]

. It turns out to be

[

0.63
−0.78

]

. The corresponding singular value is σ2 ≈ 2.9.

The vectors v1 and v2 vectors are obviously orthogonal. Notice that σ2 is smaller than σ1.
It cannot be greater since the second maximization is over a smaller set of candidate solutions.

Since the vectors v1 and v2 are orthogonal and nonzero, we know they are linearly indepen-
dent, and therefore that they span R2.

Here’s another nearly obvious property.

Proposition 11.3.5: The singular values are nonnegative and in descending order.

Proof

Since each singular value is the norm of a vector, it is nonnegative. For each i > 1, the
set of vectors from which vi is chosen is a subset of the set of vectors from which vi−1 is
chosen, so the maximum achieved in iteration i is no greater than the maximum achieved
in iteration i − 1. This shows σi ≤ σi−1. !

Now for something not at all obvious—a rather surprising fact that is at the heart of the
notion of Singular Value Decomposition.
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Lemma 11.3.6: Every row of A is in the span of the right singular vectors.

Proof

Let V = Span {v1, . . . ,vr}. Let Vo be the annihilator of V, and recall that Vo consists of
all vectors orthogonal to V. By the loop termination condition, for any vector v in Vo, the
product Av is the zero vector, so the rows of A are orthogonal to v. The annihilator of
the annihilator (Vo)∗ consists of all vectors orthogonal to Vo, so the rows of A are in (Vo)∗.
Theorem 6.5.15, the Annihilator Theorem, states that (Vo)o equals V. This shows that the
rows of A are in V. !

11.3.3 The singular value decomposition

Lemma 11.3.6 tells us that each row ai of A is a linear combination of the right singular vectors:

ai = σi1 v1 + · · · + σir vr

Since v1, . . . ,vr are orthonormal, the jth summand σij vj is the projection of ai along the jth

right singular vector vj , and the coefficient σij is just the inner product of ai and vj :

ai = ⟨ai,v1⟩ v1 + · · · + ⟨ai,vr⟩ vr

Using the dot-product definition of vector-matrix multiplication, we write this as

ai =
[

⟨ai,v1⟩ · · · ⟨ai,vr⟩
]

⎡

⎢
⎣

vT
1
...
vT
r

⎤

⎥
⎦

Combining all these equations and using the vector-matrix definition of matrix-matrix multipli-
cation, we can express A as a matrix-matrix product:

⎡

⎢
⎢
⎢
⎣

aT
1

aT
2
...

aT
m

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

⟨a1,v1⟩ · · · ⟨a1,vr⟩
⟨a2,v1⟩ · · · ⟨a2,vr⟩

...
⟨am,v1⟩ · · · ⟨am,vr⟩

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎣

vT
1
...
vT
r

⎤

⎥
⎦

We can further simplify this equation. The jth column of the first matrix on the right-hand side
is ⎡

⎢
⎢
⎢
⎣

⟨a1,vj⟩
⟨a2,vj⟩

...
⟨am,vj⟩

⎤

⎥
⎥
⎥
⎦

which is, by the dot-product definition of linear combinations, simply Avj . It is convenient to
have a name for these vectors.
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Definition 11.3.7: The vectors u1,u2, . . . ,ur such that σj uj = Avj are the left singular
vectors of A.

Proposition 11.3.8: The left singular vectors are orthonormal.

(The proof is given in Section 11.3.10.)

Using the definition of left singular vectors, we substitute σj uj for Avj , resulting in the
equation

⎡

⎢
⎢
⎢
⎢
⎣

A

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

σ1u1 · · · σrur

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

vT
1
...
vT
r

⎤

⎥
⎦

Finally, we separate out σ1, . . . ,σr into a diagonal matrix, obtaining the equation

⎡

⎢
⎢
⎢
⎢
⎣

A

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

u1 · · · ur

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

σ1

. . .
σr

⎤

⎥
⎦

⎡

⎢
⎣

vT
1
...
vT
r

⎤

⎥
⎦ (11.12)

Definition 11.3.9: The singular value decomposition of a matrix A is a factorization of A as
A = UΣV T in which the matrices U , Σ, and V have three properties:

Property S1: Σ is a diagonal matrix whose entries σ1, . . . ,σr are positive and in descending
order.

Property S2: V is a column-orthogonal matrix.

Property S3: U is a column-orthogonal matrix.

(Sometimes this is called the reduced singular value decomposition.)
We have established the following theorem.

Theorem 11.3.10: Every matrix A over R has a singular value decomposition.

Proof

We have derived Equation 11.12, which shows the factorization of A into the product of
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matrices U , Σ, and V . Property S1 follows from Proposition 11.3.5. Property S2 follows
from Proposition 11.3.3. Property S3 follows from Proposition 11.3.8. !

The procedure def find right singular vectors(A) is not the most efficient way to find
a singular value decomposition of A. The best algorithms are beyond the scope of this book,
but we provide a module svd with a procedure factor(A) that, given a Mat A, returns a triple
(U,Σ, V ) such that A = UΣ ∗ V T .

It is worth noting that the singular value decomposition has a nice symmetry under transpo-
sition. By the properties of the transpose of a matrix product (Proposition 4.11.14),

AT = (UΣV T )T

= V ΣTUT

= V ΣUT

because the transpose of Σ is Σ itself.
We see that the the SVD of AT can be obtained from the SVD of AT just by swapping U

and V .
As we will see, the SVD is important as both a mathematical concept and a computational

tool. One of the people who helped develop good algorithms for computing the SVD was Gene
Golub, whose license plate reflected his interest in the topic: It read “PROF SVD”.

11.3.4 Using right singular vectors to find the closest k-dimensional
space

Now we show how to use the right singular vectors to address Computational Problem 11.3.1.
First we state how good a solution they provide.

Lemma 11.3.11: Let v1, . . . ,vk be an orthonormal vector basis for a vector space V . Then

(distance from a1 to V)2 + · · · + (distance from am to V)2

is ∥A∥2F − ∥Av1∥2 − ∥Av2∥2 − · · · − ∥Avk∥2

Proof

The argument is the same as that given in Section 11.2.1. For each vector ai, write ai =

a
∥V
i + a⊥V

i . By the Pythagorean Theorem, ∥a⊥V
1 ∥2 = ∥a1∥2 − ∥a∥V

1 ∥2. Therefore the sum
of squared distances is

(

∥a1∥2 − ∥a∥V
1 ∥2

)

+ · · · +
(

∥am∥2 − ∥a∥V
m ∥2

)

which equals
(

∥a1∥2 + · · · + ∥am∥2
)

+
(

∥a∥V
1 ∥2 + · · · + ∥a∥V

m ∥2
)



CHAPTER 11. THE SINGULAR VALUE DECOMPOSITION 545

The first sum ∥a1∥2 + · · · + ∥am∥2 equals ∥A∥2F . As for the second sum,

∥a∥V
1 ∥2 + · · · + ∥a∥V

m ∥2

=
(

∥a∥v1

1 ∥2 + · · · + ∥a∥vk

1 ∥2
)

+ · · · +
(

∥a∥v1
m ∥2 + · · · + ∥a∥vk

m ∥2
)

=
(

⟨a1,v1⟩2 + · · · + ⟨a1,vk⟩2
)

+ · · · +
(

⟨am,v1⟩2 + · · · + ⟨am,vk⟩2
)

Reorganizing all these squared inner products, we get
(

⟨a1,v1⟩2 + ⟨a2,v1⟩2 + · · · + ⟨am,v1⟩2
)

+ · · · +
(

⟨a1,vk⟩2 + ⟨a2,vk⟩2 + · · · + ⟨am,vk⟩2
)

= ∥Av1∥2 + · · · + ∥Avk∥2
!

The next theorem says that the span of the first k right singular vectors is the best solution.

Theorem 11.3.12: Let A be an m×n matrix, and let a1, . . . ,am be its rows. Let v1, . . . ,vr

be its right singular vectors, and let σ1, . . . ,σr be its singular values. For any positive integer
k ≤ r, Span {v1, . . . ,vk} is the k-dimensional vector space V that minimizes

(distance from a1 to V)2 + · · · + (distance from am to V)2

and the minimum sum of squared distances is ∥A∥2F − σ2
1 − σ2

2 − · · · − σ2
k.

Proof

By Lemma 11.3.11, the sum of squared distances for the space V = Span {v1, . . . ,vk} is

∥A∥2F − σ2
1 − σ2

2 − · · · − σ2
k (11.13)

To prove that this is the minimum, we need to show that any other k-dimensional vector
space W leads to a sum of squares that is no smaller.

Any k-dimensional vector space W has an orthonormal basis. Let w1, . . . ,wk be such a
basis. Plugging these vectors into Lemma 11.3.11, we get that the sum of squared distances
from a1, . . . ,am to W is

∥A∥2F − ∥Aw1∥2 − ∥Aw2∥2 − · · · − ∥Awk∥2 (11.14)

In order to show that V is the closest, we need to show that the quantity in 11.14 is no
less than the quantity in 11.13. This requires that we show that ∥Aw1∥2 + · · · + ∥Awk∥2 ≤
σ2
1 + · · · + σ2

k. Let W be the matrix with columns w1, . . . ,wk. Then ∥AW∥2F = ∥Aw1∥2 +
· · · + ∥Awk∥2 by the column analogue of Lemma 11.1.1. We must therefore show that
∥AW∥2F ≤ σ2

1 + · · · + σ2
k.

By Theorem 11.3.10, A can be factored as A = UΣV T where the columns of V are
v1, . . . ,vr, and where U and V are column-orthogonal and Σ is the diagonal matrix with
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diagonal elements σ1, . . . ,σr. By substitution, ∥AW∥2F = ∥UΣV TW∥2F . Since U is column-
orthogonal, multiplication by U preserves norms, so ∥UΣV TW∥2F = ∥ΣV TW∥2F .

Let X denote the matrix V TW . The proof makes use of two diferent interpretations of
X, in terms of columns and in terms of rows.

First, let x1, . . . ,xk denote the columns of X. For j = 1, . . . , k, by the matrix-vector
interpretation of matrix-matrix multiplication, xj = V Twj . By the dot-product interpre-
tation of matrix-vector multiplication, xj = [v1 · wj , . . . ,vr · wj ], which is the coordinate
representation in terms of v1, . . . ,vr of the projection of wj onto Span {v1, . . . ,vr}. There-
fore the projection itself is V xj . The projection of a norm-one vector onto a space has norm
at most one, so ∥V xj∥ ≤ 1. Since V is a column-orthogonal matrix, ∥V xj∥ = ∥xj∥, so xj

has norm at most one. This shows that ∥X∥2F ≤ k.
Second, let y1, . . . ,yr denote the rows of X. For i = 1, . . . , r, by the vector-matrix in-

terpretation of matrix-matrix multiplication, yi = vT
i W . By the dot-product interpretation

of vector-matrix multiplication, yi = [vi ·w1, . . . ,vi ·wk], which is the coordinate represen-
tation in terms of w1, . . . ,wr of the projection of vi onto W. Using the same argument as
before, since vi has norm one, the coordinate representation has norm at most one. This
shows that each row yi of X has norm at most one.

Now we consider ΣX. Since Σ is a diagonal matrix with diagonal elements σ1, . . . ,σr,
it follows that row i of ΣX is σi times row i of X, which is σiyi. Therefore the squared
Frobenius norm of ΣX is σ2

1∥y1∥2 + · · ·σ2
r∥yr∥2. How big can that quantity be?

Imagine you have k dollars to spend on r products. Product i gives you value σ2
i per dollar

you spend on it. Your goal is to maximize the total value you receive. Since σ1 ≥ · · · ≥ σr,
it makes sense to spend as much as you can on product 1, then spend as much of your
remaining money on product 2, and so on. You are not allowed to spend more than one
dollar on each product. What do you do? You spend one dollar on product 1, one dollar
on product 2, ..., one dollar on product k, and zero dollars on the remaining products. The
total value you receive is then σ2

1 + · · · + σ2
r .

Now we formally justify this intuition. Our goal is to show that σ2
1∥y1∥2+· · ·+σ2

r∥yr∥2 ≤
σ2
1 + · · · + σ2

k. We have shown that ∥yi∥2 ≤ 1 for i = 1, . . . , k. Since ∥X∥2F ≤ k, we also
know that ∥y1∥2 + · · · ∥yr∥2 ≤ k.

Define βi =

{

σ2
i − σ2

r if i ≤ r
0 otherwise

Then σ2
i ≤ βi+σ2

r for i = 1, . . . , r (using the fact that σ1, . . . ,σr are in nonincreasing order).
Therefore

σ2
1∥y1∥2 + · · · + σ2

r∥yr∥2 ≤ (βi + σ2
r)∥y1∥2 + · · · + (βr + σ2

r)∥yr∥2

=
(

β1∥y1∥2 + · · · + βr∥yr∥2
)

+
(

σ2
r∥y1∥2 + · · · + σ2

r∥yr∥2
)

≤ (β1 + · · · + βr) + σ2
r

(

∥y1∥2 + · · · + ∥yr∥2
)

≤
(

σ2
1 + · · · + σ2

k − kσ2
k

)

+ σ2
kk

= σ2
1 + · · · + σ2

k

This completes the proof. !
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11.3.5 Best rank-k approximation to A

We saw in Section 11.2.4 that the best rank-one approximation to A is σ1u1v
T
1 . Now we generalize

that formula:

Theorem 11.3.13: For k ≤ rank A, the best rank-at-most-k approximation to A is

Ã = σ1 u1v
T
1 + · · · + σk ukv

T
k (11.15)

for which ∥A − Ã∥2F = ∥A∥2F − σ2
1 − σ2

2 − · · · − σ2
k.

Proof

The proof is a straightforward generalization of the argument in Section 11.2.2. Let Ã be a
rank-at-most-k approximation to A. By Lemma 11.1.1,

∥A − Ã∥2F = ∥row 1 of A − Ã∥2 + · · · + ∥row m of A − Ã∥2 (11.16)

For Ã to have rank at most k, there must be some vector space V of dimension k such that
every row of Ã lies in V. Once V has been chosen, Equation 11.16 tells us that the best
choice of Ã is

Ã =

⎡

⎢
⎣

vector in V closest to a1

...
vector in V closest to am

⎤

⎥
⎦ (11.17)

and, for this choice,

∥A − Ã∥2 = (distance from a1 to V)2 + · · · + (distance from am to V)2

Theorem 11.3.12 tells us that, to minimize the sum of squared distances to V, we should
choose V to be the span of the first k right singular vectors, and that the sum of squared
distances is then ∥A∥2F − σ2

1 − σ2
2 − · · · − σ2

k.
For i = 1, . . . , m, the vector in V closest to ai is the projection of ai onto V, and

projection of ai onto V = projection of ai along v1+ · · · +projection of ai along vm

= ⟨ai,v1⟩ v1+ · · · + ⟨ai,vk⟩ vk
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Substituting into Equation 11.17 and using the definition of addition of matrices gives us

Ã =

⎡

⎢
⎣

⟨a1,v1⟩ v1

...
⟨am,v1⟩ v1

⎤

⎥
⎦ + · · · +

⎡

⎢
⎣

⟨a1,vk⟩ vk

...
⟨am,vk⟩ vk

⎤

⎥
⎦

= σ1

⎡

⎢
⎢
⎢
⎢
⎣

u1

⎤

⎥
⎥
⎥
⎥
⎦

[

v1

]

+ · · · + σk

⎡

⎢
⎢
⎢
⎢
⎣

uk

⎤

⎥
⎥
⎥
⎥
⎦

[

vk

]

!

11.3.6 Matrix form for best rank-k approximation

Equation 11.15 gives the best rank-k approximation to A as the sum of k rank-one matrices.
By using the definitions of matrix-matrix and matrix-vector multiplication, one can show that
Equation 11.15 can be rewritten as

Ã =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1 · · · uk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

σ1

. . .
σk

⎤

⎥
⎦

⎡

⎢
⎣

vT
1
...
vT
k

⎤

⎥
⎦

In view of the resemblance to the singular value decomposition of A, namely A = UΣV T , we
write

Ã = Ũ Σ̃Ṽ T

where Ũ consists of the first k columns of U , Ṽ consists of the first k columns of V , and Σ̃ is the
diagonal matrix whose diagonal elements are the first k diagonal elements of Σ.

11.3.7 Number of nonzero singular values is rank A

It follows from Lemma 11.3.6 that the number r of right singular vectors produced by algorithm
find right singular vectors(A) is at least the rank of A.

Let k = rank A. For this value of k, the best rank-k approximation to A is A itself. This
shows that any subsequent singular values σ1+rank A,σ2+rank A, . . . must be zero. Therefore,
in the algorithm find right singular vectors(A), after rank A iterations, Av = 0 for every
vector v orthogonal to v1, . . . ,vrank A. Thus the number r of iterations is exactly rank A.
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Let’s reconsider the SVD of A:
⎡

⎢
⎢
⎢
⎢
⎣

A

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

u1 · · · ur

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

U

⎡

⎢
⎣

σ1

. . .
σr

⎤

⎥
⎦

︸ ︷︷ ︸

Σ

⎡

⎢
⎣

vT
1
...
vT
r

⎤

⎥
⎦

︸ ︷︷ ︸

V T

By the vector-matrix definition of matrix-matrix multiplication, each row of A is the corre-
sponding row of UΣ times the matrix V T . Therefore, by the linear-combinations definition of
vector-matrix multiplication, each row of A is a linear combination of the rows of V T . On the
other hand, the rows of V T are mutually orthogonal and nonzero, so linearly independent (Propo-
sition 9.5.1), and there are rank A of them, so the dimension of their span is exactly rank A.
Thus, by the Dimension Principle (Lemma 6.2.14), Row A equals Row V T .

A similar argument shows that Col A equals Col U . Each column of A is U times a column
of ΣV T , and dim Col A = rank A = dimCol U , so Col A = Col U .

We summarize our findings:

Proposition 11.3.14: In the singular value decomposition UΣV T of A, Col U = Col A and
Row V T = Row A.

11.3.8 Numerical rank

In fact, computing or even defining the rank of a matrix with floating-point entries is not a trivial
matter. Maybe the columns of A are linearly dependent but due to floating-point error when
you run orthogonalize on the columns you get all nonzero vectors. Or maybe the matrix you
have represented in your computer is only an approximation to some “true” matrix whose entries
cannot be represented exactly by floating-point numbers. The rank of the true matrix might
differ from that of the represented matrix. As a practical matter, we need some useful definition
of rank, and here is what is used: the numerical rank of a matrix is defined to the number of
singular values you get before you get a singular value that is tiny.

11.3.9 Closest k-dimensional affine space

To find not the closest k-dimensional vector space but the closest k-dimensional affine space,
we can use the centering technique described in Section 11.2.5: find the centroid ā of the input
points a1, . . . ,am, and subtract it from each of the input points. Then find a basis v1, . . . ,vk

for the k-dimensional vector space closest to a1 − ā, . . . ,am − ā. The k-dimensional affine space
closest to the original points a1, . . . ,am is

{ā + v : v ∈ Span {v1, . . . ,vk}}

The proof is omitted.
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Example 11.3.15: Returning to the US Senate voting data, in Examples 11.2.7 and 11.2.13,
we plotted the senators’ voting records on the number line, based on their projection onto the
closest one-dimensional vector. Now we can find the closest 2-dimensional affine space, and
project their voting records onto these, and use the coordinates to plot the senators.

11.3.10 Proof that U is column-orthogonal

In the next proof, we use the Cauchy-Schwartz inequality: for vectors a and b, |a · b| ≤ ∥a∥ ∥b∥.
The proof is as follows: Write b = b||a + b⊥a. By the Pythagorean Theorem, ∥b∥2 = ∥b||a∥2 +

∥b⊥a∥2, so ∥b∥2 ≥ ∥b||a∥2 = ∥ b·a
a·aa∥

2 =
(

b·a
∥a∥2

)2
∥a∥2 = (b·a)2

∥a∥2 , so ∥b∥2∥a∥2 ≥ (b · a)2, which

proves the inequality.
Property S3 of the singular value decomposition states that the matrix U of left singular

vectors is column-orthogonal. We now prove that property.
The left singular vectors u1, . . . ,ur have norm one by construction. We need to show that

they are mutually orthogonal. We prove by induction on k that, for i = 1, 2, . . . , k, the vector ui

is orthogonal to ui+1, . . . ,ur. Setting k = r proves the desired result.
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By definition of the singular vectors and values,

AV =

⎡

⎢
⎢
⎢
⎢
⎣

σ1u1 · · · σk−1uk−1 σkuk σk+1uk+1 · · · σrur

⎤

⎥
⎥
⎥
⎥
⎦

By the inductive hypothesis, uk is orthogonal to u1, . . . ,uk−1. Since uk has norm one, uk ·σkuk =
σk. Let

βk+1 = uk · uk+1

βk+2 = uk · uk+2

...

βr = uk · ur

Then
uT
k AV =

[

0 · · · 0 σk βk+1 · · · βr

]

(11.18)

Our goal is to show that βk+1, . . . ,βr are all zero, for this would show that uk is orthogonal to
uk+1, . . . ,ur.

Let w =
[

0 · · · 0 σk βk+1 · · · βr

]

. Then ∥w∥2 = σ2
k + β2

k+1 + · · · + β2
r . Since V is

column-orthogonal, ∥V w∥2 = ∥w∥2, so

∥V w∥2 = σ2
k + β2

k+1 + · · · + β2
r (11.19)

Furthermore, since the first k − 1 entries of w are zero, the vector V w is a linear combination of
the remaining r − (k − 1) columns of V . Since the columns of V are mutually orthogonal, V w
is orthogonal to v1, . . . ,vk−1. Let v = V w/∥V w∥. Then v has norm one and is orthogonal to
v1, . . . ,vk−1. We will show that if βk+1, . . . ,βr are not all zero then ∥Av∥ > σk, so vk was not the
unit-norm vector maximizing ∥Av∥ among vectors orthogonal to v1, . . . ,vk−1, a contradiction.

By Equation 11.18, (uT
k AV ) ·w = σ2

k + β2
k+1 + · · · + β2

r . By the Cauchy-Schwartz Inequality,
|uk · (AV w)| ≤ ∥uk∥ ∥AV w∥, so, since ∥uk∥ = 1, we infer ∥AV w∥ ≥ σ2

k + β2
k+1 + · · · + β2

r .
Combining this inequality with Equation 11.19, we obtain

∥AV w∥
∥V w∥ ≥

σ2
k + β2

k+1 + · · · + β2
r

√

σ2
k + β2

k+1 + · · · + β2
r

=
√

σ2
k + β2

k+1 + · · · + β2
r

which is greater than σk if βk+1, . . . ,βr are not all zero. This completes the induction step, and
the proof.

11.4 Using the singular value decomposition

The singular value decomposition has emerged as a crucial tool in linear-algebra computation.
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11.4.1 Using SVD to do least squares

In Section 9.8.5, we learned that the QR factorization of a matrix A can be used in solving the
least squares problem, finding the vector x̂ that minimizes ∥Ax − b∥. However, that algorithm
is applicable only if A’s columns are linearly independent. Here we see that the singular value
decomposition provides another method to solve least squares, a method that does not depend
on A having linearly independent columns.

def SVD solve(A):
U,Σ, V = svd.factor(A)
return V Σ−1UT b

Note that this algorithm seems to require multiplication by the inverse of a matrix, but the
matrix is diagonal (with nonzero diagonal entries σ1, . . . ,σrank A), so multiplication by its inverse
amounts to applying the function f([y1, y2, . . . , yr]) = [σ−1

1 y1,σ
−1
2 y2, . . . ,σ−1

r yr].
To show this algorithm returns the correct solution, let x̂ = V Σ−1UT b be the vector returned.

Multiplying on the left by V T , we get the equation

V T x̂ = Σ−1UT b

Multiplying on the left by Σ, we get
ΣV T x̂ = UT b

Multiplying on the left by by U , we get

UΣV T x̂ = UUT b

By substitution, we get
Ax̂ = UUT b

This equation should be familiar; it is similar to the equation that justified use of QR solve(A)

in solving a least-squares problem. By Lemma 9.8.3, UUT b is the projection b||Col U of b onto
Col U . By Proposition 11.3.14, Col U = Col A, so UUT b is the projection of b onto Col A. The
Generalized Fire Engine Lemma shows therefore that x̂ is the correct least-squares solution.

11.5 PCA

We return for a time to the problem of analyzing data. The lab assignment deals with eigenfaces,
which is the application to images of the idea of principal component analysis. (In this case, the
images are of faces.) I’ll therefore use this as an example.

Each image consists of about 32k pixels, so can be represented as a vector in R32000. Here is
our first attempt at a crazy hypothesis.

Crazy hypothesis, version 1: The set of face images lies in a ten-dimensional vector
subspace.
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Well, first, we’ll restrict our attention to faces taken at a particular scale, at a particular
orientation. Even so, it’s not going to be even close to true, right?

Crazy hypothesis, version 2: There is a ten-dimensional affine space such that face
images are close to that affine space.

If this hypothesis were correct, we might be able to guess if an image is a face based on its
distance from the affine space.

Supposing the hypothesis were true, what ten-dimensional affine space should we use? Sup-
pose we have twenty example faces, represented as vectors: a1, . . . ,a20. Let’s identify the ten-
dimensional affine space that is closest to these vectors.

We already know how to do this. First, following Section 11.3.9, find the centroid ā of
a1, . . . ,a20. Second, we find an orthonormal basis v1, . . . ,v10 for the 10-dimensional vector
space closest to a1 − ā, . . . ,a20 − ā. Note that v1, . . . ,v10 are the first 10 columns of the matrix
V in the SVD UΣV T of the matrix

A =

⎡

⎢
⎣

a1 − ā
...

a20 − ā

⎤

⎥
⎦

Finally, the desired ten-dimensional affine space is

{ā + v : v ∈ Span {v1, . . . ,v10}}

Given a vector w, how do we compute the distance between w and this affine space?
We use translation: the distance is the same as the distance between w − ā and the ten-

dimensional vector space Span {v1, . . . ,v10}. Since the basis is orthonormal, it is very easy to
compute the distance. How? We leave that to you for now.

11.6 Lab: Eigenfaces

We will use principal component analysis to analyze some images of faces. In this lab, the
faces are more or less aligned, which makes the problem easier. Each image has dimensions
166 × 189, and is represented as a D-vector over R, with domain D = {0, 1, . . . , 165} ×
{0, 1, . . . , 188}, which in Python, is {(x,y) for x in range(166) for y in range(189)}

We start with twenty images of faces. They span a twenty-dimensional space. You will
use PCA to calculate a ten-dimensional affine space, namely the ten-dimensional affine space
that minimizes the sum-of-squares distance to the twenty images. You will then find the
distance to this space from other images, some faces and some nonfaces. Our hope is that
the nonfaces will be farther than the faces.

We have provided two sets of images, one set consisting of twenty faces and the other
set consisting of a variety of images, some of faces and some not. We have also provided a
module eigenfaces to help with loading the images into Python.
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Task 11.6.1: Load the twenty face images into Python, and construct a dictionary map-
ping the integers 0 through 19 to Vecs representing the images.

Task 11.6.2: Compute the centroid a of the face images a1, . . . ,a20, and display the
corresponding image (using the procedure image2display defined in the module image).
For any image vector (both faces and unclassified images), the centered image vector is
obtained by subtracting the centroid. Construct a dictionary consisting of the centered
image vectors of the face images.

The module svd contains a procedure factor that computes the SVD of a matrix. In
particular, svd.factor(A) returns a triple (U,Σ, V ) such that A = UΣV T .

Task 11.6.3: Construct a matrix A whose rows are the centered image vectors. The
procedure factor(A) defined in the module svd returns an SVD of A, a triple (U,Σ, V )
such that A = UΣV T . Note that the row space of A equals the row space of V T , i.e. the
column space of V .

Now find an orthonormal basis for the 10-dimensional vector space that is closest to the
twenty centered face image vectors. (The vectors of this basis are called eigenfaces.) You
can use the SVD together with procedures from matutil.

Task 11.6.4: Write a procedure projected representation(M, x) with the following
spec:

• input: a matrix M with orthonormal rows and a vector x, such that the domain of x
equals the column-label set of M .

• output: The coordinate representation of the projection x||V in terms of the rows of
M , where V = Row M .

Hint: You’ve seen this before.
To help you debug, the module eigenfaces defines a matrix test_M and a vector test_x.
Applying projected_representation to those results in
{0: 21.213203435596423, 1: 11.547005383792516}
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Task 11.6.5: Write a procedure projection length squared(M, x) with the following
spec:

• input: a matrix M with orthonormal rows and a vector x, such that the label-set of
x equals the column-labels of M .

• output: The square of the norm of the projection of x into the space spanned by the
rows of M .

Hint: What is preserved by multiplication with a matrix with orthonormal rows?
To help you debug, applying the procedure with test_x, test_M gives 583.3333333333333.

Task 11.6.6: Write a procedure distance squared(M, x) with the following spec:

• input: a matrix M with orthonormal rows and a vector x, such that the label-set of
x equals the column-labels of M .

• output: the square of the distance from x to the vector space spanned by the rows
of M .

Hint: Again use the parallel-perpendicular decomposition of x with respect to the row
space of M , and also use the Pythagorean Theorem.
To help you debug, applying the procedure to with test_x, test_M gives 816.6666666666667.

Task 11.6.7: We will use the distance squared procedure to classify images. First let’s
consider the images we already know to be faces. Compute the list consisting of their
distances from the subspace of chosen eigenfaces (remember to work with the centered
image vectors). Why are these distances not zero?

Task 11.6.8: Next, for each unclassified image vector, center the vector by subtracting
the average face vector, and find the squared distance of the centered image vector from
the subspace of eigenfaces you found in Problem 11.6.3. Based on the distances you found,
estimate which images are faces and which are not.

Task 11.6.9: Display each of the unclassified images to check your estimate. Are the
squared distances of non-faces indeed greater than those for faces?

What is the single threshold value you would choose to decide if a given image is a face
or not?
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Task 11.6.10: Now that we have constructed our classifier, let’s get a closer look at the
eigenfaces. It is interesting to check how much a face projected onto the subspace of
eigenfaces resembles the original image. Write a procedure project:

• input: an orthogonal matrix M and a vector x, such that x’s labels are the same as
M ’s row labels

• output: the projection of x into the space spanned by the rows of M .

Hint: Use projected_representation.

Task 11.6.11: Display the projections of various faces, and compare them to the original
face (do not forget to add the average face vector to centered image vectors before displaying
them). Do the projections resemble the originals?

Task 11.6.12: Display the projection of a non-face image and compare it to the original.
Does the projection resemble a face? Can you explain?

11.7 Review questions

• What is one way to measure the distance between two matrices with the same row-labels
and column-labels?

• What are the singular values of a matrix? What are the left singular vectors and the right
singular vectors?

• What is the singular value decomposition (SVD) of a matrix?

• Given vectors a1, . . . ,am, how can we find a one-dimensional vector space closest to
a1, . . . ,am? Closest in what sense?

• Given in addition an integer k, how can we find the k-dimensional vector space closest to
a1, . . . ,am?

• Given a matrix A and an integer k, how can we find the rank-at-most-k matrix closest to
A?

• What use is finding this matrix?

• How can SVD be used to solve a least-squares problem?

11.8 Problems

Frobenius norm
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Problem 11.8.1: Write a procedure squared Frob(A) that, given a Mat over R, returns the
square of its Frobenius norm.

Test your procedure. For example,

∥
∥
∥
∥

[

1 2 3 4
−4 2 −1 0

]∥
∥
∥
∥

2

F

= 51

Problem 11.8.2: Give a numerical counterexample to the following:

Let A be a matrix, and let Q be a column-orthogonal matrix. If AQ is defined then
∥AQ∥F = ∥A∥F .

SVD practice for simple matrices

Problem 11.8.3: Here is a matrix A and the SVD A = UΣV T :

A =

⎡

⎣

1 0
0 2
0 0

⎤

⎦ , U =

⎡

⎣

0 1
1 0
0 0

⎤

⎦ , Σ =

[

2 0
0 1

]

, V T =

[

0 1
1 0

]

1. For the vector x = (1, 2), compute V Tx, Σ(V Tx) and U(Σ(V Tx)).

2. For the vector x = (2, 0), compute V Tx, Σ(V Tx) and U(Σ(V Tx)).

Problem 11.8.4: Each of the matrices below is shown with row and column labels. For each
matrix, calculate the singular value decomposition (SVD). Don’t use an algorithm; just use
cleverness and your understanding of the SVD. The rows and columns of Σ should be labeled
by consecutive integers 0, 1, 2, . . . so Σ[0, 0] is the first singular value, etc. Verify your answer is
correct by multiplying out the matrices comprising the SVD.

1. A =
c1 c2

r1 3 0
r2 0 −1

2. B =
c1 c2

r1 3 0
r2 0 4

3. C =

c1 c2
r1 0 4
r2 0 0
r3 0 0
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Closest rank-k matrix

Problem 11.8.5: For each of the following matrices find the closest rank-2 matrix. For an
m × n matrix, provide your answer as a product of two matrices, GH, where G is an m × 2
matrix and H is a 2 × n matrix.

1. A =

⎡

⎢
⎢
⎣

1 0 1
0 2 0
1 0 1
0 1 0

⎤

⎥
⎥
⎦

A’s SVD, A = UΣV T :

U =

⎡

⎢
⎢
⎣

0 −
√

0.5 0√
0.8 0

√
0.2

0 −
√

0.5 0√
0.2 0 −

√
0.8

⎤

⎥
⎥
⎦

, Σ =

⎡

⎣

√
5 0 0

0 2 0
0 0 0

⎤

⎦ , V T =

⎡

⎣

0 1 0
−
√

0.5 0 −
√

0.5√
0.5 0 −

√
0.5

⎤

⎦

2. B =

⎡

⎢
⎢
⎣

0 0 1
0 0 1
1 0 0
0 1 0

⎤

⎥
⎥
⎦

B’s SVD, B = UΣV T :

U =

⎡

⎢
⎢
⎣

√
2/2 0 0√
2/2 0 0
0 0 −1
0 −1 0

⎤

⎥
⎥
⎦

, Σ =

⎡

⎣

√
2 0 0

0 1 0
0 0 1

⎤

⎦ , V T =

⎡

⎣

0 0 1
0 −1 0
−1 0 0

⎤

⎦

Computing a low-rank representation of a low-rank matrix

Problem 11.8.6: Warning: Difficult, requires some thought
Consider the following computational problem:

Computing a low-rank representation of a low-rank matrix

• input: a matrix A and a positive integer k

• output: a pair of matrices B, C such that A = BC and B has at most k
columns, or ’FAIL’ if there is no such pair

We can get an algorithm for this problem by using the SVD of A. However, there is also an
algorithm using only the tools we have studied in previous chapters.

Describe such an algorithm, give pseudo-Python for it, and explain why it works.
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Solving an m×m matrix equation with SVD

Problem 11.8.7: Write a Python procedure SVD solve(U, Sigma, V, b) with the following
specification:

• input: the SVD of a square matrix A = U Sigma VT . You can assume that U, Sigma and
V are square matrices and are legal to multiply together.

• output: vector x such that (U*Sigma*VT ) x = b, or “FAIL” if A is not invertible.

Your procedure should not use any modules other than mat.
Test your procedure with the following example:

The matrix A =

⎡

⎣

1 1 0
1 0 1
0 1 1

⎤

⎦ has the following SVD A = UΣV T :

U =

⎡

⎢
⎣

− 1√
3

1√
6

1√
2

− 1√
3

1√
6

− 1√
2

− 1√
3

− 2√
6

0

⎤

⎥
⎦ , Σ =

⎡

⎣

2 0 0
0 1 0
0 0 1

⎤

⎦ , V T =

⎡

⎢
⎣

− 1√
3

− 1√
3

− 1√
3

2√
6

− 1√
6

− 1√
6

0 1√
2

− 1√
2

⎤

⎥
⎦

Let b = [2, 3, 3].
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The Eigenvector

12.1 Modeling discrete dynamic processes

We’ll now see how matrices can help in studying a discrete dynamic (time-varying) process. I’ll
use the example of the RTM Worm. Spreading of a worm through a network is a dynamic
process, and the techniques we discuss will help us understand that process. Soon we’ll discuss
the idea behind PageRank, the method originally used by Google to rank web pages (or at least
how the original Brin-and-Page article suggested).

12.1.1 Two interest-bearing accounts

We’ll start with a simple example. The example is so simple that matrices are not needed, but
we will use them anyway, in order to prepare the ground for more complicated problems.

Suppose you put money in two interest-bearing accounts. Account 1 gives 5% interest and
Account 2 gives 3% interest, compounded annually. We represent the amounts in the two accounts

after t years by a 2-vector x(t) =

[

amount in Account 1
amount in Account 2

]

.

We can use a matrix equation to describe how the amounts grow in one year:

x(t+1) =

[

a11 a12

a21 a22

]

x(t)

In this simple case, a11 = 1.05, a22 = 1.03, and the other two entries are zero.

x(t+1) =

[

1.05 0
0 1.03

]

x(t) (12.1)

Let A denote the matrix

[

1.05 0
0 1.03

]

. Note that it is diagonal.

560
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To find out how, say, x(100) compares to x(0), we can use (12.1) repeatedly:

x(100) = Ax(99)

= A(Ax(98))

= A(A(Ax(97)))

...

= A · A · · · · A
︸ ︷︷ ︸

100 times

x(0)

The notation for the product A · A · · · · A is A100. Since A is diagonal, we can easily compute
the entries of A100: the diagonal entries are 1.05100 and 1.03100, approximately 131.5 and 19.2.
The off-diagonal entries are zero.

For example, if you started with 1 dollar in each account, you’d end up with 131 dollars in
Account 1 and 19 dollars in Account 2. Informally, as time goes on, the amount of the initial
deposit to Account 2 becomes less and less relevant, as the amount in Account 1 dominates the
amount in Account 2.

This example is particularly simple since there is no interaction between the accounts. We
didn’t need matrices to address it.

12.1.2 Fibonacci numbers

We turn to the example of Fibonacci numbers.

Fk+2 = Fk+1 + Fk

This originates in looking at the growth of the rabbit population. To avoid getting into
trouble, I’m going to ignore sex—we’ll pretend that rabbits reproduce through parthenogenesis.
We make the following assumptions:

• Each month, each adult rabbit gives birth to one baby.

• A rabbit takes one month to become an adult.

• Rabbits never die.

We can represent one step of this process by matrix-vector multiplication. We use a 2-vector

x =

[

x1

x2

]

to represent the current population: x1 is the number of adults and x2 is the number

of babies.
Suppose x(t) is the population after t months. Then the population at time t + 1, x(t+1), is

related via a matrix-multiplication to the population at time t, x(t):

x(t+1) = Ax(t)

Here’s how we derive the entries of the matrix A:
[

adults at time t + 1
babies at time t + 1

]

=

[

a11 a12

a21 a22

]

︸ ︷︷ ︸

A

[

adults at time t
babies at time t

]
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Time 0

Time 4

Time 3

Time 1

Time 2

Figure 12.1: A white disk represents a baby rabbit, and a black disk represesents an adult rabbit.
Each adult rabbit in one month gives rise to an adult rabbit in the next month (the same rabbit,
one month older) and a baby rabbit in the next month (the adult rabbit gave birth). Each baby
rabbit in one month gives rise to an adult rabbit in the next month (a rabbit becomes mature
in one month).

The number of adults at time t+1 is the number of adults at time t (since rabbits never die),
plus the number of babies at time t (since babies mature in one month). Thus a11 and a12 are
1. The number of babies at time t + 1 is the number of adults at time t (since every adult gives

birth to a baby every month). Thus a21 = 1 and a22 = 0. Thus A =

[

1 1
1 0

]

.

Clearly the number of rabbits increases over time. But at what rate? How does the number
of rabbits grow as a function of time?

As in the bank-account example, x(t) = Atx(0), but how can this help us estimate the entries
of x(t) as a function of t without calculating it directly? In the bank-account example, we were
able to understand the behavior because A was a diagonal matrix. This time, A is not diagonal.
However, there is a workaround:

Fact 12.1.1: Let S =

[
1+

√
5

2
1−

√
5

2
1 1

]

. Then S−1AS is the diagonal matrix

[
1+

√
5

2 0

0 1−
√
5

2

]

.

We will later discuss the computation and interpretation of the matrix S. For now, let’s see
how it can be used.

At = A · A · · · · A
︸ ︷︷ ︸

t times

= (SΛS−1)(SΛS−1) · · · (SΛS−1)

= SΛtS−1
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and since Λ is a diagonal matrix, it is easy to compute Λt. Let λ1 and λ2 be the diagonal entries.
Then Λt is the diagonal matrix whose diagonal entries are λt

1 and λt
2.

For this A, Λ =

[
1+

√
5

2
1−

√
5

2

]

. That is, λ1 = 1+
√
5

2 and λ2 = 1−
√
5

2 .

Since |λ1| is greater than |λ2|, the entries grow roughly like (λ1)t.
Even without knowing the matrix S, you can figure out the exact formula, by using the

following claim.

Claim: For any given starting vector x(0), there are numbers a1, b1, a2, b2 such that, for i = 1, 2,

entry i of x(t) = aiλ
t
1 + biλ

t
2 (12.2)

Proof

Let

[

c1
c2

]

= S−1x(0). Then ΛtS−1x(0) =

[

c1λt
1

c2λt
2

]

.

Write S =

[

s11 s12
s21 s22

]

. Then

SΛtS−1x(0) = S

[

c1λt
1

c2λt
2

]

=

[

s11c1λt
1 + s12c2λt

2

s21c1λt
1 + s22c2λt

2

]

so we make the claim true by setting ai = si1c1 and bi = si2c2. !

For example, define x(0) =

[

1
0

]

. This corresponds to postulating that initially there is one

adult rabbit and no juvenile rabbits. After one month, there is one adult rabbit and one juvenile

rabbit, so x(1) =

[

1
1

]

. Plugging into Equation (12.2), we get

a1λ
1
1 + b1λ

1
2 = 1

a2λ
1
1 + b2λ

1
2 = 1

After two months, there are two adult rabbits and one juvenile rabbit, so x(2) =

[

2
1

]

. Plugging

into Equation (12.2), we get

a1λ
2
1 + b1λ

2
2 = 2

a2λ
2
1 + b2λ

2
2 = 1

We thereby obtain four equations in the unknowns a1, b1, a2, b2, and can solve for these unknowns:
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⎡

⎢
⎢
⎣

λ1 λ2 0 0
0 0 λ1 λ2

λ2
1 λ2

2 0 0
0 0 λ2

1λ
2
2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

a1

b1
a2

b2

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1
1
2
1

⎤

⎥
⎥
⎦

which gives us
⎡

⎢
⎢
⎣

a1

b1
a2

b2

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

5+
√
5

10
5−

√
5

10
1√
5

−1√
5

⎤

⎥
⎥
⎥
⎦

Based on this calculation, the number of adult rabbits after t months is

x(t)[1] =
5 +

√
5

10

(

1 +
√

5

2

)t

+
5 −

√
5

10

(

1 −
√

5

2

)t

For example, plugging in t = 3, 4, 5, 6..., we get the numbers 3, 5, 8, 13....

12.2 Diagonalization of the Fibonacci matrix

Here is the way to think about the matrix S. Our way of representing the rabbit population—as
a vector with two entries, one for the number of adults and one for the number of juveniles— is
a natural one from the point of view of the application but an inconvenient one for the purpose
of analysis.

To make the analysis easier, we will use a change of basis (Section 5.8). We use as our basis
the two columns of the matrix S,

v1 =

[
1+

√
5

2
1

]

,v2 =

[
1−

√
5

2
1

]

Let u(t) be the coordinate representation of x(t) in terms of v1 and v2. We will derive an equation
relating u(t+1) to u(t).

• (rep2vec) To convert from the representation u(t) of x(t) to the vector x(t) itself, we
multiply u(t) by S.

• (Move forward one month) To go from x(t) to x(t+1), we multiply x(t) by A.

• (vec2rep) To go back to the coordinate representation in terms of v1 and v2, we multiply
by S−1.

By the link between matrix-matrix multiplication and function composition (Section 4.11.3),
multiplying by the matrix S−1AS carries out the three steps above.
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But we saw that S−1AS is just the diagonal matrix

[
1+

√
5

2 0

0 1−
√
5

2

]

. Thus we obtain the

equation

u(t+1) =

[
1+

√
5

2 0

0 1−
√
5

2

]

u(t) (12.3)

Now we have a nice, simple equation, like the equation modeling growth in bank account balances
(Equation 12.1). From this equation, it is easy to see why the Fibonacci numbers grow at a rate

of roughly
(

1+
√
5

2

)t
. The coordinate corresponding to v1 grows at exactly this rate, and the

coordinate corresponding to v2 grows at the rate
(

1−
√
5

2

)t
.

The technique we have used is called diagonalization. We turned a square matrix into a
diagonal matrix by multiplying it on the right by a square matrix S and on the left by the
inverse S−1. We have seen diagonalization once before, in Section 10.8.2. There we saw that
circulant matrices could be diagonalized using a discrete Fourier matrix. This was useful in that
it allowed us to quickly multiply by a circulant matrix, using the Fast Fourier Transform. Now
that we see that diagonalization can be useful in analysis, we’ll consider it in greater generality.

12.3 Eigenvalues and eigenvectors

We now introduce the concepts underlying this kind of analysis.

Definition 12.3.1: For a matrix A whose row-label set equals its column-label set, if λ is a
scalar and v is a nonzero vector such that Av = λv, we say that λ is an eigenvalue of A, and
v is a corresponding eigenvector.

If λ is an eigenvalue of A, there are many corresponding eigenvectors. In fact, the set {v :
Av = λv} is a vector space, called the eigenspace corresponding to eigenvalue λ. Any nonzero
vector in the eigenspace is considered an eigenvector. However, it is often convenient to require
that the eigenvector have norm one.

Example 12.3.2: The matrix used in modeling two interest-bearing accounts,

[

1.05 0
0 1.03

]

,

has eigenvalues 1.05 and 1.03. The eigenvector corresponding to the first eigenvalue is [1, 0],
and the eigenvector corresponding to the second is [0, 1].

Example 12.3.3: More generally, suppose A is a diagonal matrix:

A =

⎡

⎢
⎣

λ1

. . .
λn

⎤

⎥
⎦



CHAPTER 12. THE EIGENVECTOR 566

What are the eigenvectors and eigenvalues in this case? Since Ae1 = λ1, . . . , Aen = λnen
where e1, . . . , en are the standard basis vectors, we see that e1, . . . , en are the eigenvectors and
the diagonal elements λ1, . . . ,λn are the eigenvalues.

Example 12.3.4: The matrix used in analyzing Fibonacci numbers,

[

1 1
1 0

]

, has eigenvalues

λ1 = 1+
√
5

2 and λ2 = 1−
√
5

2 . The eigenvector corresponding to λ1 is

[
1+

√
5

2
1

]

, and the

eigenvector corresponding to λ2 is

[
1−

√
5

2
1

]

.

Example 12.3.5: Suppose A has 0 as an eigenvalue. An eigenvector corresponding to that
eigenvalue is a nonzero vector v such that Av = 0v. That is, a nonzero vector v such that Av
is the zero vector. Then v belongs to the null space. Conversely, if A’s null space is nontrivial
then 0 is an eigenvalue of A.

Example 12.3.5 (Page 566) suggests a way to find an eigenvector corresponding to the eigen-
value 0: find a nonzero vector in the null space. What about other eigenvalues?

Suppose λ is an eigenvalue of A, with corresponding eigenvector v. Then Av = λv. That is,
Av−λv is the zero vector. The expression Av−λv can be written as (A−λ1)v, so (A−λ1)v
is the zero vector. That means that v is a nonzero vector in the null space of A − λ1. That
means that A − λ1 is not invertible.

Conversely, suppose A − λ1 is not invertible. It is square, so it must have a nontrivial null
space. Let v be a nonzero vector in the null space. Then (A − λ1)v = 0, so Av = λv.

We have proved the following:

Lemma 12.3.6: Let A be a square matrix.

• The number λ is an eigenvalue of A if and only if A − λ1 is not invertible.

• If λ is in fact an eigenvalue of A then the corresponding eigenspace is the null space of
A − λ1.

Example 12.3.7: Let A =

[

1 2
3 4

]

. The number λ1 = 5+
√
33

2 is an eigenvalue of A. Let

B = A − λ11. Now we find an eigenvector v1 corresponding to the eigenvalue λ1:

>>> A = listlist2mat([[1,2],[3,4]])
>>> lambda1 = (5+sqrt(33))/2
>>> B = A - lambda1*identity({0,1}, 1)



CHAPTER 12. THE EIGENVECTOR 567

>>> cols = mat2coldict(B)
>>> v1 = list2vec([-1, cols[0][0]/cols[1][0]])
>>> B*v1
Vec({0, 1},{0: 0.0, 1: 0.0})
>>> A*v1
Vec({0, 1},{0: -5.372281323269014, 1: -11.744562646538029})
>>> lambda1*v1
Vec({0, 1},{0: -5.372281323269014, 1: -11.744562646538029})

Corollary 12.3.8: If λ is an eigenvalue of A then it is an eigenvalue of AT .

Proof

Suppose λ is an eigenvalue of A. By Lemma 12.3.6, A − λ1 has a nontrivial null space so
it is not invertible. By Corollary 6.4.11, (A − λ1)T is also not invertible. But it is easy to
see that (A − λ1)T = AT − λ1. By Lemma 12.3.6, therefore, λ is a eigenvalue of AT . !

The fact that (A − λ1)T = AT − λ1 is a nice trick, but it doesn’t work when you replace 1

with an arbitrary matrix.
What do eigenvalues have to do with the analysis we were doing?

12.3.1 Similarity and diagonalizability

Definition 12.3.9: We say two square matrices A and B are similar if there is an invertible
matrix S such that S−1AS = B.

Proposition 12.3.10: Similar matrices have the same eigenvalues.

Proof

Suppose λ is an eigenvalue of A and v is a corresponding eigenvector. By definition, Av =
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λv. Suppose S−1AS = B, and let w = S−1v. Then

Bw = S−1ASw

= S−1ASS−1v

= S−1Av

= S−1λv

= λS−1v

= λw

which shows that λ is an eigenvalue of B. !

Example 12.3.11: We will see later that the eigenvalues of the matrix A =

⎡

⎣

6 3 −9
0 9 15
0 0 15

⎤

⎦

are its diagonal elements (6, 9, and 15) because U is upper triangular. The matrix B =
⎡

⎣

92 −32 −15
−64 34 39
176 −68 −99

⎤

⎦ has the property that B = S−1AS where S =

⎡

⎣

−2 1 4
1 −2 1
−4 3 5

⎤

⎦. There-

fore the eigenvalues of B are also 6, 9, and 15.

Definition 12.3.12: If a square matrix A is similar to a diagonal matrix, i.e. if there is
an invertible matrix S such that S−1AS = Λ where Λ is a diagonal matrix, we say A is
diagonalizable.

The equation S−1AS = Λ is equivalent to the equation A = SΛS−1, which is the form used
in Fact 12.1.1 and the subsequent analysis of rabbit population.

How is diagonalizability related to eigenvalues?

We saw in Example 12.3.3 (Page 565) that if Λ is the diagonal matrix

⎡

⎢
⎣

λ1

. . .
λn

⎤

⎥
⎦ then

its eigenvalues are its diagonal entries λ1, . . . ,λn.
If a matrix A is similar to Λ then, by Proposition 12.3.10, the eigenvalues of A are the

eigenvalues of Λ, i.e. the diagonal elements of Λ.
Going further, suppose specifically that S−1AS = Λ. By multiplying both sides on the left

by S, we obtain the equation
AS = SΛ

Using the matrix-vector definition of matrix-matrix multiplication, we see that column i of the
matrix AS is A times column i of S. Using the vector-matrix definition, we see that we see that
column i of the matrix SΛ is λi times column i of S. Thus the equation implies that, for each i, A
times column i of S equals λi times column i of S. Thus in this case λ1, . . . ,λn are eigenvalues,
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and the corresponding columns of S are corresponding eigenvectors. Since S is invertible, its
columns are linearly independent. We have shown the following lemma:

Lemma 12.3.13: If Λ = S−1AS is a diagonal matrix then the diagonal elements of Λ are
eigenvalues, and the columns of S are linearly independent eigenvectors.

Conversely, suppose an n × n matrix A has n linearly independent eigenvectors v1, . . . ,vn,

and let λ1, . . . ,λn be the corresponding eigenvalues. Let S be the matrix

⎡

⎢
⎢
⎢
⎢
⎣

v1 · · · vn

⎤

⎥
⎥
⎥
⎥
⎦

, and

let Λ be the matrix

⎡

⎢
⎣

λ1

. . .
λn

⎤

⎥
⎦. Then AS = SΛ. Moreover, since S is square and its

columns are linearly independent, it is an invertible matrix. Multiplying the equation on the
right by S−1, we obtain A = SΛS−1. This shows that A is diagonalizable. We have shown the
following lemma:

Lemma 12.3.14: If an n × n matrix A has n linearly independent eigenvectors then A is
diagonalizable.

Putting the two lemmas together, we obtain the following theorem.

Theorem 12.3.15: An n × n matrix is diagonalizable iff it has n linearly independent eigen-
vectors.

12.4 Coordinate representation in terms of eigenvectors

Now we revisit the analysis technique of Section 12.2 in a more general context. The existence of
linearly independent eigenvectors is very useful in analyzing the effect of repeated matrix-vector
multiplication.

Let A be an n × n matrix. Let x(0), and let x(t) = Atx(0) for t = 1, 2, . . .. Now suppose A
is diagonalizable: that is, suppose there is an invertible matrix S and a diagonal matrix Λ such
that S−1AS = Λ. Let λ1, . . . ,λn be the diagonal elements of Λ, which are the eigenvalues of A,
and let v1, . . . ,vn be the corresponding eigenvectors, which are the columns of S. Let u(t) be the
coordinate representation of x(t) in terms of the eigenvectors. Then the equation x(t) = Atx(0)

gives rise to the much simpler equation

⎡

⎣ u(t)

⎤

⎦ =

⎡

⎢
⎣

λt
1

. . .
λt
n

⎤

⎥
⎦

⎡

⎣ u(0)

⎤

⎦ (12.4)
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Simpler because each entry of u(t) is obtained from the corresponding entry of u(0) by simply
multiplying by the corresponding eigenvalue, raised to the tth power.

Here is another way to see what is going on.
The eigenvectors form a basis for Rn, so any vector x can be written as a linear combination:

x = α1 v1 + · · · + αn vn

Let’s see what happens when we left-multiply by A on both sides of the equation:

Ax = A(α1v1) + · · · + A(αnvn)

= α1Av1 + · · · + αnAvn

= α1λ1v1 + · · · + αnλnvn

Applying the same reasoning to A(Ax), we get

A2x = α1λ
2
1v1 + · · · + αnλ

2
nvn

More generally, for any nonnegative integer t,

Atx = α1λ
t
1v1 + · · · + αnλ

t
nvn (12.5)

Now, if some of the eigenvalues are even slightly bigger in absolute value than the others, after
a sufficiently large number t of iterations, those terms on the right-hand side of Equation 12.5
that involve the eigenvalues with large absolute value will dominate; the other terms will be
relatively small.

In particular, suppose λ1 is larger in absolute value than all the other eigenvectors. For a
large enough value of t, Atx will be approximately α1λt

1v1.
The terms corresponding to eigenvalues with absolute value strictly less than one will actually

get smaller as t grows.

12.5 The Internet worm

Consider the worm launched on the Internet in 1988. A worm is a program that reproduces
through the network; an instance of the program running on one computer tries to break into
neighboring computes and spawn copies of itself on these computers.

The 1988 worm did no damage but it essentially took over a significant proportion of the
computers on the Internet; these computers were spending all of their cycles running the worms.
The reason is that each computer was running many independent instances of the program.

The author (Robert T. Morris, Jr.) had made some effort to prevent this. The program
seems to have been designed so that each worm would check whether there was another worm
running on the same computer; if so, one of them would set a flag indicating it was supposed to
die. However, with probability 1/7 instead of doing the check, the worm would designate itself
immortal. An immortal worm would not do any checks.

As a consequence, it seems, each computer ends up running many copies of the worm, until
the computer’s whole capacity is used up running worms.
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We will analyze a very simple model of this behavior. Let’s say the Internet consists of three
computers connected in a triangle. In each iteration, each worm has probability 1/10 of spawning
a child worm on each neighboring computer. Then, if it is a mortal worm, with probability 1/7
it becomes immortal, and otherwise it dies.

There is randomness in this model, so we cannot say exactly how many worms there are after
a number of iterations. However, we can calculate the expected number of worms.

We will use a vector x = (x1, y1, x2, y2, x3, y3) where, for i = 1, 2, 3, xi is the expected number
of mortal worms at computer i, and yi is the expected number of immortal worms at computer i.

For t = 0, 1, 2, . . ., let x(t) = (x(t)
1 , y(t)

1 , x(t)
2 , y(t)

2 , x(t)
3 , y(t)

3 ). According to the model, any mortal
worm at computer 1 is a child of a worm at computer 2 or computer 3. Therefore the expected
number of mortal worms at computer 1 after t + 1 iterations is 1/10 times the expected number
of worms at computers 2 and 3 after t iterations. Therefore

x(t+1)
1 =

1

10
x(t)
2 +

1

10
y(t)
2 +

1

10
x(t)
3 +

1

10
y(t)
3

With probability 1/7, a mortal worm at computer 1 becomes immortal. The previously immortal
worms stay immortal. Therefore

y(t+1)
1 =

1

7
x(t)
1 + y(t)

1

The equations for x(t+1)
2 and y(t+1)

2 and x(t+1)
3 and y(t+1)

3 are similar. We therefore get

x(t+1) = Ax(t)

where A is the matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1/10 1/10 1/10 1/10
1/7 1 0 0 0 0
1/10 1/10 0 0 1/10 1/10

0 1/7 1 0 0
1/10 1/10 1/10 1/10 0 0

0 0 0 0 1/7 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

This matrix has linearly independent eigenvectors, and its largest eigenvalue is about 1.034 (the
others are smaller in absolute value than 1). Because this is larger than 1, we can infer that the
number of worms will grow exponentially with the number of iterations. The largest eigenvalue
of At is about 1.034t. To get a sense of magnitude, for t = 100 this number is a mere 29. For
t = 200, the number is about 841. For t = 500, it is up to twenty million. For t = 600, it is about
six hundred million.

In this example, the matrix A is small enough that, for such small values of t, the expected
number of worms can be computed. Suppose that we start with one mortal worm at computer 1.
This corresponds to the vector x(0) = (1, 0, 0, 0, 0, 0). In this case, the expected number of worms
after 600 iterations is about 120 million.
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12.6 Existence of eigenvalues

Under what circumstances can we ensure that a square matrix has eigenvalues? Is diagonalizable?

12.6.1 Positive-definite and positive-semidefinite matrices

Let A be any invertible matrix. It has a singular value decomposition:

⎡

⎣ A

⎤

⎦ =

⎡

⎣ U

⎤

⎦

⎡

⎢
⎣

σ1

. . .
σn

⎤

⎥
⎦

⎡

⎣ V T

⎤

⎦

Consider the matrix product ATA. Using the SVD, this is

ATA =

⎡

⎣ V

⎤

⎦

⎡

⎢
⎣

σ1

. . .
σn

⎤

⎥
⎦

⎡

⎣ UT

⎤

⎦

⎡

⎣ U

⎤

⎦

⎡

⎢
⎣

σ1

. . .
σn

⎤

⎥
⎦

⎡

⎣ V T

⎤

⎦

=

⎡

⎣ V

⎤

⎦

⎡

⎢
⎣

σ1

. . .
σn

⎤

⎥
⎦

⎡

⎢
⎣

σ1

. . .
σn

⎤

⎥
⎦

⎡

⎣ V T

⎤

⎦

=

⎡

⎣ V

⎤

⎦

⎡

⎢
⎣

σ2
1

. . .
σ2
n

⎤

⎥
⎦

⎡

⎣ V T

⎤

⎦
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Multiplying this equation on the left by V T and on the right by V , we obtain

V T (ATA)V =

⎡

⎢
⎣

σ2
1

. . .
σ2
n

⎤

⎥
⎦

which shows that ATA is diagonalizable, and the eigenvalues are the squares of the singular
values of A.

The eigenvalues are all real numbers, and positive.
Moreover, ATA is symmetric, as one can prove by taking its transpose:

(ATA)T = AT (AT )T = ATA

The transpose of ATA turns out to be equal to ATA.

Definition 12.6.1: A symmetric matrix whose eigenvalues are all positive real numbers is called
a positive-definite matrix.

We have seen that a matrix of the form ATA where A is an invertible matrix, is a positive-
definite matrix. It can be shown, conversely, that any positive-definite matrix can be written as
ATA for some invertible matrix A.

Positive-definite matrices and their relatives, the positive-semidefinite matrices (that’s my
absolute top near-favorite math term) are important in modeling many physical systems, and
have growing importance in algorithms and in machine learning.

12.6.2 Matrices with distinct eigenvalues

In this section, we give another condition under which a square matrix is diagonalizable.

Lemma 12.6.2: For a matrix A, for any set T of distinct eigenvalues, the corresponding eigen-
vectors are linearly independent

Proof

Assume for contradiction that the eigenvectors are linearly dependent. Let

0 = α1v1 + · · · + αrvr (12.6)

be a linear combination of a subset of the eigenvectors for the eigenvalues in T , in particular
a linear combination of a subset of minimum size. Let λ1, . . . ,λr be the corresponding
eigenvalues.
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Then

0 = A(0)

= A(α1v1 + · · · + αrvr)

= α1Av1 + · · · + αrAvr

= α1λ1v1 + · · · + αrλrvr (12.7)

Thus we obtain a new linear dependence among v1, . . . ,vr. Multiply (12.6) by λ1, and
subtract it from (12.7), getting

0 = (λ1 − λ1)α1v1 + (λ2 − λ1)α2v2 + · · · + (λr − λ1)αrvr

Since the first coefficient is zero, we can rewrite it as

0 = (λ2 − λ1)α2v2 + · · · + (λr − λ1)αrvr

which has even fewer vectors than (12.6), a contradiction. !

Combining Lemma 12.6.2 with Lemma 12.3.14 gives us

Theorem 12.6.3: A n × n matrix with n distinct eigenvalues is diagonalizable.

An n× n matrix with random entries is likely to have n distinct eigenvalues, so this theorem
tells us that “most” square matrices are diagonalizable.

There are also n× n matrices that do not have n distinct eigenvalues but are diagonalizable.
The simplest example is the n × n identity matrix, which has only 1 as an eigenvalue but which
is obviously diagonalizable.

12.6.3 Symmetric matrices

In the context of eigenvalues, the next important class of matrices is symmetric matrices. Such
matrices are very well-behaved:

Theorem 12.6.4 (Diagonalization of symmetric matrices): Let A be a symmetric ma-
trix over R. Then there is an orthogonal matrix Q and a real-valued diagonal matrix Λ such that
QTAQ = Λ.

This theorem is a consequence of a theorem we prove later.
The theorem is important because it means that, for a symmetric matrix A, every vector

that A can multiply can be written as a linear combination of eigenvectors, so we can apply the
analysis method of Section 12.4.

Indeed, there is a bit of complexity hidden in Equation 12.4: some of the eigenvalues λ1, . . . ,λn

might be complex numbers. However, when A is a symmetric matrix, this complexity vanishes:
all the eigenvalues are guaranteed to be real numbers.
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12.6.4 Upper-triangular matrices

However, not all square matrices can be diagonalized. A simple example is the matrix A =
[

1 1
0 1

]

. Despite the resemblance to the Fibonacci matrix, there is no invertible matrix S such

that S−1AS is a diagonal matrix.
We start by considering upper-triangular matrices. Note that the non-diagonalizable example

above,

[

1 1
0 1

]

, is upper triangular.

Lemma 12.6.5: The diagonal elements of an upper-triangular matrix U are the eigenvalues of
U .

Proof

By Lemma 12.3.6, a number λ is an eigenvalue of U if and only if U − λ1 is not invertible.
But U − λ1 is an upper-triangular matrix. By Lemma 4.13.13, therefore, U − λ1 is not
invertible if and only if at least one of its diagonal elements are zero. A diagonal element of
U − λ1 is zero if and only if λ is one of the diagonal elements of U . !

Example 12.6.6: Consider the matrix U =

⎡

⎣

5 9 9
0 4 7
0 0 3

⎤

⎦. Its diagonal elements are 5, 4, and

3, so these are its eigenvalues.
For example,

U − 31 =

⎡

⎣

5 − 3 9 9
0 4 − 3 7
0 0 3 − 3

⎤

⎦ =

⎡

⎣

2 9 9
0 1 7
0 0 0

⎤

⎦

Since this matrix has a zero diagonal element, it is not invertible.

Note that a single number can occur multiple times on the diagonal of U . For example, in

the matrix U =

⎡

⎣

5 9 9
0 4 7
0 0 5

⎤

⎦, the number 5 occurs twice.

Definition 12.6.7: The spectrum of an upper-triangular matrix U is the multiset of diagonal
elements. That is, it is a multiset in which each number occurs the same number of times as it
occurs in the diagonal of U .
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Example 12.6.8: The spectrum of

⎡

⎣

5 9 9
0 4 7
0 0 5

⎤

⎦ is the multiset {5, 5, 4}. (In a multiset, order

doesn’t matter but duplicates are not eliminated.)

In the next section, we build on what we know about upper-triangular matrices to say some-
thing about general square matrices.

12.6.5 General square matrices

We state two important theorems about eigenvalues of square matrices . The proofs of these
theorems are a bit involved, and we postpone them until Section 12.11 in order to not disrupt
the flow.

Theorem 12.6.9: Every square matrix over C has an eigenvalue.

This theorem only guarantees the existence of a complex eigenvalue. In fact, quite simple

matrices have complex (and unreal) eigenvalues. The eigenvalues of

[

1 1
−1 1

]

are 1 + i and

1 − i where i, you will recall, is the square root of negative one. Since the eigenvalues of this
matrix are complex, it is not surprising that the eigenvectors are also complex.

Theorem 12.6.9 provides the foundation for a theorem that shows not that every square matrix
is diagonalizable (for that is not true) but that every square matrix is, uh, triangularizable.

Theorem 12.6.10: For any n × n matrix A, there is a unitary matrix Q such that Q−1AQ is
an upper-triangular matrix.

Example 12.6.11: Let A =

⎡

⎣

12 5 4
27 15 1
1 0 1

⎤

⎦. Then

Q−1AQ =

⎡

⎣

25.2962 21.4985 4.9136
0 2.84283 −2.76971
0 0 −0.139057

⎤

⎦

where Q =

⎡

⎣

0.355801 −0.886771 −0.29503
−0.934447 0.342512 0.0974401
−0.0146443 −0.310359 0.950506

⎤

⎦

In particular, every matrix is similar to an upper-triangular matrix. This theorem is the
basis for practical algorithms to computer eigenvalues: these algorithms iteratively transform a
matrix until it gets closer and closer to being upper-triangular. The algorithm is based on QR
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factorization. Unfortunately, the details are beyond the scope of this book.
The analysis described in Section 12.4 enabled us to understand the result of multiplying a

vector by a high power of a matrix when the matrix is diagonalizable. This technique can be
generalized to give us similar information even when the matrix is not diagonalizable, but we
won’t go into the details. Fortunately, matrices arising in practice are often diagonalizable.

In the next section, we describe a very elementary algorithm that, given a matrix, finds an
approximation to the eigenvalue of largest magnitude eigenvalue (and corresponding approximate
eigenvector).

12.7 Power method

Let’s assume A is a diagonalizable matrix, so it has n distinct eigenvectors λ1, . . . ,λn, ordered
so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|, and linearly independent eigenvectors v1, . . . ,vn. (The absolute
value |λ| of a complex number x + iy is defined to be the distance of the number from the origin
when the complex number is viewed as a point on the x, y plane.)

Pick a random vector x0, and, for any nonnegative integer t, let xt = Atx0.
Write x0 in terms of the eigenvectors:

x0 = α1v1 + · · · + αnvn

Then we have
xt = α1λ

t
1v1 + · · · + αnλ

t
nvn (12.8)

Because x0 was chosen randomly, it is unlikely that it happened to lie in the n − 1-dimensional
subspace spanned by v2, . . . ,vn. Therefore α1 is likely to be nonzero.

Suppose that α1 ̸= 0 and that |λ1| is substantially bigger than |λ2|. Then the coefficient of v1

in (12.8) grows faster than all the other coefficients, and eventually (for large enough t) swamps
them. Thus eventually xt will be α1λt

1v1 + error where error is a vector that is much smaller
than α1λt

1v1. Since v1 is an eigenvector, so is α1λt
1v1. Thus eventually xt will be an approximate

eigenvector. Furthermore, we can estimate the corresponding eigenvalue λ1 from xt, because
Axt will be close to λ1xt.

Similarly, if the top q eigenvalues are identical or even very close and the q + 1st eigenvalue
has smaller absolute value, xt will be close to a linear combination of the first q eigenvectors,
and will be an approximate eigenvector.

Thus we have a method, called the power method, for finding an approximation to the eigen-
value of largest absolute value, and an approximate eigenvector corresponding to that eigenvalue.
It is especially useful when multiplication of a vector by the matrix A is computationally inexpen-
sive, such as when A is sparse, because the method requires only matrix-vector multiplications.

However, the method doesn’t always work. Consider the matrix

[

0 1
−1 0

]

. This matrix

has two different eigenvalues of the same absolute value. Thus the vector obtained by the power
method will remain a mix of the two eigenvectors. More sophisticated methods can be used to
handle this problem and get other eigenvalues.
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12.8 Markov chains

In this section, we’ll learn about a kind of probabilistic model, a Markov chain. Our first example
of a Markov chain comes from computer architecture but we’ll first disguise it as a kind of
population problem.

12.8.1 Modeling population movement

Imagine a dance club. Some people are on the dance floor and some are standing on the side. If
you are standing on the side and a song starts that appeals to you at that moment, you go onto
the dance floor and start dancing. Once you are on the dance floor, you are more likely to stay
there, even if the song playing is not your favorite.

At the beginning of each song, 56% of the people standing on the side go onto the dance floor,
and 12% of the people on the dance floor leave it and go stand on the side. By representing this
transition rule by a matrix, we can study the long-term evolution of the proportion of people on
the dance floor versus the proportion standing on the side.

Assume that nobody enters the club and nobody leaves. Let x(t) =

[

x(t)
1

x(t)
2

]

be the vector

representing the state of the system after t songs have played: x(t)
1 is the number of people

standing on the side, and x(t)
2 is the number of people on the dance floor. The transition rule

gives rise to an equation that resembles the one for adult and juvenile rabbit populations:

[

x(t+1)
1

x(t+1)
2

]

=

[

.44 .12

.56 .88

]
[

x(t)
1

x(t)
2

]

One key difference between this system and the rabbit system is that here the overall population
remains unchanged; no new people enter the system (and none leave). This is reflected by the
fact that the entries in each column add up to exactly 1.

We can use diagonalization to study the long-term trends in proportion of people in each

location. The matrix A =

[

0.44 0.12
0.56 0.88

]

has two eigenvalues, 1 and 0.32. Since this 2 × 2

matrix has two distinct eigenvalues, Lemma 12.3.14 guarantees that it is diagonalizable: that

there is a matrix S such that S−1AS = Λ where Λ =

[

1 0
0 0.32

]

is a diagonal matrix. One

such matrix is S =

[

0.209529 −1
0.977802 1

]

. Writing A = SΛS−1, we can obtain a formula for x(t),
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the populations of the two locations after t songs, in terms of x(0), the initial populations:
[

x(t)
1

x(t)
2

]

=
(

SΛS−1
)t

[

x(0)
1

x(0)
2

]

= SΛtS−1

[

x(0)
1

x(0)
2

]

=

[

0.21 −1
0.98 1

] [

1 0
0 .32

]t [
0.84 0.84
−0.82 0.18

]
[

x(0)
1

x(0)
2

]

=

[

0.21 −1
0.98 1

] [

1t 0
0 .32t

] [

0.84 0.84
−0.82 0.18

]
[

x(0)
1

x(0)
2

]

= 1t(0.84x(0)
1 + 0.84x(0)

2 )

[

0.21
0.98

]

+ (0.32)t(−0.82x(0)
1 + 0.18x(0)

2 )

[

−1
1

]

= 1t
(

x(0)
1 + x(0)

2

)
[

0.18
0.82

]

+ (0.32)t
(

−0.82x(0)
1 + 0.18x(0)

2

)
[

−1
1

]

(12.9)

Although the numbers of people in the two locations after t songs depend on the initial numbers
of people in the two locations, the dependency grows weaker as the number of songs increases:
(0.32)t gets smaller and smaller, so the second term in the sum matters less and less. After ten
songs, (0.32)t is about 0.00001. After twenty songs, it is about 0.0000000001. The first term in

the sum is

[

0.18
0.82

]

times the total number of people. This shows that, as the number of songs

increases, the proportion of people on the dance floor gets closer and closer to 82%.

12.8.2 Modeling Randy

Now, without changing the math, we switch interpretations. Instead of modeling whole popula-
tions, we model one guy, Randy. Randy moves randomly onto and off the dance floor. When he
is off the dance floor (state S1), the probability is 0.56 that he goes onto the dance floor (state S2)
when the next song starts; thus the probability is 0.44 that he stays off the floor. Once on the
dance floor, when a new song starts, Randy stays on the dance floor with probability 0.88; thus
the probability is 0.12 that he leaves the dance floor. These are called transition probabilities.
Randy’s behavior is captured in the following diagram.

S1 S2

0.56

0.88

0.12

0.44

Suppose we know whether Randy starts on or off the dance floor. Since Randy’s behavior is
random, we cannot hope for a formula specifying where he is after t songs. However, there is a

formula that specifies the probability distribution for his location after t songs. Let x(t)
1 be the
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probability that Randy is standing on the side after t songs, and let x(t)
2 be the probability that

he is on the dance floor after t songs. The probabilities in a probability distribution must sum

to one, so x(t)
1 + x(t)

2 = 1. The transition probabilities imply that the equation
[

x(t+1)
1

x(t+1)
2

]

=

[

.44 .12

.56 .88

]
[

x(t)
1

x(t)
2

]

still holds, so the analysis of Section 12.8.1 still applies: by Equation 12.9, as the number t of

songs played increases,

[

x(t)
1

x(t)
2

]

very quickly gets close to

[

0.18
0.82

]

, regardless of where Randy

starts out.

12.8.3 Markov chain definitions

A matrix of nonnegative numbers each of whose columns adds up to one is called a stochastic
matrix (sometimes a column-stochastic matrix).

An n-state Markov chain is a discrete-time random process such that

• At each time, the system is in one of n states, say 1, . . . , n, and

• there is a matrix A such that, if at some time t the system is in state j then for i = 1, . . . , n,
the probability that the system is in state i at time t + 1 is A[i, j].

That is, A[i, j] is the probability of transitioning from j to i, the j → i transition probability.
Randy’s location is described by a two-state Markov chain.

12.8.4 Modeling spatial locality in memory fetches

The two-state Markov chain describing Randy’s behavior actually comes from a problem that
arises in modeling caches in computer memory. Since fetching a datum from memory can take a
long time (high latency), a computer system uses caches to improve performance; basically, the
central processing unit (CPU) has its own, small memory (its cache) in which it temporarily stores
values it has fetched from memory so that subsequent requests to the same memory location can
be handled more quickly.

If at time t the CPU requests the data at address a, it is rather likely that at time t + 1 the
CPU will request the data at address a+1. This is true of instruction fetches because unless the
CPU executes a branch instruction (e.g. resulting from an if statement or a loop), the instruction
to be executed at time t + 1 is stored immediately after the instruction to be executed at time t.
It is also true of data fetches because often a program involves iterating through all the elements
of an array (e.g. Python list).

For this reason, the cache is often designed so that, when the CPU requests the value stored
at a location, a whole block of data (consisting of maybe sixteen locations) will be brought in and
stored in the cache. If the CPU’s next address is within this block (e.g. the very next location),
the CPU does not have to wait so long to get the value.

In order to help computer architects make design decisions, it is helpful to have a mathematical
model for predicting whether memory requests that are consecutive in time are to consecutive
memory addresses.
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A very simple model would be a single (biased) coin: in each timestep,

Probability[address requested at time t + 1 is 1 + address requested at time t] = .6

However, this is too simple a model. Once consecutive addresses have been requested in timesteps
t and t + 1, it is very likely that the address requested in timestep t + 2 is also consecutive.

The two-state Markov chain

S1 S2

0.56

0.88

0.12

0.44

is a much more accurate model. Which state the system is in corresponds to whether the CPU
is in the process of reading a consecutive sequence of memory locations or is reading unrelated
locations.

Suppose the system is in State S1. This corresponds to the CPU requesting an address.
Next, the system follows one of the two arrows from S1, choosing among those arrows with the
probability indicated in the diagram. One arrow leads back to S1. This corresponds to the CPU
requesting another address that is unrelated to the first. The other arrow leads to state S2. This
corresponds to the CPU requesting the next address in sequence. Once in state S2, the system
stays in S2 for the next timestep with probability 0.88 (issuing a request for another consecutive
address) and returns to S1 with probability 0.12 (issuing a request for an unrelated address).

The analysis of Section 12.8.2 shows that, regardless of where the system starts, after a large

number of steps, the probability distribution is approximately

[

0.18
0.82

]

. Being in state S1 means

that the CPU is issuing the first of a run (possibly of length one) of consecutive addresses. Since
the system is in state S1 roughly 18% of the time, the average length of such a run is 1/0.18,
which is 5.55.

This analysis can be extended to make other predictions and help guide computer architects
in choosing cache size, block size, and other such parameters.1

12.8.5 Modeling documents: Hamlet in Wonderland

The mathematician Markov formulated what are now called Markov chains, and studied transi-
tion in Russian poetry between the “vowel” state and the “consonant” state. Markov chains and
generalizations of them have serious applications in natural-language understanding and textual
analysis. Here we describe an unserious application. Andrew Plotkin (sometimes known as Zarf)
wrote a program that processes a document to produce a Markov chain whose states are words.
For words w1 and w2, the w1-to-w2 transition probability is based on how often w1 precedes w2

in the document. One you have the Markov chain, you can generate a random new document:

1“An analytical cache model,” Anant Agarwal, Mark Horowitz, and John Hennessy, ACM Transactions on
Computer Systems, Vol. 7, No. 2, pp. 184-215.
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start at some word, and transition to the next word randomly according to the transition prob-
abilities in the Markov chain. The resulting random document, although nonsensical, resembles
the original document.

Zarf had the idea of running his program on a compound document, a document resulting
from concatenating two documents. Here’s an excerpt of what he got when he combined Hamlet
with Alice and Wonderland.....

”Oh, you foolish Alice!” she answered herself.

”How can you learn lessons in the world were now but to follow him thither with
modesty enough, and likelihood to lead it, as our statists do, A baseness to write this
down on the trumpet, and called out ”First witness!” ... HORATIO: Most like. It
harrows me with leaping in her hand, watching the setting sun, and thinking of little
pebbles came rattling in at the door that led into a small passage, not much larger
than a pig, my dear,” said Alice (she was so much gentry and good will
As to expend your time with us a story!” said the Caterpillar.

”Is that the clouds still hang on you? ... POLONIUS: You shall not budge. You go
not to be in a trembling voice: ”How the Owl and the small ones choked and had
come back with the bread-knife.” The March Hare said to herself; ”the March Hare
said in an under-tone to the Classical master, though. He was an immense length of
all his crimes broad blown, as flush as May....

If you are an Emacs user, try opening a document and using the command dissociated-press
with argument -1. Using dictionaries to represent each bag Bi as a K-vector vi with one entry
for each row of which is the voting record of a different bases for the same vector space. For some
purposes (including compression), it is convenient to require that the eigenvector have norm,
inner product. Strassen’s algorithm for this problem would also suffice to solve a matrix-vector
equation of dot-product in total cost/benefit and/or expected value, simple authentication. But
let’s say we don’t know by the One-to-One Lemma that the function is one-to-one you do know....

12.8.6 Modeling lots of other stuff

Markov chains are hugely useful in computer science:

• analyze use of system resources

• Markov chain Monte Carlo

• Hidden Markov models (used in cryptanalysis, speech recognition, AI, finance, biology)

We’ll see another example: Google PageRank.
In addition, there is work on augmented Markov models, such as Markov decision processes.

The important part is that the system has no memory other than that implied by the state—all
you need to know to predict a system’s future state is its current state, not its history. This is
the Markov assumption, and it turns out to be remarkably useful.
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12.8.7 Stationary distributions of Markov chains

Perhaps the most important concept in Markov chains is that of the stationary distribution. This
is a probability distribution on the states of the Markov chain that is invariant in time. That is,
if the probability distribution of Randy’s state is a stationary distribution at some time t, then
after any number of steps the probability distribution will remain the same.

This is not the same as Randy not moving, of course—he changes location many times. It’s
a statement about the probability distribution of a random variable, not about the value of that
random variable.

Under what circumstances does a Markov chain have a stationary distribution, and how can
we find it?

We saw that the probability distribution at time t, x(t), and the probability distribution
at time t + 1, x(t+1), are related by the equation x(t+1) = Ax(t). Suppose v is a probability
distribution on the states of the Markov chain with transition matrix A. It follows that v being
a stationary distribution is equivalent to v satisfying the equation

v = Av (12.10)

This equation in turn means that 1 is an eigenvalue of A, with corresponding eigenvector v.

12.8.8 Sufficient condition for existence of a stationary distribution

When should we expect a Markov chain to have a stationary distribution?
Let A be a column stochastic matrix. Every column sum is 1, so the rows as vectors add up

to the all-ones vector. Hence the rows of A − I add up to the all-zeroes vector. This shows that
A − I is singular, and therefore there is a nontrivial linear combination v of its columns that
equals the all-zeroes vector. This shows that 1 is an eigenvalue, and that v is a corresponding
eigenvector.

However, this does not show that v is a probability distribution; it might have negative
entries. (We can always scale v so that its entries sum to 1.)

There are theorems that guarantee the existence of a nonnegative eigenvector. Here we give
a simple condition that pertains to the application du jour:
Theorem: If every entry of the stochastic matrix is positive, then there is a nonnegative eigen-
vector corresponding to the eigenvalue 1, and also (and we’ll see why this is important) every
other eigenvalue is smaller in absolute value than 1.

How can we find the stationary distribution in this case? Since the other eigenvalues are
smaller in absolute value, the power method can be used to find an approximate eigenvector.

12.9 Modeling a web surfer: PageRank

PageRank, the score by which Google ranks pages (or used to, anyway), is based on the idea of
a random web surfer, whom we will call Randy. Randy starts at some random web page, and
chooses the next page as follows:

• With probability .85, Randy selects one of the links from his current web page, and follows
it.
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• With probability .15, Randy jumps to a random web page (never mind how Randy finds a
random web page).

Because of the second item, for every pair i, j of web pages, if Randy is currently viewing page j,
there is a positive probability that the next page he views is page i. Because of that, the theorem
applies: there is a stationary distribution, and the power method will find it.

The stationary distribution assigns a probability to each web page. PageRank is this proba-
bility. Higher-probability pages are considered better. So the theoretical Google search algorithm
is: when the user submits a query consisting of a set of words, Google presents the web pages
containing these words, in descending order of probability.

Conveniently for Google, the PageRank vector (the stationary distribution) does not depend
on any particular query, so it can be computed once and then used for all subsequent queries.
(Of course, Google periodically recomputes it to take into account changes in the web.)

12.10 *The determinant

In this section, we informally discuss determinants. Determinants are helpful in mathematical
arguments, but they turn out to be rarely useful in matrix computations. We give one example
of a computational technique based on determinants of 2 × 2 matrices, computing the area of a
polygon.

12.10.1 Areas of parallelograms

Quiz 12.10.1: Let A be a 2×2 matrix whose columns a1,a2 are orthogonal. What is the area
of the following rectangle?

{α1a1 + α2a2 : 0 ≤ α1,α2 ≤ 1} (12.11)

a1
a2

Answer

The area of a rectangle is the product of the lengths of the two sides, so ||a1|| ||a2||
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Example 12.10.2: If A is diagonal, e.g. A =

[

2 0
0 3

]

, the rectangle determined by its

columns has area equal to the product of the absolute values of the diagonal elements, i.e. 6.

a1

a2

Example 12.10.3: Let A =

[ √
2 −

√

9/2√
2

√

9/2

]

. Then the columns of A are orthogonal, and

their lengths are 2 and 3, so the area is again 6.

a1
a2

Example 12.10.4: More generally, let A be a n × n matrix whose columns a1, . . . ,an are
orthogonal. The volume of the hyperrectangle

{α1a1 + · · · + αnan : 0 ≤ α1, . . . ,αn ≤ 1} (12.12)

a1
a2

a3

is the product of the lengths of the n sides, so ||a1|| ||a2|| · · · ||an||.

Example 12.10.5: Now we remove the assumption that a1,a2 are orthogonal. The set (12.11)
becomes a parallelogram.
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a1

a2

What is its area? You might remember from elementary geometry that the area of a parallelo-
gram is the length of the base times the length of the height.

a1*=a1

a2
a2*

Let a∗
1 = a1, and let a∗

2 be the projection of a2 orthogonal to a∗
1. We take a1 to be the

base of the parallelogram. The height is the projection. Then the area is ||a∗
1|| ||a∗

2||.

Properties of areas of parallelograms

• If a1 and a2 are orthogonal, the area is ||a1|| ||a2||.

• More generally, the area is
||a∗

1|| ||a∗
2||

where a∗
1,a

∗
2 are the vectors resulting from orthogonalizing a1,a2.

• Multiplying any single vector ai (i = 1 or i = 2) by a scalar α has the effect of multiplying
a∗
i by α, which in turn multiplies the area by |α|.

• Adding any scalar multiple of a1 to a2 does not change a∗
2, and therefore does not change

the area of the parallelogram defined by a1 and a2.

• If a∗
2 is a zero vector, the area is zero. This shows that the area is zero if the vectors a1,a2

are linearly dependent.

• The algebraic definition 12.11 of the parallelogram is symmetric with respect to a1 and
a2, so exchanging these vectors does not change the parallelogram, and therefore does not
change its area.

12.10.2 Volumes of parallelepipeds

We can do the same in n dimensions. Let a1, . . . ,an be n-vectors. The set

{α1 a1 + · · · + αn an : 0 ≤ α1, . . . ,αn ≤ 1}
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forms a shape called a parallelepiped.

a1
a2

a3

Its volume can be found by applying orthogonalization to the columns to obtain a∗
1, . . . ,a

∗
n, and

multiplying the lengths.
Just as in the two-dimensional case, we observe the following

Properties of volumes of parallelepipeds

• If a1, . . . ,an are orthogonal, the volume is

||a1|| ||a2|| · · · ||an||

• In general, the volume is
||a∗

1|| ||a∗
2|| · · · ||a∗

n||

where a∗
1,a

∗
2, . . . ,a

∗
n are the vectors resulting from the orthogonalization of a1,a2, . . . ,an.

• Multiplying any single vector ai by a scalar α has the effect of multiplying a∗
i by α, which

in turn multiplies the volume by |α|.

• For any i < j, adding a multiple of ai to aj does not change a∗
j , and therefore does not

change the volume.

• If the vectors a1, . . . ,an are linearly dependent, the volume is zero.

• Reordering the vectors does not change the volume.

12.10.3 Expressing the area of a polygon in terms of areas of parallel-
ograms
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We consider a computational problem arising in graphics, computing the area of a simple polygon.

a0

a1
a2

a3

Let a0, . . . ,an−1 be the locations of the vertices of the polygon, expressed as (x, y) pairs. In the
figure, the dot indicates the location of the origin.

We can express the area of the polygon as the area of n triangles:

• the triangle formed by the origin with a0 and a1,

• with a1 and a2,

...

•

• with an−2 and an−1, and

• with an−1 and a0.

Duplicate and reflect the triangle formed by the origin with a0 and a1, and attach it to the
original; the result is the parallelogram {α0a0 + α1a1 : 0 ≤ α0,α1 ≤ 1}.

a1

a2

Therefore the area of the triangle is half the area of this parallelogram. Summing over all the
triangles, we get that the area of the polygon is

1

2
(area(a0,a1) + area(a1,a2) + · · · + area(an−1,a0)) (12.13)

However, this approach fails for some polygons, e.g.
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since the triangles formed by ai and ai+1 are not disjoint and do not even fully lie within the
polygon:

a0

a1

a2

a3

a4

a5

For this reason, we consider signed area. The sign of the signed area of the parallelogram formed
by the vectors ai and ai+1 depends on how these vectors are arranged about this parallelogram.
If a1 points in the counterclockwise direction about the parallelogram, and a2 points in the
clockwise direction, as in

a1

a2

then the area is positive. On the other hand, if a2 points in the counterclockwise direction and
a1 points in the clockwise direction, as in

a1

a2

then the area is negative.
Replacing area with signed area in Formula 12.13 makes the formula correct for all simple

polygons.

1

2
(signed area(a0,a1) + signed area(a1,a2) + · · · + signed area(an−1,a0)) (12.14)

This formula is convenient because the signed area of the parallelogram defined by a1 and a2

has a simple form. Let A be the 2 × 2 matrix whose columns are a1,a2. Then the signed area
is A[1, 1]A[2, 2] − A[2, 1]A[1, 2].
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12.10.4 The determinant

The signed area is the determinant of the 2 × 2 matrix. More generally, the determinant is a
function

det : square matrices over the reals −→ R

For an n × n matrix A with columns a1, . . . ,an, the value of det A is the signed volume of the
parallelepiped defined by the vectors a1, . . . ,an. The sign depends on the relation between the
vectors, but the absolute value is the volume. Here are some simple examples.

Simple examples of determinants

• Suppose a1, . . . ,an are the standard basis vectors e1, . . . , en. Then A is the identity matrix.
In this case, the parallelepiped is the n-dimensional unit (hyper)cube, and det A is 1.

• Now scale the vectors by various positive values. The parallelepiped is no longer a cube, but
is an n-dimensional (hyper)rectangle, A becomes a diagonal matrix with positive diagonal
entries, and det A is the product of these entries.

• Now rotate the vectors so that they remain in the same relation to each other but no longer
lie on axes. The effect is to rotate the hyperrectangle but there is no change to det A.

More generally, the properties of volumes of parallelepipeds correspond to properties of de-
terminants:

Properties of determinants Let A be an n × n matrix A =

⎡

⎢
⎢
⎢
⎢
⎣

a1 · · · a2

⎤

⎥
⎥
⎥
⎥
⎦

.

• If a1, . . . ,an are orthogonal,

| det A| = ||a1|| ||a2|| · · · ||an||

• In general,
| det A| = ||a∗

1|| ||a∗
2|| · · · ||a∗

n||

• Multiplying a column ai by α has the effect of multiplying the determinant by α:

det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1 · · · αai · · · an

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= α det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1 · · · ai · · · an

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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• For any i < j, adding a multiple of ai to aj does not change the determinant.

det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1 · · · ai · · · an

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ai

a1 · · · + · · · an

aj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Among the two most important things to remember about the determinant is this:

Proposition 12.10.6: A square matrix A is invertible if and only if its determinant is nonzero.

Proof

Let a1, . . . ,an be the columns of A, and let a∗
1, . . . ,a

∗
n be the vectors returned by

orthogonalize([a1, . . . ,an]). Then A is not invertible if and only if a1, . . . ,an are linearly
dependent, if and only if at least one of a∗

1, . . . ,a
∗
n is a zero vector, if and only if the product

||a∗
1|| ||a∗

2|| · · · ||a∗
n|| is zero, if and only if the determinant is zero. !

The traditional advice to math students is that one should use Proposition 12.10.6 to de-
termine whether a matrix is invertible. However, this is not a good idea when you are using
floating-point representation.

Example 12.10.7: Let R be an upper-triangular matrix with nonzero diagonal elements:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

r11 r12 r13 · · · r1n
r22 r23 · · · r2n

r33 · · · r3n
. . .

rnn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Let r1, . . . , rn be its columns, and let r∗1 , . . . , r
∗
n be the vectors resulting from orthogonalize([r1, . . . , rn]).

• r∗1 = r1 is a multiple of the standard basis vector e1.

• Since r∗2 , . . . , r
∗
n are the projections orthogonal to r1, entry 1 of each of these vectors is

zero.

• Therefore r∗2 is a multiple of e2, and entry 2 of r∗2 equals entry 2 of r2
...

• Therefore r∗n is a multiple of en, and entry n of r∗n equals entry n of rn.
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It follows that the matrix whose columns are r∗1 , . . . , r
∗
n is the diagonal matrix whose diagonal

entries are the same as those of R. The determinant of this matrix and therefore of R is the
product of the diagonal entries.

The determinant function has two important properties that are not evident from the volume
properties we have discussed so far:

Multilinearity: det A is a linear function of each entry of A.

Multiplicativity: det(AB) = (det A)(det B)

12.10.5 *Characterizing eigenvalues via the determinant function

In this section, we briefly and informally discuss how the determinant function gives rise to the
notion of the characteristic polynomial, a polynomial whose roots are the eigenvalues. This is of
mathematical importance but is not computationally useful.

For an n × n matrix A and a scalar x, consider the matrix
⎡

⎢
⎣

x
. . .

x

⎤

⎥
⎦− A

The ith diagonal entry is xi − A[i, i]. By multilinearity,

det

⎛

⎜
⎝

⎡

⎢
⎣

x
. . .

x

⎤

⎥
⎦− A

⎞

⎟
⎠

is a polynomial function of x, and the polynomial has degree at most n. This is called the
characteristic polynomial of A. That is, the characteristic polynomial of A is pA(x) = det(xI−A).

Proposition 12.10.6 states that the determinant of a square matrix is zero if and only if the
matrix is not invertible, i.e. if its columns are linearly dependent. For a value λ, therefore,
pA(λ) = 0 if and only if the matrix λ1 − A has linearly dependent columns, if and only the
dimension of its null space is positive, if and only if there is a nonzero vector v such that
(λ1− A)v is the zero vector, if and only if λ is an eigenvalue of A.

We have informally shown the second most important fact about determinants:

Theorem 12.10.8: For a square matrix A with characteristic polynomial pA(x), the numbers
λ such that pA(λ) = 0 are the eigenvalues of A.

Traditionally, math students are taught that the way to compute eigenvalues is to use Theo-
rem 12.10.8. Find the coefficients of the characteristic polynomial and find its roots. This works
okay for small matrices (up to 4 × 4). However, for larger matrices it is a bad idea for several
reasons: it is not so easy to find the coefficients of the characteristic polynomial, it is not so easy
to find the roots of a polynomial of degree greater than four, and the computations are prone to
inaccuracy if floating-point numbers are used.
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Example 12.10.9: Let A =

[

2 1
0 3

]

. The determinant of

[

x
x

]

−
[

2 1
0 3

]

=

[

x − 2 1
0 x − 3

]

is (x − 2)(x − 3). This tells us that the eigenvalues of A are 2 and 3. Note that the matrix
[

2 0
0 3

]

has the same characteristic polynomial (and therefore the same eigenvalues).

Example 12.10.10: Consider the diagonal matrices A =

⎡

⎣

1
1

2

⎤

⎦ and B =

⎡

⎣

1
2

2

⎤

⎦.

For each matrix, the eigenvalues are 1 and 2; however, the characteristic polynomial of A is
(x − 1)(x − 1)(x − 2), and the characteristic polynomial of B is (x − 1)(x − 2)(x − 2).

12.11 *Proofs of some eigentheorems

12.11.1 Existence of eigenvalues

We restate and then prove Theorem 12.6.9:

Every square matrix over C has an eigenvalue.

The proof is a bit of a cheat since we draw on a deep theorem, the Fundamental Theorem of
Algebra, that is not stated elsewhere (much less proved) in this book.

Proof

Let A be an n × n matrix over C, and let v be an n-vector over C. Consider the vectors
v, Av, A2v, . . . , Anv. These n+1 vectors belong to Cn, so they must be linearly dependent.
Therefore the zero vector can be written as a nontrivial linear combination of the vectors:

0 = α0 v + α1 Av + α2 A2v + · · · + αn Anv

which can be rewritten as

0 =
(

α0 1 + α1 A + α2 A2 + · · · + αn An
)

v (12.15)

Let k be the largest integer in {1, 2, . . . , n} such that αk ̸= 0. (Since the linear combination
is nontrivial, there is such an integer.)

Now we consider the polynomial

α0 + α1x + α2x
2 + · · · + αkx

k (12.16)
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where αk ̸= 0. The Fundamental Theorem of Algebra states that this polynomial, like every
polynomial of degree k, can be written in the form

β(x − λ1)(x − λ2) · · · (x − λk) (12.17)

for some complex numbers β,α1,α2, . . . ,αk where β ̸= 0.
Now comes a bit of math magic. The fact that the polynomial 12.16 can be written

as 12.17 means that if we just use algebra to multiply out the expression 12.17, we will get
the expression 12.16. It follows that if we just multiply out the matrix-valued expression

β(A − λ11)(A − λ21) · · · (A − λk1) (12.18)

then we will end up with the matrix-valued expression

α0 1 + α1 A + α2 A2 + · · · + αk Ak (12.19)

Thus the two matrix-valued expressions 12.18 and 12.19 are equal. Using this equality of
matrices to substitute into Equation 12.15, we obtain

0 = β(A − λ11)(A − λ21) · · · (A − λk1)v (12.20)

Thus the nonzero vector v is in the null space of the product matrix (A − λ11)(A −
λ21) · · · (A − λk1), so this product matrix is not invertible. The product of invertible ma-
trices is invertible (Proposition 4.13.14), so at least one of the matrices A − λi1 must not
be invertible. Therefore, by Lemma 12.3.6, λi is an eigenvalue of A. !

12.11.2 Diagonalization of symmetric matrices

Theorem 12.6.9 shows that a square matrix has an eigenvalue but the eigenvalue might be complex
even if the matrix has only real entries. However, let us recall Theorem 12.6.4:

Let A be an n × n symmetric matrix over R. Then there is an orthogonal matrix Q
and a diagonal matrix Λ over R such that QTAQ = Λ.

The theorem states that a symmetric matrix A is similar to a diagonal matrix over R, which
means that the eigenvalues of A must be real. Let’s prove that first.

Lemma 12.11.1: If A is a symmetric matrix then its eigenvalues are real.

Proof

Suppose λ is an eigenvalue of A, and v is a corresponding eigenvector. On the one hand,

(Av)Hv = (λv)Hv = (λ1v)Hv = vH(λ1)Hv = vH(λ̄1)v = vH λ̄v = λ̄vHv
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where we use the fact that

⎡

⎢
⎣

λ
. . .

λ

⎤

⎥
⎦

H

=

⎡

⎢
⎣

λ̄
. . .

λ̄

⎤

⎥
⎦.

On the other hand, because A is symmetric and has real entries, AH = A, so

(Av)Hv = vHAHv = vHAv = vHλv = λvHv

Since vHv is nonzero, λ̄ = λ which means that the imaginary part of λ is zero. !

Now we prove Theorem 12.6.4.

Proof

The proof is by induction on n. Theorem 12.6.9 shows that A has an eigenvalue, which we
will call λ1. By Lemma 12.11.1, λ1 is a real number. By Lemma 12.3.6, a nonzero vector in
the null space of A − λ1 is an eigenvector, so there is an eigenvector v1 over the reals. We
choose v1 to be a norm-one eigenvector.

Let q1, q2, . . . , qn be an orthonormal basis for Rn in which q1 = v1. Such a basis can be
found by taking the nonzero vectors among those returned by orthogonalize([v1, e1, e2, . . . , en])
where e1, e2, . . . , en are the standard basis vectors for Rn. Let Q1 be the matrix whose
columns are q1, . . . , qn. Then Q is an orthogonal matrix, so its transpose is its inverse.
Because Aq1 = λ1q1 and q1 is orthogonal to q2, . . . , qn,

QT
1 AQ1 =

⎡

⎢
⎣

qT
1
...
qT
n

⎤

⎥
⎦

⎡

⎣ A

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎣

q1 · · · qn

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

qT
1
...
qT
n

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

Aq1 · · · Aqn

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

λ1 ?
0
... A2

0

⎤

⎥
⎥
⎥
⎦

where A2 is the (n − 1) × (n − 1) submatrix consisting of the last n − 1 rows and columns.
We show that those entries marked with a “?” are zero. Consider the transpose of QT

1 AQ1:

(QT
1 AQ1)

T = QT
1 AT (QT

1 )T = QT
1 ATQ1 = QT

1 AQ1
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because AT = A. Thus QT
1 AQ1 is symmetric. Since the entries of the first column after the

first entry are all zeroes, it follows by symmetry that the entries of the first row after the
first entry are all zeroes.

If n = 1 then A2 has no rows and no columns, so QT
1 AQ1 is a diagonal matrix, and we

are done. Assume that n > 1.
By the inductive hypothesis, A2 is diagonalizable: there is an orthogonal matrix Q2 such

that Q−1
2 A2Q2 is a diagonal matrix Λ2. Let Q̄2 be the matrix

Q̄2 =

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
0
... Q2

0

⎤

⎥
⎥
⎥
⎦

Then the inverse of Q̄2 is

Q̄−1
2 =

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
0
... Q−1

2

0

⎤

⎥
⎥
⎥
⎦

Furthermore,

Q̄−1
2 Q−1

1 AQ1Q̄2 =

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
0
... Q−1

2

0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

λ1 ?
0
... A2

0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
0
... Q2

0

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

λ1 ?
0
... Q−1

2 A2Q2

0

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

λ1 ?
0
... Λ2

0

⎤

⎥
⎥
⎥
⎦

which is a diagonal matrix. Setting Q = Q1Q̄2 completes the induction step. !

12.11.3 Triangularization

We restate and prove Theorem 12.6.10:

For any n × n matrix A, there is a unitary matrix Q such that Q−1AQ is an upper-
triangular matrix.

The proof closely follows the proof I just presented.
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Proof

We recall a few definitions and facts from Section 10.7. The Hermitian adjoint of a matrix
M , written MH , is the matrix obtained from M by taking the transpose and replacing each
entry by its conjugate. A matrix M is unitary (the complex analogue of an orthogonal
matrix) if MH = M−1.

The proof is by induction on n. Theorem 12.6.9 shows that A has an eigenvalue, which
we will call λ1. Let v1 be a corresponding eigenvector, chosen to have norm one. We form
an orthonormal basis q1, q2, . . . , qn for Cn where q1 = v1.

(To find this basis, you can call orthogonalize([v1, e1, e2, . . . , en]) where e1, . . . , en
form the standard basis for Cn, and discard the single zero vector in the output
list; the remaining vectors in the output list form a basis for Cn. The first vector
in the output list is v1 itself.

This is a bit of a cheat since v1 might have complex (and unreal) entries, and
we were not considering such vectors when we studied orthogonalize, but that
procedure can be adapted to use the complex inner product described in Sec-
tion 10.7.)

Let Q1 be the matrix whose columns are q1, . . . , qn. Then Q1 is unitary, so its Hermitian
adjoint is its inverse. Because Aq1 = λ1q1 and q1 is orthogonal to q2, . . . , qn,

QH
1 AQ1 =

⎡

⎢
⎣

qH
1
...

qH
n

⎤

⎥
⎦

⎡

⎣ A

⎤

⎦

⎡

⎢
⎢
⎢
⎢
⎣

q1 · · · qn

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

qH
1
...

qH
n

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

Aq1 · · · Aqn

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

λ1 ?
0
... A2

0

⎤

⎥
⎥
⎥
⎦

where we have written a “?” to signify entries whose values we don’t care about, and where
A2 is the (n − 1) × (n − 1) submatrix consisting of the last n − 1 rows and columns.

If n = 1 then A2 has no rows and no columns, so QH
1 AQ1 is an upper-triangular matrix,

and we are done. Assume that n > 1.
By the inductive hypothesis, A2 is triangularizable: there is a unitary matrix Q2 such
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that Q−1
2 A2Q2 is an upper-triangular matrix U2. Let Q̄2 be the matrix

Q̄2 =

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
0
... Q2

0

⎤

⎥
⎥
⎥
⎦

Then the inverse of Q̄2 is

Q̄−1
2 =

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
0
... Q−1

2

0

⎤

⎥
⎥
⎥
⎦

Furthermore,

Q̄−1
2 Q−1

1 AQ1Q̄2 =

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
0
... Q−1

2

0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

λ1 ?
0
... A2

0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

1 0 · · · 0
0
... Q2

0

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

λ1 ?
0
... Q−1

2 A2Q2

0

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

λ1 ?
0
... U2

0

⎤

⎥
⎥
⎥
⎦

which is an upper-triangular matrix. Setting Q = Q1Q̄2 completes the induction step. !

12.12 Lab: Pagerank

12.12.1 Concepts

In this lab, we’ll be implementing the algorithm that Google originallya used to determine
the “importance” (or rank) of a web page, which is known as PageRank.

The idea for PageRank is this:

Define a Markov chain that describes the behavior of a random web-surfer,
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Randy. Consider the stationary distribution of this Markov chain. Define the
weight of a page to be the probability of that page in the stationary distribution.

First we describe a rudimentary Markov chain, and we discover why it needs to be improved.
Randy is our random surfer. In each iteration, Randy selects an outgoing link from his

current web page, and follows that link. (If the current web page has no outgoing link,
Randy stays put.

To see this rudimentary PageRank in action, let’s consider a small example. We call it
the Thimble-Wide Web. It consists of only six webpages:

654

321

Here is the transition-probability matrix for this Markov chain:

A1 =

1 2 3 4 5 6
1 1 1

2
2 1 1

2
1
3

1
2

3 1
4 1

3
5 1

2
6 1

3

Column j gives the probabilities that a surfer viewing page j transitions to pages 1 through 6.
If page j has no outgoing links, the surfer stays at page j with probability 1. Otherwise,
each of the pages linked to has equal probability; if page j has d links, the surfer transitions
to each of the linked-to pages with probability 1/d. The probability is zero that the surfer
transitions from page j to a page that page j does not link to. (In other words, cell Aij

contains the probability that, at page j, the surfer will transition to page i.
For example, page 5 links to pages 2, 4, and 6, so a surfer at page 5 transitions to each

of these pages with probability 1/3. You should check that the above matrix is a stochastic
matrix (every column sum is 1), and so it really describes a Markov chain.

According to this Markov chain, how likely is Randy to be at each page after many
iterations? What are the most likely pages? The answer depends on where he starts and
how many steps he takes:

• If he starts at page 6 and takes an even number of iterations, he has about probability
.7 of being at page 3, probability .2 of being at page 2, and probability .1 of being at
page 1.

• If he starts at 6 and takes an odd number of iterations, the probability distribution is
about the same except that the probabilities of nodes 2 and 3 are swapped.
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• If he starts at page 4, the probability is about .5 that he is at page 1 and about .5
that he is at page 3 (if an even number of iterations) or page 2 (if an odd number of
iterations).

From the point of view of computing definitive pageranks using the power method, there are
two things wrong with this Markov chain:

1. There are multiple clusters in which Randy gets stuck. One cluster is page 2, page 3,
and the other cluster is page 1.

2. There is a part of the Markov chain that induces periodic behavior: once Randy enters
the cluster page 2, page 3, the probability distribution changes in each iteration.

The first property implies that there are multiple stationary distributions. The second
property means that the power method might not converge.

We want a Markov chain with a unique stationary distribution so we can use the sta-
tionary distribution as an assignment of importance weights to web pages. We also want to
be able to compute it with the power method. We apparently cannot work with the Markov
chain in which Randy simply chooses a random outgoing link in each step.

Consider a very simple Markov chain: the surfer jumps from whatever page he’s on to a
page chosen uniformly at random. Here’s the transition matrix for our Thimble-Wide Web.

A2 =

1 2 3 4 5 6
1 1

6
1
6

1
6

1
6

1
6

1
6

2 1
6

1
6

1
6

1
6

1
6

1
6

3 1
6

1
6

1
6

1
6

1
6

1
6

4 1
6

1
6

1
6

1
6

1
6

1
6

5 1
6

1
6

1
6

1
6

1
6

1
6

6 1
6

1
6

1
6

1
6

1
6

1
6

This Markov chain has the advantage that it avoids the problems with the previous chain;
the surfer can’t get stuck, and there is no fixed period. As a consequence, this Markov
chain does have a unique stationary distribution (it assigns equal probability to every page)
and this stationary distribution can be computed using the power method. The theorem in
Section 12.8.2 of the guarantees that.

On the other hand, you might point out, this Markov chain does not in any way reflect
the structure of the Thimble-Wide Web. Using the stationary distribution to assign weights
would be silly.

Instead, we will use a mixture of these two Markov chains. That is, we will use the
Markov chain whose transition matrix is

A = .85A1 + .15A2 (12.21)

Since every column of A1 sums to 1, every column of .85A1 sums to .85, and since every
column of A2 sums to 1, every column of .15A2 sums to .15, so (finally) every column of
.85A1 + .15A2
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The Markov chain corresponding to the matrix A describes a surfer obeying the following
rule.

• With probability .85, Randy selects one of the links from his current web page, and
follows it.

• With probability .15, Randy jumps to a web page chosen uniformly at random. (This
is called teleporting in the context of PageRank.)

You can think of the second item as modeling the fact that sometimes the surfer gets bored
with where he is. However, it plays a mathematically important role. The matrix A is a
positive matrix (every entry is positive). A theorem ensures that there is a unique stationary
distribution, and that the power method will converge to it.

For an n-page web, A1 will be the n × n matrix whose ij entry is

• 1 if i = j and page j has no outgoing links,

• 1/dj if j has dj outgoing links, and one of them points to page i, and

• 0 otherwise

and A2 will be the n × n matrix each entry of which is 1/n.

12.12.2 Working with a Big Dataset

In this lab we will use a big dataset: articles from Wikipedia. Wikipedia contains a few
million articles. Handling all of them would make things run too slowly for a lab. We will
therefore work with a subset containing about 825,000 articles chosen by taking all articles
that contain the strings mathemati, sport, politic, literat and law. This chooses all sorts
of articles. For example the article on the impressionist artist Edward Manet is included
because his father wanted him to be a lawyer...

Handling a big dataset presents a few obstacles which we help you overcome. We will
give you specific instructions that will help you write code that is efficient in terms of both
running time and use of memory. Here are some guidelines:

• Be sure to exploit sparsity. We will use sparse representation of matrices and vectors,
and exploit sparsity in computations involving them.

• Do not duplicate data unless you have to. For example, you will have to use the set of
titles of Wikipedia entries several times in the code as labels of matrices and vectors.
Make sure you do not create new copies of this set (assignment of a set does not copy
the set, just creates an additional reference to it).

• Test your code on a small test case (we provide one) before running it with the big
dataset.
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• Remember to use the imp module to reload your file after a change, so that you do
not need to re-import the pagerank module. (Use from imp import reload when
you start python, then use reload(myfile) to reload your file without re-importing
pagerank.)

• Don’t use other programs such as a web browser while computing with a big dataset.

• Leave enough time for computation. The power-method computation should take
between five and ten minutes.

Your mat module should be okay if you implemented matrix-vector multiplication in the way
suggested in lecture. If you get into trouble, use our implementation of mat.

12.12.3 Implementing PageRank Using The Power Method

The power method is a very useful method in linear algebra for approximating the eigenvector
corresponding to the eigenvalue of largest absolute value. In this case, the matrix we are
interested in is A given above. The key observation is that for a random vector v, Akv (Ak

is A multiplied by itself k times) is very likely to be a good approximation for the eigenvector
corresponding to A’s largest eigenvalue.

We will compute Akv iteratively. We maintain a vector v, and update it using the rule
v := Av. After just a few iterations (say 5), we stop. Sounds trivial, right? The problem
is that A is 825372× 825372, and v is a 825372-vector. Representing A or A2 explicitly will
take too much space, and multiplying either matrix by a vector explicitly will take too much
time. We will exploit the structure of A to compute each power-method iteration of the more
efficiently. Recall that A = .85A1 + .15A2. We will treat each of these terms separately. By
distributivity, Av = .85A1v + .15A2v.

Handling A2

Suppose you’ve computed a vector w = .85A1v. What’s involved in adding .15A2v to w?
In particular, can you do that without explicitly constructing A2?

Computing A1

The input data will consist of a square matrix L whose nonzero entries are all 1. This matrix
represents the link structure between articles. In particular, the rc entry of L is 1 if article c
links to article r.

For testing purposes, we have provided the module pagerank_test, which defines the
matrix small_links representing the link structure of the Thimble-Wide Web. It also
defines the corresponding matrix A2.
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Task 12.12.1: Write a procedure find_num_links with the following spec:

• input: A square matrix L representing a link structure as described above.

• output: A vector num_links whose label set is the column-label set of L, such that,
for each column-label c, entry c of num_links is the number of nonzero entries in
column c of L.

Try to write the procedure without using loops or comprehensions on matrix L.

aor so we are led to believe by the original article. At this point, the details of the algorithm used are a
closely guarded secret but we suspect that the ideas of PageRank still play a major role.

Task 12.12.2: Write a procedure make_Markov with the following spec:

• input: A square matrix L representing a link structure as described above.

• output: This procedure does not produce new output, but insteadmutates L (changing
its entries) so that it plays the role of A1.

The description of A1 is given earlier in this writeup. Using mutation instead of returning
a new matrix saves space. Your procedure should make use of find_num_links.

Test your procedure on small_links. Make sure the matrix you obtain is correct.
You will be given such a matrix links that describes the link structure among wikipedia

entries. Its row and column-labels are titles of Wikipedia entries.

Task 12.12.3: Write a procedure power_method with the following spec:

• input:

– the matrix A1, and

– the desired number of iterations of the power method.

• output: an approximation to the stationary distribution, or at least a scalar multiple
of the stationary distribution.

Your initial vector can be pretty much anything nonzero. We recommend using an
all-ones vector.

In order to see how well the method converges, at each iteration print the ratio

(norm of v before the iteration)/(norm of v after the iteration)

As the approximation for the eigenvector with eigenvalue 1 gets better, this ratio should get
closer to 1.

Test your code using the matrix A1 you obtained for the Thimble-Wide Web. The module
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pagerank_test defines A2 to allow you to explicitly test whether the vector you get is an
approximate eigenvector of A.

You should obtain as an eigenvector a scalar multiple of the following vector:
{1: 0.5222, 2: 0.6182, 3: 0.5738, 4: 0.0705, 5: 0.0783, 6: 0.0705}

12.12.4 The Dataset

Importing the pagerank module will read into the workspace a few variables and procedures,
described below. In principle, given enough time you should be able to write perform these
tasks yourselves (or actually already did them in previous labs).

1. read_data: a function that reads in the relevent data for this lab. This function will
take a few minutes to execute, so use it only when needed and only once. It returns a
matrix, links, which is the matrix representing the link structure between articles.

2. find_word: a procedure that takes a word and returns a list of titles of articles that
contain that word. (Some words were omitted since they appear in too many articles
or too few; for such a word, find_word returns an empty list or None.)

You can view the contents of an article with a given name on http://en.wikipedia.org.
Note that the titles are all in lower case, whereas the Wikipedia article may contain both
upper and lower case. Also note that this dataset was generated a while ago, so some of the
articles may have changed.

Task 12.12.4: How many documents contain the word jordan? The first title in the list
of articles that contain jordan is alabama. Open the Wikipedia page and find out why.

12.12.5 Handling queries

You next need to write code to support queries.
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Task 12.12.5: Write a procedure wikigoogle with the following spec:

• input:

– A single word w.

– The number k of desired results.

– The pagerank eigenvector p.

• output: a list of the names of the k highest-pagerank wikipedia articles containing
that word.

First use find_word to obtain the list related of articles that contain w. Then sort the
list in descending order with respect to the pagerank vector, using
related.sort(key= lambda x:p[x], reverse=True)

(The key keyword lets you specify a function that maps list elements to numbers. lambda x:p[x]
is a way to define a procedure that, given x, returns p[x].)
Finally, return the first k elements of the list.

Task 12.12.6: Use power_method to compute the pagerank eigenvector for the wikipedia
corpus and try some queries to see the titles of the top few pages: “jordan”, “obama”,
“tiger” and, of course “matrix”. What do you get for your top few articles? Can you
explain why? Are the top ranked results more relevant or important in some sense than,
say, the first few articles returned by find_word without ranking?

12.12.6 Biasing the pagerank

Suppose you are particularly interested in sports. You would like to use PageRank but
biased towards sports interpretations of words.

Let Asport be the n × n transition matrix in which every page transitions to the page
whose title is sport. That is, row sport is all ones, and all other rows are all zeroes.

Then .55A1 + .15A2 + .3Asport is the transition matrix of a Markov chain in which Randy
occasionally jumps to the sport article.
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Task 12.12.7: Write a version of the power method that finds an approximation to the
stationary distribution of a Markov chain that is similarly biased. The procedure should
be called power_method_biased. It resembles power_method but takes an additional
parameter, the label r of the state (i.e. article) to jump to. It should output an approximate
eigenvector of the matrix .55A1 + .15A2 + .3Ar. Try to write it so that Ar is not explicitly
created. Remember to test your procedure on the Thimble-Wide Web before trying it on
the big dataset.

Compute the stationary distribution of the Markov chain that is biased towards sport.
(Save it in a different variable so that you will be able to compare the results obtained with
different rankings).

See if some of the queries you did earlier produce different top pages. You can also try
biasing in other directions. Try mathematics, law, politics, literature....

12.12.7 Optional: Handling multiword queries

Task 12.12.8: Write a function wikigoogle2 that is similar to wikigoogle but takes
a list of words as argument and returns the titles of the k highest-pagerank articles that
contain all those words. Try out your search engine on some queries.

12.13 Review questions

• What must be true of a matrix A in order for A to have an eigenvalue?

• What are an eigenvalue and eigenvector of a matrix?

• For what kind of problems are eigenvalues and eigenvectors useful?

• What is a diagonalizable matrix?

• What is an example of a matrix that has eigenvalues but is not diagonalizable?

• Under what conditions is a matrix guaranteed to be diagonalizable? (More than one possible
answer.)

• What are some advantages of diagonalizable matrices?

• Under what conditions does a matrix have linearly independent eigenvectors?

• What are the advantages to a matrix having linearly independent eigenvectors?

• Under what conditions does a matrix have orthonormal eigenvectors?

• What is the power method? What is it good for?

• What is the determinant?

• How does the determinant relate to volumes?
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• Which matrices have determinants?

• Which matrices have nonzero determinants?

• What do determinants have to do with eigenvalues?

• What is a Markov chain?

• What do Markov chains have to do with eigenvectors?

12.14 Problems

Practice with eigenvalues and eigenvectors

We have not given you an algorithm to compute eigenvalues and eigenvectors. However, in
this section we ask you to solve some eigenvector/eigenvalue problems in order to solidify your
understanding of the concepts.

Problem 12.14.1: For each matrix, find its eigenvalues and associated eigenvectors. Just use
cleverness here; no algorithm should be needed.

a)

[

1 2
1 0

]

b)

[

1 1
3 3

]

c)

[

6 0
0 6

]

d)

[

0 4
4 0

]

Problem 12.14.2: In each of the following subproblems, we give you an matrix and some of
its eigenvalues. Find a corresponding eigenvector.

a)

[

7 −4
2 1

]

and eigenvalues λ1 = 5, λ2 = 3.

b)

⎡

⎣

4 0 0
2 0 3
0 1 2

⎤

⎦ and eigenvalues λ1 = 3, λ2 = −1.
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Problem 12.14.3: Given a matrix and its eigenvectors, find the corresponding eigenvalues:

a)

[

1 2
4 3

]

and v1 = [ 1√
2
,− 1√

2
] and v2 = [1, 2]

b)

[

5 0
1 2

]

and v1 = [0, 1] and v2 = [3, 1]

Complex eigenvalues
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Problem 12.14.4: Let A =

[

0 −1
1 0

]

. Two (unnormalized) eigenvectors are v1 =

[

1
i

]

and v2 =

[

1
−i

]

.

1. Find the eigenvalue λ1 corresponding to eigenvector v1, and show using matrix-vector
multiplication that it is indeed the corresponding eigenvalue.

2. Find the eigenvalue λ2 corresponding to eigenvector v2, and show using matrix-vector
multiplication that it is indeed the corresponding eigenvalue.

Show your work.

Computing eigenvectors using Python

I will provide a module with a procedure to compute eigenvalues and eigenvectors.

Approximating eigenvalues

Problem 12.14.5: Given a matrix A
⎡

⎢
⎢
⎣

1 2 5 7
2 9 3 7
1 0 2 2
7 3 9 1

⎤

⎥
⎥
⎦

a) Use the power method to approximate the eigenvector that corresponds to the eigenvalue λ1

of largest absolute value.

b) Find an approximation to λ1.

c) Using the eig procedure in the numpy_versions module, find the eigenvalues of A.

d) Compare your approximation to λ1 and the value of λ1 from part (c).

Problem 12.14.6: Prove:

Lemma 12.14.7: Suppose A is an invertible matrix. The eigenvalues of A−1 are the
reciprocals of the eigenvalues of A.
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Problem 12.14.8: The lemma in Problem 12.14.6 shows that the eigenvalue of A having
smallest absolute value is the reciprocal of the eigenvalue of A−1 having largest absolute value.
How can you use the power method to obtain an estimate of the eigenvalue of A having smallest
absolute value? You should not compute the inverse of A. Instead, use another approach: solving
a matrix equation.

Use this approach on the matrix A below:

A =

⎡

⎢
⎢
⎣

1 2 1 9
1 3 1 3
1 2 9 5
6 4 3 1

⎤

⎥
⎥
⎦

Problem 12.14.9: Let k be a number, A an n × n matrix and I the identity matrix. Let
λ1, . . . ,λm (m ≤ n) be the eigenvalues of A. What are the eigenvalues of A− kI? Justify your
answer.

Problem 12.14.10: How can you use the lemma in Problem 12.14.8 and the result from
Problem 12.14.9 to address the following computational problem?

• input: a matrix A and a value k that is an estimate of an eigenvalue λi of A (and is closer
to λi than to any other eigenvalue of A)

• output: an even better estimate of that eigenvalue.

Show how to use this method on the following data:

A =

⎡

⎣

3 0 1
4 8 1
9 0 0

⎤

⎦ , k = 4

Markov chains and eigenvectors

Problem 12.14.11: Suppose that the weather behaves according to the following Markov
chain:
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According to the Markov assumption, tomorrow’s weather state only depends on today’s weather.
For example, If today is Sunny, the probability is 0.3 that tomorrow is Windy. In this problem
we will find the weather’s long-term probability distribution.

a) Give the transition matrix A with row and column labels {'S','R','F','W'} (for “Sunny”,
“Rainy”, “Foggy”, and “Windy”). Entry (i, j) of A should be the probability of transitioning
from state j to state i. Construct a Mat in Python representing this matrix.

b) A probability distribution can be represented by a {'S','R','F','W'}-vector. If v is the
probability distribution of the weather for today then Av is the probability distribution of the
weather for tomorow.

Write down the vector v representing the probability distribution in which it is Windy with
probability 1. Calculate the vector Av, which gives probability distribution for the following
day. Does it make sense in view of the diagram above?

c) Write down the vector v representing the uniform distribution. Calculate Av.

d) What is the probability distribution over the weather states in 400 days given that the start
probability distribution is uniform over the states?

e) Based on previous parts, name one eigenvalue and a corresponding eigenvector.
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The Linear Program

The mathematician may be compared to
a designer of garments, who is utterly
oblivious of the creatures whom his
garments may fit. To be sure, his art
originated in the necessity for clothing
such creatures, but this was long ago; to
this day a shape will occasionally appear
which will fit into the garment as if the
garment had been made for it. Then
there is no end of surprise and delight.

Tobia Dantzig, father of George Dantzig,
Number: The Language of Science, 1930

13.1 The diet problem

In the 1930’s and 1940’s the US military wanted to find the minimum-cost diet that would satisfy
a soldier’s nutritional requirements. An economist, George Stigler, considered 77 different foods,
and nine nutritional requirements. He estimated the solution in 1939 dollars at $39.93/year. He
had 9 foods to choose from, and five nutrients. The solution published in 1945 is as follows:
annual diet was 370 pounds of wheat flour, 57 cans of evaporated milk, 111 pounds of cabbage,
25 pounds of spinach, and 285 pounds of dried navy beans, at an annual cost of $39.93 in 1939
dollars, and $96 in 1945 dollars.

A couple of years later, an algorithm was developed, the simplex algorithm, that could find the
absolutely best solution. Since a computer was not available to carry out the algorithm, people
and desk calculators were used: finding the solution requires 120 person-days of effort. The best
solution used wheat flour, beef liver, cabbage, spinach, and dried navy beans, and achieved a
cost of $39.69, twenty-four cents less than Stigler’s solution.

A solution found in 1998, which reflects more recent understanding of nutritional needs and
more recent prices, is as follows: 412.45 cups of wheat flour, 587.65 cups of rolled oats, 6095.5

612
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ounces of milk, 945.35 tablespoons of peanut butter, 945.35 tablespoons of lard, 2.6426 ounces of
beef liver, 438 bananas, 85.41 oranges, 204.765 cups of shredded cabbage, 79.935 carrots, 140.16
potatoes, 108.405 cups of pork and beans. The annual cost: $536.55.

13.2 Formulating the diet problem as a linear program

How can such a problem be formulated? Introduce a variable for each food: x1, . . . , x77. Variable
xj represents the number of units of food j in the diet. For example x1 might denote the number
of pounds of navy beans to be consumed per day. For each variable xj , we have an associated
cost cj . For example, c1 might be the cost in dollars of a single pound of navy beans.

The objective function is the cost c1x1 + · · · + c77x77, and the goal is to minimize the cost
subject to the constrains.

To represent each nutritional requirement, we have a linear inequality, i.e. an inequality of
the form

f(x1, . . . , x77) ≥ b

where f : R77 → R is a linear function. The function can be written as f(x1, . . . , x77) =
a1x1 + . . . + a77x77, so the constraint has the form

a1x1 + . . . + a77x77 ≥ b

Suppose we want to represent the requirement that someone take in 2000 calories a day. The
number a1 should be the number of calories in a pound of navy beans, . . . , the number a77 should
be the number of calories in one unit of food 77, and b should be 2000.

In this context, a linear inequality is called a linear constraint because it constrains the
solution. We have similar constraints for calcium, Vitamin A, Riboflavin, ascorbic acid....

It turns out that the formulation so far is insufficient, because it doesn’t prevent the solution
from including negative amounts of some of the foods. No problem: just add an additional linear
constraint for each variable xj :

xj ≥ 0

The set of linear constraints can be summarized by a single constraint on the product of a matrix
A with the vector x = (x1, . . . , x77)T :

Ax ≥ b

Each row of A, together with the corresponding entry of b, is a single linear constraint. Con-
straint i requires that the dot-product of row i of A with x is at least entry i of b: ai · x ≥ bi.
There is a row for each nutrient (corresponding to the constraint that the diet contain enough
of that nutrient), and a row for each food (corresponding to the constraint that the amount of
that food must be nonnegative).

The objection function c1x1 + · · · + c77x77 can be written as the dot-product c ·x. So we can
summarize the entire thing as

min c · x subject to

Ax ≥ b

The above is an example of a linear program. (Not a program in the computer-programming
sense.)
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13.3 The origins of linear programming

George Danzig wrote his dissertation on two famous unsolved problems in mathematical statistics.
How did he come to solve these problems? He walked into class late and copied down the problems
he saw on the blackboard. He thought they were homework problems, and solved them.

After receiving his Ph.D., Dantzig was looking for a job. It happened to be during World War
II. He recalled, “ in order to entice me to not take another job, my Pentagon colleagues...challenged
me to see what I could do to mechanize the planning process. I was asked to find a way to more
rapidly compute a time-staged deployment, training and logistical supply program.... The military
refer to their various plans or proposed scheduled of training, logistical supply and deployment of
combat units as a program...the term ’program’ was used for linear programs long before it was
used as the set of instructions used by a computer to solve problems.” Working for the military,
Dantzig developed the notion of linear programs and his algorithm for it, the simplex algorithm.
It was kept secret until shortly after the war ended. (In Russia, Leonid Kantorovich had come
up with the notion shortly before Dantzig.)

Dantzig talked to von Neumann about this new idea. “I remember trying to describe to von
Neumann (as I would to an ordinary mortal) the Air Force problem. I began with the formulation
of the linear programming model in terms of activities and items, etc. He did something which
I believe was uncharacteristic of him. ‘Get to the point,’ he snapped at me impatiently....I said
to myself, ‘OK, if he wants a quickie, that’s what he’ll get.’ In under one minute I slapped on
the blackboard a geometric and algebraic version of the problem. Von Neumann stood up and
said, ‘Oh, that!’ Then, for the next hour and a half, he proceeded to give me a lecture on the
mathematical theory of linear programs.

At one point, seeing me sitting there with my eyes popping and my mouth open.... von
Neumann said ‘I don’t want you to think I am pulling all this out of my sleeve on the spur of the
moment like a magician. I have recently completed a book with Oscar Morgenstern on the theory
of games. What I am doing is conjecturing that the two problems are equivalent. The theory that
I am outlining is an analogue to the one we have developed for games.”’

Dantzig eventually shared his ideas with the mathematical community: “....There was a
meeting...in Wisconsin...attended by well-known statisticians and mathematicians like Hotelling
and von Neumann.... I was a young unknown and I remember how frightened I was with the idea
of presenting for the first time to such a distinguished audience the concept of linear programming.

After my talk, the chairman called for discussion. For a moment there was the usual dead
silence; then a hand was raised. It was Hotelling’s.... I must hasten to explain that Hotelling
was fat. He used to love to swim in the ocean and when he did, it is said that the level of the
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ocean rose perceptibly. This huge whale of a man stood up in the back of a room, his expressive
fat face took on one of those all-knowing smiles we all know so well. He said: ‘But we all know
the world is nonlinear.’ Having uttered this devastating criticism of my model, he majestically
sat down. And there I was, a virtual unknown, frantically trying to compose a proper reply.

“Suddenly another hand in the audience was raised. It was von Neumann. ‘Mr. Chairman,
Mr. Chairman,’ he said, ‘if the speaker doesn’t mind, I would like to reply for him.’ Naturally I
agreed. von Neumann said: ‘The speaker titled his talk “linear programming” and carefully stated
his axioms. If you have an application that satisfies the axioms, well, use it. If it does not, then
don’t,’ and he sat down.”

Dantzig and von Neumann have been vindicated. Linear programs are remarkably useful in
formulating a wide variety of problems. They often come up in resource-allocation problems,
such as the one we just discussed. But their application is much broader.

13.3.1 Terminology

Consider the LP min{cx : Ax ≥ b}.

• A vector x̂ that satisfies the constraints, i.e. for which Ax̂ ≥ b, is said to be a feasible
solution to the LP.

• The linear program is said to be feasible if there exists a feasible solution.

• The value of a feasible solution x̂ is cx̂.

• The value of the linear program is the minimum value of a feasible solution (since the linear
program is a minimization LP).

• The feasible solution x̂ is said to be an optimal solution if its value is that of the LP, i.e. if
x̂ achieves the minimum.

• The linear program is said to be unbounded if it is feasible but that there is no minimum—
this happens if, for any number t, there is a feasible solution whose value is less than
t.

These definitions can be adapted also to maximization linear programs, e.g. the value of
max{cx : Ax ≤ b}.

13.3.2 Linear programming in different forms

There are several ways to state the linear-programming problem.

Minimization/Maximization I used the form

min{c · x : Ax ≥ b} (13.1)

Suppose a linear-programming problem is given in form (13.1). Let c− = −c. Then minimizing
c · x is equivalent to maximizing c− · x, so the problem can be written instead as

max{c− · x : Ax ≥ b} (13.2)
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The value of the linear program is not the same, but the same solution x achieves the best value,
whichever criterion is used to define “best”.

Greater than or equal to/Less than or equal to Similarly, we use ≤ in the linear con-
straints, but we could use ≥. Let A− = −A and let b− = −b. Then the constraints Ax ≤ b are
equivalent to the constraints A−x ≥ b−, so the problem can be further rewritten as

max{c− · x : A−x ≥ b−} (13.3)

Allowing equality constraints It is also possible to require some of the constraints to be
linear equalities instead of linear inequalities. The equality constraint a · x = b is equivalent to
the pair of inequality constraints a · x ≤ b and a · x ≥ b.

No strict inequalities! Strict inequalities (e.g. a · x > b) are not allowed.

13.3.3 Integer linear programming

Note that there is nothing in a linear program min{c·x : Ax ≥ b} that requires that the variables
take on integer values. Moreover, there is no convenient way to impose that requirement using
linear constraints. Linear programming often yields solutions in which the variables are assigned
fractional values. (Recall the 1998 solution to the diet problem, which included, for example,
2.6426 ounces of beef liver.)

However, there are classes of linear programs that in fact are guaranteed to produce solutions
that are integral. The analysis of such linear programs uses linear algebra but is beyond the
scope of this book.

Moreover, people have studied the field of integer linear programming, in which one is allowed
to add integrality constraints. Such programs are generally much more difficult to solve compu-
tationally. In fact, integer linear programming is NP-hard. However, ordinary (fractional) linear
programming is an important tool in integer linear programming, indeed the most important.
Also, the field of approximation algorithms has developed to find integer solutions that are nearly
optimal. It relies heavily on the theory of linear programming.

13.4 Geometry of linear programming: polyhedra and ver-
tices

Let’s return to the diet problem. In order that I can draw the situation, we will consider only
two kinds of food: lard and rice. Let x be the number of pounds of lard, and let y be the number
of pounds of rice. The nutritional requirements are expressed by the constraints 10x + 2y ≥ 5,
x + 2y ≥ 1, x + 8y ≥ 2. The cost, which I want to minimize, is 13 cents per pound of lard, and
8 cents per pound of rice. Thus the objective function is 13x + 8y.



CHAPTER 13. THE LINEAR PROGRAM 617

x+8y! 2

10x+2y! 5

x+2y! 1

x = lbs. lard

y =
lbs. rice

C

ED

There are two other constraints: x ≥ 0 and y ≥ 0.
Consider a linear constraint. It divides the space R2 into two halves, which are called (natu-

rally) half-spaces. One half-space is allowed by the contraint, and the other is forbidden.
More generally, in the space Rn, a vector a and a scalar β determine a half-space {x ∈ Rn :

a · x ≥ β}
For example, consider the constraint y ≥ 0. One half-space (the allowed one) is the part

above the x-axis (including the x-axis itself), and the other half-space is the part below (again
including the x-axis).

x+8y! 2

10x+2y! 5

x+2y! 1

When you have several linear constraints, each one defining an allowed half-space, the feasible
region is the intersection of these half-spaces. The intersection of a finite set of half-spaces is called
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a polyhedron.
Usually we think of a polyhedron as a three-dimensional, regular object, such as a dodecahe-

dron.

However, the term is used for nonregular, high-dimensional structures—even infinite struc-
tures. Note that our rice-and-lard polyhedron is two-dimensional but infinite.

The surface of a a finite three-dimensional polyhedron has vertices (which are points, i.e.
zero-dimensional) and edges (which are line segments, i.e. one-dimensional), and faces, which are
two-dimensional. Most (but not all) higher-dimensional polyhedra also have vertices and edges.

Quiz 13.4.1: Give an example of a polyhedron that has no vertices.

Answer

The n-dimensional polyhedron consisting of a single half-space has no vertices if n ≥ 2. Even
simpler, the polyhedron in Rn defined by the intersection of the empty set of half-spaces is
all of Rn.

Let Ax ≥ b be a system of linear inequalities, and suppose A is m × n. Then the system
consists of m linear inequalities

a1x ≥ b1, . . . ,amx ≥ bm

where a1, . . . ,am are the rows of A, and b1, . . . , bm are the entries of b.
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Definition 13.4.2: A subsystem of linear inequalities is the system formed by a subset of these
inequalities.

For example, the first three inequalities form a subsystem, or the first and the last, or all of
them but one, or all of them, or none of them. We can write a subsystem as A!x ≥ b̂!, where
A! consists of a subset of rows of A, and b̂ consists of the corresponding entries of b.

Definition 13.4.3: W say a vector x̂ satisfies an inequality a ·x ≥ b with equality if a · x̂ = b.

The singular of vertices is vertex.

Definition 13.4.4: A vector v in the polyhedron P = {x : Ax ≥ b} is a vertex of P if there
is a subsystem A!x ≥ b! of Ax ≥ b such that v is the only solution to the matrix equation
A!x = b̂!.

Let n be the number of columns.

Lemma 13.4.5: A vector v in P is a vertex iff it satisfies n linearly independent linear inequal-
ities with equality.
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⎦

Consider our simplified diet problem. The point that satisfies x + 8y − 2, x + 2y = 1 is a
vertex.

x+8y! 2 x+8y! 2x+2y! 1
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Other vertices are: the point that satisfies 10x + 2y = 5, y = 0, the point that satisfies
x + 8y = 2, x = 0, and the origin.

What about the point that satisfies 10x + 2y = 5, x + 2y = 1? This point is not feasible, so
does not constitute a vertex.

x+8y! 2

10x+2y! 5

13.5 There is an optimal solution that is a vertex of the
polyhedron

Here is the nice thing about vertices. In looking for a solution to a linear program, we can
(usually) restrict our attention to vertices.

Theorem 13.5.1: Consider a linear program

min{cx : Ax ≥ b} (13.4)

Suppose that the columns of A are linearly independent and that the linear program has a value.
Then there is a vertex of the corresponding polyhedron P = {x : Ax ≥ b} that is an optimum
solution.

The good news is that many linear programs that arise in practice have the property that
the columns of A are linearly independent. The even better news is that there are ways of
transforming linear programs into equivalent linear programs that do have this property.

13.6 An enumerative algorithm for linear programming

The theorem suggests an approach to finding an optimum solution to a linear program min{cx :
Ax ≥ b} satisfying the conditions of Theorem 13.5.1: try all vertices. I call this algorithm the
enumerative algorithm because it enumerates the vertices.

In order to enumerate the vertices, the algorithm enumerates all n-subsets of the rows of A,
where n is the number of columns of A.

Here is a more careful description of the enumerative algorithm.
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• For each n-element subset R! of the rows of A, if the matrix A! formed by these rows is
invertible,

– let v be the solution to the corresponding system A!x = b!, and

– see if v satisfies all the constraints Ax ≥ b. If so, it is a vertex.

• Compute the objective value at each vertex, and output the vertex for which the objective
value is greatest.

Example 13.6.1: Consider the two inequalities 10x + 2y ≥ 5 and x + 2y ≥ 1. We turn these
into equalities 10x + 2y = 5, x + 2y = 1 and solve, obtaining x = 4/9 and y = 5/18. Thus
(x, y) is the vertex at the intersection of the lines 10x + 2y = 5, x + 2y = 1.

This algorithm requires only a finite number of steps. Suppose there are m constraints. The

number of n-element subsets is

(

m
n

)

, which is very big if m and n are big (and m is not very

close to n). Since the algorithm is required to consider all such subsets, it is hopelessly slow if m
is not very small.

13.7 Introduction to linear-programming duality

One of the ideas that Dantzig learned from von Neumann on that fateful day was linear-
programming duality. Long ago we saw:

The maximum size of a linearly independent set of vectors in V equals the minimum
size of a set of vectors that span V .

What we discuss now is a similar relationship between a minimization problem and a maximiza-
tion problem.

Corresponding to a linear program

min{c · x : Ax ≥ b} (13.5)

there is another linear program

max{b · y : yTA = c,y ≥ 0} (13.6)

The second linear program is called the dual of the first. In this context, the first would then be
called the primal linear program.

The LP Duality Theorem states that the value of the primal LP equals the value of the dual
LP. As is usually the case, proving equality of two quantities involves proving that each is no
bigger than the other. Here we prove that the value of the minimization LP is no less than that
of the maximization LP. This is called weak duality.
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Lemma 13.7.1 (Weak Duality): The value of the minimization LP (the primal) is greater
than than or equal to the value of the maximization LP (the dual).

Proof

Let x̂ and ŷ be any feasible solutions to the primal and dual linear programs, respectively.
Since ŷA = c, we know

c · x̂ = (ŷTA)x̂ = ŷT (Ax̂)

The last expression is a sum
∑

i

ŷ[i] (Ax̂)[i] (13.7)

where we use ŷ[i] and (Ax̂)[i] to refer to entry i of ŷ and Ax̂ respectively. Since x̂ is a
feasible solution to the primal LP, we know Ax̂ ≥ b. This means that, for each i,

(Ax̂)[i] ≥ b[i]

Multiplying both sides of this inequality by y[i] and using the fact that y[i] ≥ 0, we obtain

y[i] (Ax̂)[i] ≥ y[i] b[i]

Summing this inequality over all labels i, we obtain

∑

i

ŷ[i] (Ax̂)[i] ≥
∑

i

y[i] b[i]

The right-hand side is y · b. We have therefore proved that

c · x̂ ≥ y · b

!

Proving weak duality is part way to proving the full duality theorem. Suppose we could
show that there exists a primal feasible solution x̂ and a dual feasible solution ŷ such that the
corresponding objective function values c · x̂ and ŷ · b are equal.

• By weak duality, we know c · x̂ can be no less than ŷ · b, so it follows that c · x̂ is in fact
the minimum achievable—that this value is the value of the minimization LP.

• Similarly, we know ŷ · b can be no greater than c · x̂, so ŷ · b is the maximum.

Thus merely showing the existence of primal and dual feasible solutions whose values are equal
implies that those solutions are in fact optimal.

In order to derive a condition under which these values are equal, we more carefully examine
the argument showing that y[i] (Ax̂)[i] ≥ y[i] b[i].
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Lemma 13.7.2 (Complementary Slackness): Suppose x̂ and ŷ are feasible solutions for
the maximization and minimization LPs, respectively. If for each i either (Ax̂)[i] = b[i] or
y[i] = 0 then the values of these solutions are equal and the solutions are optimal.

Proof

In the proof of weak duality, we showed that

c · x̂ =
∑

i

ŷ[i] (Ax̂)[i] (13.8)

and we showed that, for each i,

y[i](Ax̂)[i] ≥ y[i] b[i] (13.9)

Note that

• if (Ax̂)[i] = b[i] then the left-hand side and the right-hand side are in fact equal, and

• if y[i] = 0 then the left-hand side and the right-hand side are both zero, so again they
are equal.

In either of these two cases,
y[i](Ax̂)[i] = y[i]b[i] (13.10)

Thus if for each i either (Ax̂)[i] = b[i] or y[i] = 0 then, by summing Equation 13.10 over
all i, we obtain

∑

i

y[i](Ax̂)[i] =
∑

i

y[i]b[i]

which by Equation 13.8 implies that c · x̂ = y · b. !

The complementary-slackness conditions give us a technique for proving optimality. We will
use this technique in the algorithm we present next. This algorithm plays a dual (heh) role: it
gives us an effective way to solve linear programs, and it essentially proves (strong) duality.

I use the hedge word essentially because there is another possibility. It could be that the
primal or dual is infeasible or unbounded. If the simplex algorithm discovers that the primal LP
is unbounded, it gives up.

13.8 The simplex algorithm

We present an algorithm due to George Dantzig, the simplex algorithm, that iteratively examines
vertices of the polyhedron to decide which is the best. There are nasty linear programs that make
the simplex algorithm visit all the vertices, but for most linear programs the number of vertices
visited is not too large, and the algorithm is consequently quite practical.

The simplex algorithm has been studied and refined over many years, and there are many
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tricks to make it run quickly. In this class, we will just study a very basic version—not one that
you would use in practice.

The simplex algorithm finds an optimal vertex using the following iterative approach. Once it
has examined one vertex v and is ready to examine another, the next vertex it visits must share
an edge with v. Moreover, and most important, the algorithm chooses the next vertex in a way
that guarantees that the objective function’s value on the new vertex is no worse than its value
on the current vertex. Ideally the value of the new vertex is in fact strictly better than the value
at the old vertex; this ensures that the algorithm has made progress in that iteration. Though
this tends to be true, we will see it is not guaranteed due to the way the algorithm represents
the current vertex.

This strategy raises a difficulty: What if the polyhedron associated with the linear program
does not have vertices? We’ll sidestep this issue by assuming the polyhedron does have vertices.
(It is sufficient to assume that the columns of A are linearly independent.)

Another difficulty: how does the algorithm find a vertex to start with? There is a technique
to doing this; we’ll address this later.

13.8.1 Termination

How does the algorithm know when it is done? The trick is to use linear-programming duality.
To the linear program min{c · x : Ax ≥ b} there corresponds a dual linear program,

max{y · b : yTA = c,y ≥ 0}. We proved weak duality, which stated that if x̂ and ŷ are feasible
solutions to the primal and dual linear programs respectively, and if cx̂ = ŷT b, then x̂ and ŷ
are optimal solutions. At each step, our version of the simplex algorithm will derive a feasible
solution x̂ to the original linear program and a vector ŷ such that cx̂ = ŷb. If ŷ is a feasible
solution then it and x̂ are optimal. If ŷ is not a feasible solution, the simplex algorithm will take
another step.

13.8.2 Representing the current solution

Let R be the set of row-labels of A (and the set of labels for b). Let n be the number of columns.
Like the enumerative algorithm, the simplex algorithm iterates over vertices by iterating over n-
row subsystems A!x ≥ b! that define vertices (i.e. such that the unique solution to A!x = b!
is a vertex). The algorithm keeps track of the current subsystem using a variable R! whose value
is an n-element subset of R.

There is not a perfect correspondence, however, between subsystems and vertices.

• For each subsystem A!x ≥ b! such that the rows of A! are linearly independent, there
is a unique vector x̂ satisfying the corresponding matrix equation A!x = b!. However, x̂
might not satisfy the other linear inequalities, and in this case fails to be a vertex.

• In some linear programs, several different subsystems give rise to the same vertex v This
phenomenon is called degeneracy. Geometrically, this means that v is at the boundary of
more than n half-spaces. For example, in three dimensions, the vertex would be at the
intersection of more than three planes.

We partially sidestep the first issue by requiring that the input to our simplex implementation
include a set R! that does correspond to a vertex. The simplex algorithm will do the rest by
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ensuring that whenever it takes a step, it maintains the invariant that R! corresponds to a
vertex.

Because of degeneracy, several iterations of the simplex algorithm might involve several dif-
ferent sets R! that all correspond to the same vertex. For this reason, some care is required to
ensure that the simplex algorithm does not get stuck in a loop.

13.8.3 A pivot step

An iteration of the simplex algorithm is called a pivot step. We now describe a pivot step in
detail.

Assumes R! is a set of n row-labels of A, that the corresponding rows of A are linearly
independent, and that the corresponding vector x̂ is a vertex.

Extract the subsystem Let A! be the submatrix of A consisting of the rows whose labels are
in R!. Let b! be the subvector of b consisting of the entries whose labels are in R!.

A_square = Mat((R_square, A.D[1]), {(r,c):A[r,c] for r,c in A.f if r in R_square})
b_square = Vec(R_square, {k:b[k] for k in R_square})

Find the location of the current vertex Solve the system A!x = b! to obtain the current
vertex x̂.

x = solve(A_square, b_square)

Note that, for every r ∈ R!,
(Ax̂)[r] = b[r] (13.11)

Find a possibly feasible solution to the dual LP Solve the system y!A! = c. Let ŷ! be
the solution.

y_square = solve(A_square.transpose(), c)

Note that R! is the label-set of ŷ!. Let ŷ be the vector with domain R derived from ŷ! by
putting zeroes in for each label in R that is not in the domain of R!. In Python, we would
write

y = Vec(R, y_square.f) # uses sparsity convention

Therefore, for every r in R but not in R!,

y[r] = 0 (13.12)

If every entry of ŷ is nonnegative then ŷ is a feasible solution to the dual linear program.
Moreover, in this case by Equations 13.11 and 13.12 and the Complementary Slackness
Lemma, ŷ and x̂ are optimal solutions to their respective linear programs. The simplex
algorithm is done.
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if min(y.values()) >= 0: return ('OPTIMUM', x) #found optimum!

Otherwise, we must select a direction in which to take a step. Let r− be a label such that entry
r− of ŷ is negative.1

R_leave = {i for i in R if y[i] < 0} #labels at which y is negative
r_leave = min(R_leave, key=hash) #choose first label where y is negative

Let d be a vector whose label-set is R and such that entry r− is 1 and all other entries are
zero. Let w be the unique solution to A!x = d.

d = Vec(R_square, {r_leave:1})
w = solve(A_square, d)

Moving in the direction w will decrease the objective function: for any positive number δ,

c·(x̂+δw)−c·x̂ = δ(c·w) = δ (ŷTA)·w = δ ŷT (Aw) = δ ŷTd = δ
∑

i

y[i]d[i] = δ y[r−] < 0

Moreover, for any row ar of A! such that r ̸= r−, since dr = 0,

ar · w = 0

so
ar · (x̂ + δw) = ar · x̂ + δ0 = ar · x̂ = br

so the corresponding inequality ar · x ≥ br remains tight. It remains to choose a value for
δ.

Let R+ be the set of labels of rows ai of A for which ai · w < 0.

Aw = A*w # compute once because we use it many times
R_enter = {r for r in R if Aw[r] < 0}

If R+ is the empty set then the linear program’s objective value is infinity. The simplex algorithm
is done.

if len(R_enter)==0: return ('UNBOUNDED', None)

Otherwise, for each r in R+, let

δr =
ar · x̂− br

ar · w
Let δ = min{δr : r ∈ R+}. Let r+ be a label2 such that δr+ = δ.

1In order to avoid getting into an infinite loop, we require that r− be the first such label in sorted order.
2In order to avoid getting into an infinite loop, we require that r+ be the first such label in sorted order.
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Ax = A*x # compute once because we use it many times
delta_dict = {r:(b[r] - Ax[r])/(Aw[r]) for r in R_enter}
delta = min(delta_dict.values())
r_enter = min({r for r in R_enter if delta_dict[r] == delta}, key=hash)[0]

Remove r− from R! and add r+ to R!.

R_square.discard(r_leave)
R_square.add(r_enter)

The simplex algorithm consists of a sequence of such pivot steps. Eventually,3 simplex either
finds optimal solution is found or discovers that the LP is unbounded.

The algorithm outlined above is given in procedures simplex step and optimize in the
module simplex. There is one significant difference: in order for the algorithm to work with
floating-point arithmetic, we consider a number to be negative if it is “negative enough”, less
than, say, −10−10.

13.8.4 Simple example

Let’s walk through the mini-diet problem. The constraints are:

C : 2 ∗ rice + 10 ∗ lard ≥ 5

D : 2 ∗ rice + 1 ∗ lard ≥ 1

E : 8 ∗ rice + 1 ∗ lard ≥ 2

rice-nonneg : rice ≥ 0

lard-nonneg : lard ≥ 0

which can be written as Ax ≥ b where A and b are as follows:

A =

rice lard
C 2 10
D 2 1
E 8 1

lard-nonneg 0 1
rice-nonneg 1 0

b =

C 5
D 1
E 2

lard-nonneg 0
rice-nonneg 0

The objective function is c · x where c =
rice lard
1 1.7

We will use as the starting vertex the point for which the inequalities E and rice-nonneg are
tight, i.e. the point satisfying the equations

8 ∗ rice + 1 ∗ lard = 2

1 ∗ rice = 0
3The choice of r− and r+ can be shown to ensure that simplex never gets stuck in an infinite loop.
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Thus R! ={E, rice-nonneg}, and A! and b! are

A! =
rice lard

E 8 1
rice-nonneg 1 0

b! =
E 2

rice-nonneg 0

We solve the equation A!x = b!, and get the solution

x̂ =
rice lard
0.0 2.0

We solve the equation yT
!A = c and obtain as the solution

ŷ! =
rice-nonneg E

-12.6 1.7

We fill in the remaining entries of ŷ with zeroes, obtaining the vector

ŷ =
rice-nonneg lard-nonneg C D E

-12.6 0 0 0 1.7

We select the leaving constraint to be rice-nonneg since the corresponding entry of ŷ is negative.
(Ordinarily, there could be more than one such entry.)

Now we select the direction w in which to move. Let d be the R!-vector whose only nonzero is
a 1 in the entry corresponding to the leaving constraint. Let w be the vector such that A!w = d,

namely: w =
rice lard
1.0 -8.0

Let us verify that replacing x̂ with x̂ + δw

1. improves the value of the objective function,

2. does not violate the leaving constraint, and

3. preserves the tightness of the other constraints in R!.

The change in the objective function is δ(c · w), which is δ(1 · 1.0 + 1.7 · −8), which is −12.6δ.
Since the change is negative (for positive δ), the value of the objective function goes down; since
we are trying to minimize the value of the objective function, this would be progress.

We chose d so that ar · w = 1 where ar is the row of A corresponding to the leaving
constraint. Therefore the change in the left-hand side of the constraint ar · x ≥ br is δ, so the
left-hand increases, so the constraint gets looser as a result.

We chose d so that, for any other constraint ar · x ≤ br where r ∈ R!, ar · w = 0 so the
change does not affect the left-hand side of such a constraint. Thus the other constraints in R!
remain tight.

Next, we find out which constraints not in R! could become tight as a result of the change.
For any such constraint ar · x ≤ br, the left-hand side decreases only if ar · w is negative. We
therefore want to determine which constraints have this property. We compute Aw, obtaining

Aw =
rice-nonneg lard-nonneg C D E

1.0 -8.0 -78.0 -6.0 0.0
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In this case, all the constraints not in R! have the property. To find out which of them will
become tight first (as we increase δ), we compute the ratios

b[r] − (Ax)[r]

(Aw)[r]

for each such constraint. For each constraint, the corresponding ratio is the amount δ would
have to be in order for the constraint to become tight. The ratios are:

{'C': 0.19, 'D': 0.17, 'lard-nonneg': 0.25}

Thus the constraint that would first become tight is the D constraint. Therefore this constraint
should enter R!. We therefore remove rice-nonneg from R! and add D. Now R! ={D,E}.

Solving the new system A!x = b! yields

x̂ =
rice lard
0.17 0.67

Solving the system yT
!A! = c gives us

y! =
D E
2.1 -0.4

Filling in the other entries of ŷ with zeroes, we get

ŷ =
rice-nonneg lard-nonneg C D E

0 0 0 2.1 -0.4

so the leaving constraint should be E.

The move vector w is
rice lard
0.17 -0.33

The constraints that could become tight are C and

lard-nonneg. To see which would become tight first, we calculate the corresponding ratios:

{'C': 0.67, 'lard-nonneg': 2.0}

and conclude that C should be the entering constraint. We update R! by removing E and adding
C. Now R! consists of C and D. We solve A!x = b!, obtaining

x̂ =
rice lard
0.28 0.44

We solve y!A = c, obtaining

y! =
C D

0.13 0.37

and fill the remaining entries of ŷ with zeroes, obtaining

ŷ =
rice-nonneg lard-nonneg C D E

0 0 0.13 0.37 0



CHAPTER 13. THE LINEAR PROGRAM 630

Since this is a nonnegative vector, ŷ is a feasible solution to the dual, so the primal and dual
solutions (which have the same value, 1.03) are optimal for their respective linear programs.

13.9 Finding a vertex

You’re all set. You’ve formulated your favorite problem as a linear program min{c ·x : Ax ≥ b},
you’ve learned how simplex works, you even have working simplex code—all that’s left is to run
it. You look at the arguments to optimize: the matrix A, the right-hand-side vector b, the
objective function vector c, and... what’s this? The set R! of labels of row-labels that specify
the starting vertex? But you don’t even know a single vector in the polyhedron {x : Ax ≥ b},
much less a vertex!

Never fear. Simplex can help with that. The idea is to transform your linear program into a
new, slightly larger linear program for which you can easily compute a vertex and whose solution
gives you a vertex of the original. Suppose the matrix A is m× n. Since we assume the columns
of A are linearly independent, m ≥ n.

The algorithm is illustrated in this diagram:

n

m-n

n

[ [A
{R!

n

m-n

n

[A
m-n

[
m-n

1
1

1
1
1

1
1

1
1
1

[ [x [[b!
[
x

[!x* [[b00
0
0
0

Let R! be an n-element subset of the row-labels. Let x̂ be the vector that satisfies the corre-
sponding constraints with equality.

A_square = Mat((R_square, A.D[1]),
{(r,c):A[r,c] for r,c in A.f if r in R_square})

b_square = Vec(R_square, {k:b[k] for k in R_square})
x = solve(A_square, b_square)

(If x̂ happens to satisfy all of the constraints then it is a vertex, but this is very unlikely.) Now
the algorithm creates m − n new variables, one for each constraint whose label r is not in R!;
for each new variable, the algorithm creates a new constraint that simply requires that variable
to be nonnegative.

For a row-label r not in R!, we use r∗ to denote the new label with which we identity the
new variable and the new constraint. We use xr∗ to denote the new variable corresponding to
contraint r. Then the new constraint is

r∗ : xr∗ ≥ 0
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The algorithm also adds the new variable xr∗ into constraint r: whereas before constraint r had
the form

r : a · x ≥ b[r]

the algorithm changes it to
r : a · x + xr∗ ≥ b[r]

If the original constraint is not satisfied by x̂ (a · x̂ is smaller than b[r]), the new constraint
can be satisfied by assigning a big enough value to xr∗ . In fact, assigning exactly b[r] − a · x̂ to
xr∗ means that the new constraint is satisfied with equality. On the other hand, if the original
constraint was satisfied by x̂ (a · x̂ is at least b[r]) then the new constraint remains satisfied if
we assign zero to xr∗ , so the constraint

r : xr∗ ≥ 0

is satisfied with equality.
Here is the code to create the new system of linear inequalities. It uses a procedure new name(r)

to obtain the label r∗ from r, and a utility procedure dict union to compute the union of dic-
tionaries.

A_x = A*x
missing = A.D[0].difference(R_square) # set of row-labels not in R_square
extra = {new_name(r) for r in missing}
f = dict_union(A.f,

{(r,new_name(r)):1 for r in missing},
{(e, e):1 for e in extra})

A_with_extra = Mat((A.D[0].union(extra), A.D[1].union(extra)), f)
b_with_extra = Vec(b.D.union(extra), b.f) # use sparsity convention

Originally there were n variables, so R! had n row-labels. The algorithm has added m − n
variables, so the algorithm must add m−n row-labels to R!, getting a new set R∗

!. The algorithm
follows the logic outlined above:

• if constraint r is not satisfied by x̂ then include r in R∗
!, and

• if constraint r is satisfied by x̂ then include r∗ in R∗
!.

The result is that, in the augmented linear program, the constraints whose labels are in R∗
! define

a vertex. Here is the code:

new_R_square = R_square |
{r if A_x[r]-b[r] < 0 else new_name(r) for r in missing}

The algorithm can use this vertex as the starting vertex and run simplex. And what is to be
minimized? The goal of running simplex is to find a vertex in which all of the new variables xr∗

are set to zero. The objective function is therefore set to be the sum of all the new variables.

c = Vec(A.D[1].union(extra), {e:1 for e in extra})
answer= optimize(A_with_extra, b_with_extra, c, new_R_square)
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If simplex finds a solution for which the objective value equals zero, the solution corresponds to
a vertex of the original linear program.

basis_candidates=list(new_R_square | D[0])
R_square.clear()
R_square.update(set(basis_candidates[:n]))

If not, then the original system of linear inequalities must have no solutions.
The entire procedure find vertex is included in module simplex.

13.10 Game theory

The goal of game theory is to model strategic decision-making. The topic is important, and very
broadly applied: early on in military planning, more recently in biology, auctions, even Internet
routing.

We will look at a very simple model:

• two players

• complete information

• deterministic games

In addition, we will assume that the game is very brief: each player has one move, and the players
play simultaneously.

What does this have to do with familiar games?
A scientist, Jacob Bronowski, who was famous in my day for a TV series called The Ascent

of Man, recalls a conversation with von Neumann:

I naturally said to him, since I am an enthusiastic chess player, “You mean the theory
of games like chess.” “No, no”, he said. “Chess is not a game. Chess is a well-defined
form of computation. You may not be able to work out the answers, but in theory
there must be a solution, a right procedure to any position. Now real games,” he
said, “are not like that at all. Real life is not like that. Real life consists of bluffing,
of little tactics of deception, of asking yourself what is the other man going to think
I mean to do. And that is what games are about in my theory.”

It can be argued that the goal of game theory is to predict how people will respond to situations.
However, game theory requires us to make two assumptions about people: that they are greedy,
and that they are suspicious. By ‘greedy”, I mean that a person will seek to get the most he or
she can. By “suspicious”, I mean that a person will assume that the other player is also greedy.

The strategy involved in a complicated strategy game like chess was not von Neumann’s focus.
In a theoretical sense, and perhaps you will see that, it is possible to put chess in von Neumann’s
model, but the game then becomes theoretically trivial.

We will call the two players the row player, and the column player. Let m be the number
of moves available to the row player, and let k be the number of moves available to the column
player.

The game can be captured by two m × k matrices, the row-player payoff matrix R and the
column-player payoff matrix C. Here’s how to interpret these:
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Suppose the row player chooses move i and the column player chooses move j. Then
the row player ends up getting Rij dollars and the column player ends up getting Cij

dollars.

It greatly simplifies matters to consider zero-sum games. A game is zero-sum if money that the
row player earns comes from the column player, and vice versa. Many games are like this. It
means, in particular, that in any given play of the game, one player wins and one player loses.
(Well, ties are allowed.)

More formally, in a zero-sum game, for any moves i, j, the payoff to the row player is the
negative of the payoff to the column player.

Under this restriction, one matrix suffices to capture the game. If I tell you, for example, the
column-player payoff matrix is C, you can infer that the row-player payoff matrix is −C. Now
you can see why such a game is called a zero-sum game: for any moves i, j, the sum of the payoffs
to the two players is zero. From now on, we’ll use A to denote the column-player payoff matrix.

c d
a 100 1
b -2 -1

In this game, the row player has two possible moves, a and b, and the column

player has two possible moves, c and d. The payoffs indicated are payoffs to the column player.
The column player might see the 100 and get greedy: “If I choose move c, I have a chance of

getting 100.” However, if the column player were to reason about his opponent, he would realize
that he only gets the 100 if the row player chooses move a, which would not happen if the row
player is greedy. There is no reason for the row player to choose move a, so the column player
should assume the row player will choose move b. In this case, the possible outcomes for the
column player are -2 and -1. The column player should choose move d to obtain a better (i.e.
less worse) outcome.

Assuming the players play “rationally” (i.e. greedily and suspiciously), therefore, we can
predict the outcome of the game. The moves will be b and d, and the payoff will be -1. We define
the value of the game to be the payoff when both players play rationally. Note that in this game
the value does not change if you replace the 100 with 1000 or a million.

The thinking of the column player can be understood as follows: “I want to choose my
strategy to maximize my payoff under the most detrimental move available to my opponent.
That is, assume the opponent can guess my strategy, and choose his best counterstrategy. I want
to choose my strategy to make his counterstrategy least effective against me.”

That is, the column player chooses according to

max
column strategy j

(

min
row strategy i

Aij

)

This is called maximin.
The row player chooses similarly. The idea is the same but since the matrix A has payoffs to

the column player, the row player prefers entries that are smaller. Thus the row player chooses
according to

min
row strategy i

(

max
column strategy j

Aij

)

This is called minimax.
Now consider paper-scissors-rock. Here is the payoff matrix A.
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paper scissors rock
paper 0 1 -1

scissors -1 0 1
rock 1 -1 0

What would game theory predict would happen here? If there was a compelling reason for
the row player to always choose paper, then the column player would know this reason, and
therefore predict this choice, and therefore always choose scissors. The same holds for any move
available to the row player.

The strategy of choosing one move and sticking to it is called a pure strategy. If the players
are restricted to pure strategies, game theory has nothing to say in this situation.

Suppose the column player tries to employ maximin reasoning. “If I choose paper and my
opponent knows it, he will choose scissors and will therefore win (payoff -1). If I choose scisssors....
If I choose rock..... No matter which pure strategy I choose, maximin predicts a payoff of -1.”

Instead, game theory considers mixed strategies. A mixed strategy is a probability distribution
of pure strategies.

We can adapt the maximin/minimax idea to mixed strategies. The column player considers
each mixed strategy available to him. For each mixed strategy, he figures out his opponent’s
best counterstrategy. It suffices to consider the opponent’s pure strategies.4 He then chooses his
strategy to make his opponent’s counterstrategy least effective.

In this case, the payoff is not a single entry of the matrix, but the expected value under the
random distribution. Thus the column player considers the following.

max
mixed strategies x

(

min
move i

(expected payoff for x and i)
)

Here x is a probability distribution over column-player moves. That is, for j = 1, . . . , k, entry j
of x is the probability of selecting move j. By “expected payoff for x and i”, I mean the expected
payoff when the row player chooses move i and the column player chooses a move according to
the probability distribution x. Let Ai· be row i of A. Then the expected payoff is Ai· ·x. (If the
column player chooses move j, the payoff is Aij , and the probability of this choice is x[j], so the
expectation is

∑

j x[j]Aij , which is x · Ai·.
The set of probability distributions over column-player moves is infinite, so the maximum is

over an infinite set, but that need not bother us. We can characterize this set as {x ∈ Rk :
1 · x = 1,x ≥ 0} where 1 is the all-ones vector.

Consider the column-player mixed strategy in which each move is chosen with probability
1/3. Suppose the row player chooses paper. The payoffs for the corresponding row are 0, 1,
and -1 (corresponding respectively to the column-player’s choices of paper, scissors, rock. The
expeccted payoff in this case is 1

3 · 0 + 1
3 · 1 + 1

3 · (−1), which is zero.
If the row player instead chooses scissors, the expected payoff is again zero. The same holds

if the row player chooses rock. Thus the mixed strategy x = (1/3, 1/3, 1/3) results in a payoff of
0.

Now let y be the row-player’s mixed strategy in which each move has probability 1/3. By
the same kind of calculation, one can show that this leads to a payoff of 0.

4Restricting the opponent’s strategy to be pure in this context yields the same result as allowing it to be mixed.
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We haven’t yet proved it but x and y will turn out to be the best mixed strategy for the
column player and the row player, respectively. Thus, for this game, we have the following
property.

Property 1: Maximin and minimax predict the same expected payoff.

Property 1 shows that, assuming the row player and column player both analyze the game
using minimax/maximin reasoning, they agree on the value of the game.

Property 2: Neither player gains any advantage by diverging from his strategy.

This shows that minimax reasoning is correct. If the row player sticks to her minimax
strategy, the column player would be foolish to do anything other than his maximin strategy,
because diverging would lead to a poorer expected payoff. If the column player sticks to his
maximin strategy, the row player would be foolish to diverge.

Assuming the row player sticks to the equal-probabilities strategy, the column player can only
do worse by choosing a different strategy, and vice versa. The pair of mixed strategies, one for
the row player and one for the column player, is called an equilibrium because the greed of the
players keeps the players using these strategies.

13.11 Formulation as a linear program

The most fundamental contribution of von Neumann to game theory is his minimax theorem: for
any two-person, zero-sum game of complete information, minimax and maximin give the same
value, and they form an equilibrium.

The theorem was proved over fifteen years before linear programming. However, in hindsight
we can see that the minimax theorem is a simple consequence of linear programming duality.

The trick is to formulate minimax and maximin as linear programs.
The column player seeks to select a mixed strategy, i.e. a probability distribution among the

moves 1 through k, i.e. a probability distribution is an assignment of nonnegative numbers to
1 through k such that the numbers sum to one. That is, he must select a k-vector x such that
x ≥ 0 and 1 · x = 1, where 1 denotes the all-ones vector.

Suppose λ is the expected payoff that the column player wants to guarantee. He can achieve
that using strategy x if, for every pure strategy of the row player, the expected payoff is at least
λ. Let a1, . . . ,am be the rows of the payoff matrix. Then the expected payoff when the row
player chooses move i is ai ·x. Thus the column player can achieve an expected payoff of at least
λ if ai ·x ≥ λ for i = 1, . . . , m. Since the goal of the column player is to choose a mixed strategy
x that maximizes the expected payoff he can achieve, we get the following linear program:

maxλ : x ≥ 0,1 · x = 1,ai · x ≥ λ for i = 1, . . . , m

Let b1, . . . , bk be the columns of A. The analogous linear program for the row player is

min δ : y ≥ 0,1 · y = 1, bj · y ≥ λ for j = 1, . . . , k

Finally, some simple math shows that these two linear programs are duals of each other, so
they have the same value.5 A little more math proves the equilibrium property as well.

5Using this fact, for the game we analyzed earlier, since we found a column-player mixed strategy x and a
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Game theory has been very influential in economics, and several Nobel prizes have been
awarded for work in the area.

It has also (apparently) been influential in thinking about defense. The biggest “game” in
the the US in post-WWII years was the nuclear standoff with the Soviet Union. The center of
such thinking was the RAND corporation, which came up earlier when we discussed railroad
interdiction. Some lines of a folk song from the 1960’s, written by Malvena Reynolds:

The RAND Corporation’s the boon of the world.
They think all day long for a fee.
They sit and play games about going up in flames.
For counters they use you and me....

13.12 Nonzero-sum games

Games that are not zero-sum are harder to analyze. The Prisoner’s Dilemma is a now classic
example. John Nash won the Nobel prize for formulating a concept now called Nash equilibrium
and proving that every game had such an equilibrium.

13.13 Lab: Learning through linear programming

In this lab, we will re-examine the breast cancer data set with a new learning algorithm, one
based on linear programming.

As in the previous machine-learning lab, the goal is to select a classifier. This time the
classifier will be specified by a vector w and a scalar γ. The classifier is then as follows:

C(x) =

{

malignant if x · w > γ
benign if x · w < γ

In an attempt to find the classifier that is most accurate, our goal is to select w and γ
so that the classification is as correct as possible on the training data.

Recall that the training data consists of vectors a1, . . . ,am and scalars d1, . . . , dm. For
each patient ID i, the vector ai specifies the features of the image for that patient, and di
indicates whether the cells are malignant (+1) or benign (-1).

Suppose for a moment that there exists a classifer in our hypothesis class that performs
perfectly on the training data. That is, there is a vector w and scalar γ such that

• ai · w > γ if di = +1 and

• ai · w < γ if di = −1.

row-player mixed strategy y that each yielded the same expected payoff, weak duality shows that each is an
optimal mixed strategy.



CHAPTER 13. THE LINEAR PROGRAM 637

So far we don’t say by how much ai · w must be greater than or less than γ. It should be
by some nonzero amount. Say the difference is 1

10 . By multiplying ai and γ by ten, we can
in fact ensure that

• ai · w ≥ γ + 1 if di = +1 and

• ·ai · w ≤ γ − 1 if di = −1.

We could formulate the problem of finding such a w and γ in terms of linear inequalities.
Consider γ and the entries of w as variables. For each patient i, we obtain a linear constraint,
either

ai · w − γ ≥ 1

if di = +1, or
ai · w − γ ≤ −1

if di = −1.
Then any solution that obeys these linear inequalities would yield a classifier that per-

formed perfectly on the training data.
Of course, this is generally too much to ask. We want to allow the classifier to make

errors on the training data; we just want to minimize such errors. We therefore introduce
a new “slop” variable zi for each constraint to help the constraint be satisfied. If di = +1
then the new constraint is

ai · w + zi ≥ γ + 1 (13.13)

and if di = −1 then the new constraint is

ai · w − zi ≤ γ − 1 (13.14)

Since we want the errors to be small, we will have the linear program minimize
∑

i zi. We
also require that the slop variables be nonnegative:

zi ≥ 0 (13.15)

Once we obtain an optimal solution to this linear program, we can extract the values for
w and γ, and test out the classifier on the remaining data.

13.13.1 Reading in the training data

To read in data, use the procedure read_training_data in the module cancer_data, which
takes two arguments, a string giving the pathname of a data file and a set D of features. It
reads the data in the specified file and returns a pair (A, b) where:

• A is a Mat whose row labels are patient identification numbers and whose column-label
set is D

• b is a vector whose domain is the set of patient identification numbers, and b[r] is 1 if
the specimen of patient r is malignant and is -1 if the specimen is benign.
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For training, use the file train.data. Once you have selected a classifier, you can test it on
the data in the file validate.data.

If the second argument is omitted, all features available will be used. The features
available are:

’radius(x)’, ’texture(x)’, ’perimeter(x)’, ’area(x)’
where x is mean, stderr, or worst.

Since the linear program implementation is rather slow, I recommend using a subset of
the features, e.g. {'area(worst)','smoothness(worst)', 'texture(mean)'}.

13.13.2 Setting up the linear program

Since I will provide an implementation of simplex that solves a linear program, the main
challenge is in setting up the linear program. You need to create a matrix A, a vector b,
and a vector c so that the desired linear program is min{c · x : Ax ≥ b}.

Column-labels of A

The column-labels of A and the domain of c will be the names of variables in our linear
program. The variables are: the value γ, the entries of w, and the slop variables zi. We
must choose a label for each variable. For γ, we use the label 'gamma'.

The entries of w correspond to features. We therefore use the feature names as the labels,
e.g. 'area(worst)'.

Finally, we consider the slop variables zi. Since there is one for each patient ID, we use
the patient ID as the label.
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Row-labels of A

The rows of A correspond to constraints. There are two kinds of constraints: the main
constraints (Inequalities 13.13 and 13.14) and the nonnegativity constraints on the slop
variables (Inequality 13.15).

• The label of a main constraint should be the corresponding patient ID.

• There is one slop variable zi per patient ID i. It is convenient to use the negative −i
of the patient ID as the label of the corresponding nonnegativity constraint

13.13.3 Main constraints

To construct A, we will create a row-dictionary and then use matutil.rowdict2mat.
First we focus on the main constraints for malignant samples. Inequality 13.13 can be

rewritten as
ai · w + zi − γ ≥ 1

which tells us that the corresponding row should be as follows:

• the coefficients of the features are the entries of ai,

• the coefficient of zi should be one, and

• the coefficient of γ should be negative one.

The right-hand side of the inequality is 1, so we should set bi = 1.
Next consider a constraint for benign samples. Multiplying both sides of Inequality 13.14

by -1 yields
−ai · w + zi ≥ 1 − γ

which can be rewritten as
−ai · w + zi + γ ≥ 1

which tells us that the corresponding row should be as follows:

• the coefficients of the features are the entries of −ai (the negative of ai)

• the coefficient of zi should be one, and

• the coefficient of γ should be one.

The right-hand side of the inequality is 1, so we should set bi = 1.
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Task 13.13.1: Write a procedure
main constraint(i, a i, d i, features)

with the following spec:

• input: patient ID i, feature vector a_i, diagnosis d_i (+1 or -1), and the set
features

• output: the vector vi that should be row i of A.

Try out your procedure on some data. Check that the resulting vector vi is correct:

• The entry for a feature label should be positive if d_i is +1, negative if d_i is -1.

• The entry for label i is 1.

• The entry for label 'gamma' is negative if d_i is +1, positive if d_i is -1.

13.13.4 Nonnegativity constraints

For each patient ID i, there is a variable zi whose label in our scheme is the integer i, and
a constraint zi ≥ 0. The row of A corresponding to this constraint should have a one in the
position of the column labeled i, and zeroes elsewhere.

13.13.5 The matrix A

Task 13.13.2: Write a procedure
make matrix(feature vectors, diagnoses, features)

with the following spec:

• input: a dictionary feature_vectors that maps patient IDs to feature vectors, a
vector diagnoses that maps patient IDs to +1/-1, and a set features of feature
labels

• output: the matrix A to be used in the linear program.

The rows of A labeled with positive integers (patient IDs) should be the vectors for the
main constraints. Those labeled with negative integers (negatives of patient IDs) should be
the vectors for the nonnegativity constraints.

13.13.6 The right-hand side vector b

The domain of b is the row-label set of A, which is: the patient IDs (the labels of the main
constraints) and the negatives of the patient IDs (the labels of the nonnegativity constraints).
The right-hand side for a main constraint is 1, and the right-hand side for a nonnegativity
constraint is 0.
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Task 13.13.3: Write a procedure that, given a set of patient IDs, returns the right-hand
side vector b.

13.13.7 The objective function vector c

The domain of the vector c is the same as the set of column labels of A. Our goal is to
minimize the sum

∑

i zi of slop variables, and the label of a slop variable is the patient ID
i, so c maps each patient ID i to 1 (and is zero elsewhere).

Task 13.13.4: Write a procedure that, given a set of patient IDs and feature labels, returns
the objective function vector c.

13.13.8 Putting it together

Task 13.13.5: Using the procedures you defined, construct the matrix A and the vectors
b and c.

13.13.9 Finding a vertex

Our simplex implementation requires, in addition to A, b, and c, the specification of
a vertex of the polyhedron {x : Ax ≥ b}. Finding a vertex involves solving a re-
lated (and somewhat larger) linear program. The module simplex defines a procedure
find_vertex(A,b,R_square).

Let n be the number of columns of A (i.e. the number of variables). Initialize R_square
to be the set consisting of the patient IDs plus enough negatives of patient IDs to form a
set of size n. The procedure find_vertex(A,b,R_square) will mutate R_square. When
the procedure terminates, if it is successful then R_square will be a set of row-labels of A
defining a vertex. (The procedure returns True if it was successful.)

Most of the work of find_vertex is in running the simplex algorithm. The simplex
algorithm can take several minutes (or many minutes, if many features are used). The
procedure prints out the current iteration number and (in parentheses) the current value of
the solution. For this application of the simplex algorithm, the value should go (nearly) to
zero.

13.13.10 Solving the linear program

Once find_vertex terminates, R_square is ready to be used to solve the linear program. The
module simplex contains a procedure optimize(A,b,c,R_square). It returns the optimal
solution x̂ (unless the linear program value is unbounded). It also mutates R_square.

13.13.11 Using the result

Recall that the optimal LP solution x̂ includes values for w and for γ.
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Task 13.13.6: Define gamma to be the value of entry 'gamma' of the optimal LP solution.
Define w to be the vector consisting of the feature entries of the optimal LP solution.

Define a classification procedure C(feature_vector) that returns +1 if w*feature vector
> gamma and -1 otherwise.

Task 13.13.7: Test your classification procedure on the training data. How many errors
does it make?

Task 13.13.8: Load the validation data, and test your classification procedure on that.
How many errors? (Using all the features, I got 17 errors. Your mileage may vary, especially
since you will be using fewer features.)

13.14 Compressed sensing

A version of Gaussian elimination was discussed in a Chinese text two thousand years ago.
Gibbs’ lecture notes on vectors were printed in the 1880’s. The method of orthogonalization was
published by Gram in 1883 but dates back to the work of Laplace and Cauchy. A method for
least squares was published by Legendre in 1806. The Fast Fourier Transform was developed by
Cooley and Tukey in 1965 but apparently Gauss got there first, in 1805. The algorithm that
is most used these days for computing the singular value decomposition as published by Golub
and Kahan in 1965, but the singular value decomposition itself dates back at least to Sylvester’s
discovery in 1889. Much work has been done in wavelets recently, in the context of graphics and
digital signal processing, but Haar developed his basis in 1909.

At last, at the end of this book, we briefly outline a computational idea that dates from the
present century.

13.14.1 More quickly acquiring an MRI image

A Wired magazine article6 gives us this story about a two-year old patient named Bryce: “[The
pediatric radiologist] needed a phenomenally high-res scan, but if he was going to get it, his
young patient would have to remain perfectly still. If Bryce took a single breath, the image
would be blurred. That meant deepening the anesthesia enough to stop respiration. It would
take a full two minutes for a standard MRI to capture the image, but if the anesthesiologists
shut down Bryces breathing for that long, his glitchy liver would be the least of his problems.”

Spoiler alert: Bryce was saved. Instead of using a traditional MRI scan, the radiologist used
a shortened scan that required only forty seconds. The data acquired during that time, however,
was not enough to precisely specify an image.

If an image is an n-vector over R, then acquiring the image requires that the sensors collect and
report n numbers; otherwise, there are an infinitude of vectors consistent with the observations.
Or so our understanding of dimension would lead us to believe.

6February 22, 2010
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That there must be a loophole is indicated by the fact that (as you have experienced) a
typical image can be compressed. You computed the coordinate representation of an image in
terms of an appropriate basis, and you zeroed out the small-magnitude entries of the coordinate
representation. The result was a representation of the image that was perceptually close to the
original. We interpret the effectiveness of this kind of compression as an indication that real
images tend to be special, that when represented in terms of the right basis, they are sparse.

The idea of compressed sensing is that, if that is so, then why go to the trouble of acquiring
all these numbers? Can we rather exploit the fact that real images are compressible to make
fewer measurements and obtain the same image?

The same idea, of course, applies to other signals: audio, seismic data, and so on. In this
brief, informal description, we will imagine that the signal is an image, and that the basis in
which compression can be done is the two-dimensional Haar wavelet basis.

13.14.2 Computation to the rescue

There ain’t no such thing as a free lunch. To get the same data from fewer observations, you have
to pay... in computation. The process of obtaining an image (or whatever) from fewer numbers
requires lots of computation. However, there are times when acquiring data is expensive—and
computational power is just getting cheaper.

The ideas underlying the computation are familiar to readers of this book: change of basis
and linear programming.

In compressed sensing (just as in image compression), there are two bases: the original basis
in terms of which the image is acquired, and the basis in terms of which the image is expected to
be sparse (e.g. the two-dimensional Haar wavelet basis). We assume the former is the standard
basis. Let q1, . . . , qn be the latter basis, and let Q be the matrix with these vectors as columns.

Given a vector’s coordinate representation u in terms of the Haar basis, the vector itself (i.e.
its representation in terms of the standard basis) is QTu, and, for i = 1, . . . , n, entry i of the
vector itself is qTi u.

Let w be the true image, represented in terms of the standard basis. Suppose that some
number k of numbers have been sensed. That is, some sensing device has recorded entries
i1, . . . , ik of w: w[i1], . . . ,w[ik]. The other entries remain unknown.

The goal of compressed sensing is to find the sparsest coordinate representation u that is
consistent with the observations. We use x as a vector variable for the unknown coordinate
representation. We state that x must be consistent with the observations using linear equations:

qT
i1x = w[i1]

...

qT
ikx = w[ik]

The goal is to find the sparsest vector x that satisfies these equations. That is, find the vector x
with the minimum number nonzero entries subject to satisfying the equations.

Unfortunately, no algorithm is known that will find the truly minimum number of nonzero
entries subject to linear equalities, aside from very time-consuming algorithms such as trying all
possible subsets of the entries. Fortunately, there is a surrogate that works quite well. Instead
of minimizing the number of nonzero entries, minimize the sum of absolute values of x.
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The mathematics of when this works (it depends on the bases used and the number and
distribution of observations) is beyond the scope of this text. But we can say something about
how one goes about minimizing the sum of absolute values of x.

Write x = [x1, . . . , xn]. Introduce new variables z1, . . . , zn, and introduce linear inequalities,
two per variable zi:

z1 ≥ x1, z1 ≥ −x1

...

zn ≥ xn, zn ≥ −xn

Then use the simplex algorithm (or some other algorithm for linear programming) to minimize
the sum z1 + · · · + zn subject to these inequalities and the linear equations outlined above.

For i = 1, . . . , k, since zi is required to be at least xi and at least −xi, it is at least |xi|. On
the other hand, there are no other constraints on zi, so minimizing z1 + · · · + zn means that zi
will be exactly |xi| in any optimal solution.

13.14.3 Onwards

Mathematical and computational research on compressed sensing is ongoing. Applications are
being explored in diverse areas, from astronomy (where the sensors are expensive and the images
are way sparse) to medicine (faster MRI scans) to prospecting using seismic images (where similar
techniques have been used for years). Many other applications remain to be discovered. Perhaps
you will help discover them.

13.15 Review questions

• What is a linear program?

• How can a resource-allocation question be formulated as a linear program?

• In what different forms can linear programs appear?

• What is linear programming duality?

• What is the basis (heh) of the simplex algorithm?

• What is the connection between linear programming and zero-sum two-person games?

13.16 Problems

Linear program as polyhedron

Problem 13.16.1: A chocolate factory produces two types of candies: N&N’s and Venus. The
price for N&N’s pack and Venus bar is $1 and $1.6, correspondingly. Each pack of N&N’s is
made of 50 grams of peanuts, 100 grams of chocolate and 50 grams of sugar. Each Venus bar
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contains 150 grams of chocolate, 50 grams of caramel and 30 grams of sugar. The factory has
1000 grams of chocolate, 300 grams of sugar, 200 grams of peanuts and 300 grams of caramel
left. Your goal is to determine how many N&N’s packs and Venus bars the company should
produce to maximize its profit.

1. Give the linear program for the problem, using variables x1 and x2. Specify (a) the
constraints, and (b) the objective function.

2. Graph the feasible region of your linear program.

3. Compute the profit at each vertex of the feasible region, and report the best solution.

Simplex steps

Problem 13.16.2: Write a procedure find move helper(A, r) for the following spec. You
may use one or two modules in addition to mat.

• input: an n × n invertible matrix A over R and a row-label r,

• output: vector w such that entry r of Aw is 1, and all other entries of Aw are zero.

Test case: Let A =

⎡

⎣

1 1 0
0 1 1
1 0 1

⎤

⎦ be a matrix with row-label set and column-label set

{1, 2, 3}, and let i = 3. Then the output should be [1/2,−1/2, 1/2].

Problem 13.16.3: Write a procedure find move direction(A, x, r) for the following spec.

• input:

– an n × n invertible matrix A over R,

– a vector x̂ with the same column-label set as A

– a row-label r

• output: a vector w such that, for every positive number δ, every entry of A(x̂ + δw) is
equal to the corresponding entry of Ax̂, except that entry r of A(x̂+ δw) is greater than
entry r of Ax̂.

Hint: Use the procedure find move helper(A, r) from Problem 13.16.2.

Test case: use the inputs from Problem 13.16.2 together with x̂ = [2, 4, 6].

Problem 13.16.4: Write a procedure find move(A, x, r) for the following spec.
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• input:

– an n × n invertible matrix A over R,

– a positive vector x̂ whose label-set equals the column-label set of A

– row-label r

• output: a positive scalar δ and vector w such that

– every entry of A(x̂ + δw) is equal to the corresponding entry of Ax̂, except that
entry r of A(x̂ + δw) is greater than entry r of Ax̂, and

– x̂ + δw is nonnegative, and

– either w is a positive vector, or some entry of x̂ + δw is zero.

Hint: Use find move direction(A, x, r) from Problem 13.16.3 to select w. Once w is
selected, select δ to make the last two properties true. Choose δ as large as possible such that
x̂+ δw is nonnegative. (Do the math before trying to write the code; calculate how large δ can
be in terms of x̂ and w.)

Test case: Use the example from Problem 13.16.3. The output should be the same vector w as
before, and δ = 8.

Using simplex

Problem 13.16.5: Use simplex algorithm to solve the linear program from Problem 13.16.1.
Show the dual solution ŷ after each pivot step of the simplex algorithm. Show the direction of
each ŷ in a copy of the graph of the feasible region.

Hint: Two of the constraints are x1 ≥ 0 and x2 ≥ 0. Use these two constraints to define
your initial vertex.

Problem 13.16.6: An ice-cream van delivers ice cream to three neighboring cities A, B and C.
It makes, on average, $35, $50 and $55 of profit in cities A, B and C, respectively. Daily delivery
expenses to cities A, B and C, are $20, $30 and $35. Kids in city B will not buy ice cream more
than four days a week. The expenses must not exceed $195 per week.

Your goal is to find how many days a week the van should come to each city to maximize
profit. Form a linear program, defining each of your variables, and use simplex to solve it.
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vector-matrix, linear combinations, 187

norm, 512
orthogonal, 444

definition, 445
positive-definite, 552

definition, 553
Python implementation, 181
rank

definition, 329
number of nonzero singular values, 529

representations
converting between, 182

rows, 179
See also dot product, iii
See also echelon form, iii
See also Gaussian elimination, iii
similarity, 548
symmetric

eigenvalues and, 554
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traditional, 177
triangular

definition, 198
triangular systems and, 197

upper-triangular
definition, 197
eigenvalues and, 555

vector equations
Gaussian elimination solution, 375

vectors, 184
matutil.py file, 183
measuring

similarity, 111
Minimum Spanning Forest (MSF)

GF(2) and, 265
Grow algorithm correctness proof, 293
linear dependence in, 272

modeling
discrete dynamic processes, 541
documents

Hamlet in Wonderland, 561
spatial locality

in memory fetches, 560
web surfers

PageRank, 563
Morphing Lemma

proof, 318
statement, 317

MRI image
more quickly acquiring, 621

MSF (Minimum Spanning Forest)
GF(2) and, 265
Grow algorithm correctness proof, 293
linear dependence in, 272

multiplication
circulant matrix

by Fourier matrix column, 495
column-orthogonal matrix

norm preservation, 467
complex numbers

negative real number, 57
positive real number, 57

elementary row-addition matrix, 365
matrix-matrix, 216

definition, 217

dot-product, definition, 219
function composition and, 223
matrix-vector and vector-matrix relation-

ship, 216
vector-matrix, definition, 216

matrix-vector
algebraic properties of, 199
by dot product, definition, 192
coordinate representation, 258
definition, 186, 205
dot products, 192
linear combinations, 185, 186

scalar-vector, 85
associativity, 88
combining vector addition with, 90
dictionary representation, 97
distributivity of vector addition and, 92

See also dot product, iii
vector-matrix

by dot product, definition, 192
linear combinations, 185, 187

mutually orthogonal vectors, 428

n-state Markov chain
[definition], 560

n-vector over F, 76
N1, N2, N3

Properties, 402
negation

vector, 98
network coding, 69
nonzero-sum games, 614
norm

[definition], 402
properties, 402
vectors over reals, 403

norm properties, 402
norm(s)

matrix, 512
preservation

by column-orthogonal matrix multipli-
cation, 467

See also inner product, iii
See also vector(s), length, iii

normal/normalizing
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basis vectors, 478
plane in R3

given by an equation, 443
plane in R3

as span or affine hull, 442
notation

functions, 6
sets, 1

null space, 199
definition, 199
finding a basis for, 377
orthogonal complement and, 442

number of walks, 222
numerical

rank, 530
numerical analysis

pivoting and, 369

objective function, 592
one-dimensional

images
of different resolutions, 469

one-dimensonal
affine space

closest, 520
one-to-one

definition, 7
linear functions that are, 213

One-to-One Lemma, 213
onto

definition, 7
linear functions that are, 214
projection

vector space, 425
operations

combining, 65
abstract/abstracting, 86
operator precedence, 51
optimal solution, 594
Ordinary Definition of Matrix-Vector Mul-

tiplication, 204
origin

flats
containing, representation of, 152
that don’t go through, 157

line segments through, 88
lines and line segments that don’t go through,

90
lines through, 89

orthogonal
for vectors over C, 493

orthogonal to
a set of vectors, 424

orthogonal/orthogonality
[chapter], 423
complement, 440

computing, 443
definition, 440
direct sum and, 441
null space, annihilator, and, 442

definition, 405, 424
fire engine problem solution role of, 408
generators

building a set of, 433
introduction, 405
matrices, 444
matrix

definition, 445
multiple vectors

projection, 424
projection

vector space, 425
vector space, definition, 425

properties, 406
orthongonalize procedure, 433

solving problems with, 437
orthonormal

basis
coordinate representation with respect

to, 467
definition, 445

outer product, 230
definition, 230
projection and, 411

PageRank algorithm, 563
[lab], 585

parallel
components

vector decomposition into, 407
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parallelepiped
volume, 566

parallelograms
area, 564

parity bit, 115
path

definition, 265
PCA (principal component analysis), 534
perfect secrecy, 15

GF(2), 100
invertible functions and, 17
revisited

with GF (2), 67
perpendicular

components
vector decomposition into, 407

perspective
rendering, 283

pivoting
numerical analysis and, 369

pixel
coordinates

from world coordinates to, 290
plane

image
camera and, 284

plane(s)
R3

normal to, given by an equation, 443
intersections with lines, 171
R3

normal to, as span or affine hull, 442
point

point
finding, 409

point(s)
closest

in span of many vectors, solving, 436
points

world, 283
polar representation

complex numbers, 63
polygons

areas
in terms of parallelogram area, 567

polyhedra
linear programming and, 595

polyhedron, 597
polynomial

evaluation and interpolation, 478
positive-definite matrix, 552

definition, 553
power method

finding eigenvalues and eigenvectors, 557
precedence

operator, 51, 86
Prime Factorization Theorem, 379
Prime Number Theorem, 381
principal component analysis (PCA), 534
printing

Vec class, 123
probability(s)

adding to events, 13
characteristics, 11
Markov chains, 558

procedures
functions vs., 4
getter, 96
orthongonalize, 433

solving problems with, 437
setter, 96

processes
discrete dynamic

modeling, 541
product

Cartesian, 2
inner, 229
outer, 230

product of invertible matrices, 234
programming (linear)

[chapter], 591
duality, 600
formulating, 613
game theory, 610
geometry, 595
learning through

[lab], 621
nonzero-sum games, 614
origins, 593
simplex algorithm, 602
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projection
finding, 409
onto and orthogonal to

vector space, 425
onto and orthogonal to vector space, defi-

nition, 425
orthogonal to multiple vectors, 424
outer product and, 411
vector

onto a list of mutually orthogonal vec-
tors, 427

projection of b along v, 407
projection of b orthogonal to v, 407
proof(s)

project orthogonal correctness, 429
diagonalization of symmetric matrices, 574
eigentheorem, 573
eigenvalues existence theorem, 573
Grow algorithm correctness

MSF (Minimum Spanning Forest), 293
left-singular vector matrix

column-orthogonal, 531
triangularization, 576

Properties
L1, L2, 210
N1, N2, N3, 402
V1, V2, V3, 153

properties
algebraic

matrix-vector multiplication, 199
of dot product, 118

linear
dependence, 273
independence, 273

norm, 402
orthogonality, 406
right singular vectors, 522
singular values, 522

Pythagorean Theorem, 405

QR factorization, 444
definition, 445
least-squares problem, 449
square case, 447

quadratic

fitting to, 451
two variables, 452

radians
rotation by, 64

rank
definition, 322
dimension and, 321
Gaussian elimination and, 368
low-rank matrices

benefits of, 511
matrix approximation with, 511

matrix
definition, 329
number of nonzero singular values, 529

numerical, 530
rank-one approximation to a matrix, 517

Rank Theorem, 327
Rank-Nullity Theorem, 340
real numbers

mapping from complex numbers real num-
bers

linear function representation by matrix,
215

reduced singular value decomposition, 525
regression

linear, 450
rendering

perspective, 283
representation

affine spaces
as solution set of linear systems, 163

conversions between, 344
coordinate

column-orthogonal matrix, 449
eigenvectors, 550

coordinate system, 258
flats containing the origin, 152
GF(2)

in Lights Out game, 102
image vector

by coordinate representation, in lossy com-
pression, 260

lines and planes
compared, for affine spaces, 164
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matrix
converting between, 182

polar
complex numbers, 63

uniqueness
in terms of a basis, 281

vectors
arrows use for, 83
changing, 282
spaces, comparison of different, 153
uses for, 80
with Python dictionaries, 79, 95
with respect to k-sparse vector, 466

residual/residual vector, 191
resolution

one-dimensional images, 469
right singular vectors

definition, 522
finding, 521

closest k-dimensional space with, 526
properties, 522

right-hand side, 108
rotation

complex numbers
by 180 degrees, 57
by 90 degrees, 58

pi radians, 64
rounding

errors
algorithms that work with, 439

row rank, 322
row rank

definition, 322
row space

from echelon form to basis for, 361
row(s)

elementary row-addition operations
sorting by, 364

introduction, 179
See also matrix/matrices, iii
sorting, 362
space

column space and, 184
definition, 184

vectors, 227

zero
in Gaussian elimination of matrix-vector

equations, 376
row addition operations

row space preservation, 366
rowlist

in echelon form, 362

satisfaction of inequality with equality
definition, 598

satisfies with equality, 598
scalar

definition, 85
scalar-vector multiplication, 85

associativity of, 88
combining vector addition with, 90
dictionary representation, 97
distributivity of vector addition and, 92

scaling
arrows, 86

scene
camera coordinates of point in

mapping to point in image plane, 287
secrecy

all-or-nothing secret sharing
with GF(2), 101

perfect, 15
invertible functions and, 17

See also perfect secrecy, iii
threshold secret-sharing

[lab], 394
segments (line)

that don’t go through origin, 90
through the origin, 88

self-loop, 221
sensing

compressed, 621
set(s)

terminology and notation, 1
vectors

geometry, 148
setter procedure, 96
Shrink algorithm, 263

analysis of, 274
minimum spanning forest, 267



INDEX 664

Shrink-Algorithm Corollary, 274
similar matrix

definition, 548
similarity

matrix, 548
measuring, 111

simplex algorithm, 602
singular matrix

See matrix/matrices
invertibility, [non-invertible matrices are

sometimes called singular matrices], iii
singular value decomposition (SVD)

[chapter], 511
characteristics, 523
closest dimension-k vector space, 521
definition, 525
matrix approximation

with low-rank matrices, 511
trolley-line-location problem, 513
using, 533

singular value(s)
definition, 522
finding, 521
nonzero

number of, 529
properties, 522

size
basis, 317

solution(s)
affine systems

affine spaces as solution set for, 163
fire engine problem, 410
homogeneous linear systems

geometry of solution sets, 150
matrix-vector equations, 190

Gaussian elimination, 375
number of

homogeneous linear systems, 171
space

matrix-vector equations, 201
triangular system of linear equations, 124
trolley-line-location problem, 514

sorting rows, 362
space(s)

affine, 157

as solution set of linear systems, 163
characteristics, 161
closest k-dimensional, 530
closest one-dimensional, 520
definition, 161
lines and planes compared, 164

annihilator
orthogonal complement and, 442

closest k-dimensional
finding with right singular vectors, 526

column
row space and, 184

Discrete Fourier
sampling the basis functions, 485

null, 199
definition, 199
finding a basis for, 377
orthogonal complement and, 442

row
column space and, 184

solution
matrix-vector equations, 201

vector
[chapter], 137
abstract, 157
annihilator, 347
basis and, 279
characteristics, 153
closest dimension-k vector, 521
decomposition as a direct sum, 470
definition, 154
over GF(2), cardinality of, 325
projection onto and orthogonal to, 425
projection onto and orthogonal to, defi-

nition, 425
subspaces, 155

span, 142
basis

for finite set of vectors, 279
definition, 142
many vectors

closest point in, solving, 436
normal to plane in R3 as, 442
See also basis, iii
vectors over R
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geometry of, 148
Span Lemma, 273
spanning

edges
definition, 266

minimum spanning forest
GF(2) and, 265

sparsity, 79, 465
matrix-vector product

computing, 204
spatial locality

memory fetches
modeling, 560

spectrum
definition, 556

square case
QR factorization, 447

standard
basis

for FD, 278
generators, 147

standard basis vectors, 279
stationary distributions

Markov chains, 562
stochastic matrix

definition, 560
stopwatches, 483
Subset-Basis Lemma, 279
subspace(s), 155

complementary, 334
definition, 155

substitution
backward, 125

first implementation, 126
with arbitrary-domain vectors, 128

subsystem of linear inequalities
definition, 598

subtraction
vector, 98

Superfluous-Vector Lemma, 270
Superset-Basis Lemma, 325
SVD, 525
SVD (singular value decomposition)

See singular value decomposition (SVD),
iii

symmetric matrices
eigenvalues and, 554

symmetric matrix
definition, 185

syntax
Vec class manipulation, 122

systems
affine

affine spaces as solution set for, 163
coordinate, 257

camera, 285
linear

definition 2.9.10, 110
equations, definition, 110
formulating as matrix-vector equation,

196
general, homogeneous correspondence, 169
homogeneous, 169
homogeneous, geometry of solution sets,

150
homogeneous, matrix equations and, 199

terminology
sets, 1

lemmas
Direct Sum Basis, 333

theorems
Annihilator, 350
Annihilator Dimension, 349
Basis, 317
Fourier Inverse, 486
Kernel-Image, 339, 340
Linear-Function Invertibility, 340
Prime Factorization, 379
Pythagorean, 405
Rank, 327
Rank-Nullity, 340

total cost
benefit, 108

transformation(s)
2D geometry

[lab], 247
backward

wavelets, 478
Discrete Fourier transform, 483
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Fourier transform, 480
See also functions, iii
wavelet, 474

transitivity
vector addition, 83

translation
vector addition and, 82

transpose, 185
definition, 185
matrix-matrix product, 226

traveling-salesperson tour, 222
triangular

matrices
triangular systems and, 197

systems
of linear equations, solving, 124
triangular matrices and, 197
upper-triangular systems, 124

triangular matrix, 197
triangular

matrix
definition, 198

triangularization
proof, 576

trivial vector space
definition, 155

trolley-line-location problem, 513
solution, 514

unbounded linear program, 594
uniform distribution, 12
Unique-Representation Lemma, 281
unit circle

complex plane, 60
unitary matrix

definition, 493
upper-triangular

matrix
definition, 197
eigenvalues and, 555

systems, 124

V1, V2, V3
Properties, 153

value of a feasible solution, 594

value of a linear program, 594
value(s)

absolute
complex number, 54

singular
definition, 522
finding, 521
first singular value definition, 515
number of nonzero, 529
properties, 522

Vec class, 122
copying, 123
implementation, 122
lists and, 124
printing, 123
using, 123

vector(s)
[chapter], 75
addition, 82

associativity and transitivity of, 83
combining scalar multiplication with, 90
definition, 82
dictionary representation, 98
distributivity of scalar-vector multiplica-

tion and, 92
invertibility of, 98
translation and, 82

basis
normalizing, 478

characteristics, 76
closest

k-sparse, 465
k-sparse, representation with respect to,

466
point in span of many, solving, 436

column, 227
decomposition

into parallel and perpendicular compo-
nents, 407

functions, 77
GF(2), 100
image

representation by coordinate representa-
tion, in lossy compression, 260

interpretation as column vectors, 228
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length, 402
mapping from a vector space to a vector,

282
matrices as, 184
matrix-vector equations

formulating linear equation system as,
196

Gaussian elimination solution, 375
solution space of, 201

matrix-vector product
functions that can be represented as, 209

multiple
projection orthogonal to, 424

multiplication
matrix-vector, algebraic properties of, 199
matrix-vector, by dot product, definition

[4.6.1, 192
matrix-vector, coordinate representation,

258
matrix-vector, definition, 186
matrix-vector, dot products, 192
matrix-vector, linear combinations, 185,

186
matrix-vector, relationship to matrix-matrix

multiplication, 216
scalar-vector, 85
scalar-vector, associativity of, 88
scalar-vector, combining vector addition

with, 90
scalar-vector, dictionary representation,

97
scalar-vector, distributivity of vector ad-

dition and, 92
vector-matrix, by dot product, definition

[4.6.3, 192
vector-matrix, linear combinations, 187
vector-matrix, relationship to matrix-matrix

multiplication, 216
negative, 98
over reals

inner product of, 403
project

onto a list of mutually orthogonal vec-
tors, 427

replacement with closest sparse vector

in lossy compression, 259
representation

arrows use, 83
with Python dictionaries, 79, 95

right singular
finding, 521
finding closest k-dimensional space with,

526
properties, 522

row, 227
See also matrix/matrices, iii
sets of

geometry, 148
spaces

[chapter], 137
abstract, 157
annihilator, 347
basis and, 279
characteristics, 153
closest dimension-k vector, 521
decomposition as a direct sum, 470
definition, 154
over GF(2), cardinality of, 325
projection onto and orthogonal to, 425
projection onto and orthogonal to, defi-

nition, 425
subspaces, 155

span
geometry of, 148

subtraction, 98
unique decomposition of, 333
uses for, 80
zero

linear functions and, 212
vectors(s)

norm of
over reals, 403

Vector-matrix definition of matrix-matrix
multiplication, 216

vertex of a polyhedron, 598
vertex/vertices

finding, 608
linear programming and, 595

vertex/vertices
definition, 598
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vertices of a polyhedron, 598
volume

parallelepiped, 566

walk in graph, 221
wavelet(s), 469

backward transform, 478
basis, 471
compression with

[lab], 508
decomposition, 475
transformation, 474

world
coordinates

to camera coordinates, 289
points in the, 283

zero
rows

in Gaussian elimination of matrix-vector
equations, 376

vector, 83
vectors

linear functions and, 212
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