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Introduction

Fractal geometry will make you see everything differently. There is danger in
reading further. You risk the loss of your childhood vision of clouds, forests,
galaxies, leaves, feathers, flowers, rocks, mountains, torrents of water, carpets,
bricks, and much else besides. Never again will your interpretation of these
things be quite the same.

The observation by Mandelbrot [Mand 1982] of the existence of a “Geom-
etry of Nature” has led us to think in a new scientific way about the edges of
clouds, the profiles of the tops of forests on the horizon, and the intricate
moving arrangement of the feathers on the wings of a bird as it flies. Geometry
is concerned with making our spatial intuitions objective. Classical geometry
provides a first approximation to the structure of physical objects; it is the
language which we use to communicate the designs of technological-products,
and, very approximately, the forms of natural creations. Fractal geometry is an
extension of classical geometry. It can be used to make precise models of
physical structures from ferns to galaxies. Fractal geometry is a new language.
Once you can speak it, you can describe the shape of a cloud as precisely as an
architect can describe a house.

This book is based on a course called “Fractal Geometry” which has been
taught in the School of Mathematics at Georgia Institute of Technology for



1 Introduction

two years. The course is open to all students who have completed two years of
calculus. It attracts both undergraduate and graduate students from many
disciplines, including mathematics, biology, chemistry, physics, psychology,
mechanical engineering, electrical engineering, aerospace engineering, com-
puter science, and geophysical science. The delight of the students with the
course is reflected in the fact there is now a second course entitled “Fractal
Measure Theory.” The courses provide a compelling vehicle for teaching
beautiful mathematics to a wide range of students.

Here is how the course in Fractal Geometry is taught. The core is Chapter
Two, Chapter Three, Sections 1 to 5 of Chapter Four, and Sections 1 to 3 of
Chapter Five. This is followed by a collection of delightful special topics,
chosen from Chapters Six, Seven, and Eight. The course is taught in thirty
one-hour lectures.

Chapter Two introduces the basic topological ideas that are needed to _

describe subsets of spaces such as R2. The framework is that of metric spaces;
this is adopted because metric spaces are both rigorously and intuitively
accessible, yet full of surprises. They provide a suitable setting for fractal
geometry. The concepts introduced include openness, closedness, compactness,
convergence, completeness, connectedness, and equivalence of metric spaces.
An important theme concerns properties which are preserved under equivalent
metrics. Chapter Two concludes by presenting the most exciting idea: a metric
space, denoted by 5, whose elements are the nonempty compact subsets of a
metric space. Under the right conditions this space is complete, Cauchy
sequences converge, and fractals can be found!

Chapter Three deals with transformations on metric spaces. First the goal
is to develop intuition and practical experience with the actions of elementary
transformations on subsets of spaces. Particular attention is devoted to affine
transformations and Mobius transformations in R2 Then the contraction
mapping principle is revealed, followed by the construction of contraction
mappings on . Fractals are discovered as the fixed points of certain set
maps. We learn how fractals are generated by the application of “simple”
transformations on ‘“simple” spaces, and yet they are geometrically com-
plicated. It is explained what an iterated function system (IFS) is, and how it
can define a fractal. Iterated function systems provide a convenient framework
for the description, classification, and communication of fractals. Two al-
gorithms, the “Chaos Game” and the Deterministic Algorithm, for computing
pictures of fractals, are presented. Attention is then turned to the inverse
problem: given a compact subset of R?, fractal, how do you go about finding a
fractal approximation to it? Part of the answer is provided by the Collage
Theorem. Finally, the thought of the wind blowing through a fractal tree leads
to discovery of conditions under which fractals depend continuously on the
parameters which define them.
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Chapter Four is devoted to dynamics on fractals, The idea of addresses of
points on certain fractals is developed. In particular, the reader learns about
the metric space to which addresses belong. Nearby addresses correspond to
nearby points on the fractal. This observation is made precise by the construc-
tion of a continuous transformation from the space of addresses to the fractal.
Then dynamical systems on metric spaces are introduced. The ideas of orbits,
repulsive cycles, and equivalent dynamical systems are described. The concept
of the shift dynamical system associated with an IFS is introduced and
explored. This is a visual and simple idea in which the author and the reader
are led to wonder about the complexity and beauty of the available orbits. The
equivalence of this dynamical system with a corresponding system on the
space of addresses is established. This equivalence takes no account of the
geometrical complexity of the dance of the orbit on the fractal. The chapter
then moves towards its conclusion, the definition of a chaotic dynamical
system and the realization that “most” orbits of the shift dynamical system on
a fractal are chaotic. To this end, two simple and delightful ideas are shown to
the reader. The Shadow Theorem illustrates how apparently random orbits
may actually be the “shadows” of deterministic motions in higher dimensional
spaces. The Shadowing Theorem demonstrates how a rottenly inaccurate orbit
may be trailed by a precise orbit, which clings like a secret agent. These ideas
are used to make an explanation of why the “Chaos Game” computes fractals.

Chapter Five introduces the concept of fractal dimension. The fractal
dimension of a set is a number which tells how densely the set occupies the
metric space in which it lies. It is invariant under various stretchings and
squeezings of the underlying space. This makes the fractal dimension meaning-
ful as an experimental observable; it possesses a certain robustness, and is
independent of the measurement units. Various theoretical properties of the
fractal dimension, including some explicit formulas, are developed. Then the
reader is shown how to calculate the fractal dimension of real-world data; and
an application to a turbulent jet exhaust is described. Lastly, the Hausdorfi-
Besicovitch dimension is introduced. This is another number which can be
associated with a set. It is more robust and less practical than the fractal
dimension. Some mathematicians love it; most experimentalists hate it; and
we are intrigued.

Chapter Six is devoted to fractal interpolation. The aim of the chapter is to
teach the student practical skill in using a new technology for making
complicated curves and fitting experimental data. It is shown how geometri-
cally complex graphs of continuous functions can be constructed to pass
through specified data points. The functions are represented by succinct
formulas. The main existence theorems and computational algorithms are
provided. The functions are known as fractal interpolation functions. It is
explained how they can be readily computed, stored, manipulated, and com-
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municated. “Hidden variable” fractal interpolation functions are introduced
and illustrated; they are defined by the shadows of the graphs of three-dimen-
sional fractal paths. These geometrical ideas are extended to introduce space-
filling curves.

Chapter Seven gives an introduction to Julia sets. Julia sets are determinis-
tic fractals which arise from the iteration of analytic functions. The objective is
to show the reader how to understand these fractals, using the ideas of
Chapters Three and Four. In so doing, we have the pleasure of explaining and
illustrating the Escape Time Algorithm. This algorithm is a means for com-
putergraphical experimentation on dynamical systems which act on two-
dimensional spaces. It provides illumination and coloration, a searchlight to
probe dynamical systems for fractal structures and regions of chaos. The
algorithm relies on the existence of “repelling sets” for continuous transforma-
tions which map open sets to open sets. The applications of Julia sets to
biological modelling and to understanding Newton’s method are considered. )

Chapter Eight is concerned with how to make maps of certain spaces,
known as parameter spaces, where every point in the space corresponds to a
fractal. The fractals depend “smoothly” on the location in the parameter
space. How can one make a picture which provides useful information about
what kinds of fractals are located where? If both the space in which the
fractals lie, and the parameter space, are two-dimensional, the parameter space
can sometimes be ‘“painted” to reveal an associated Mandelbrot set.
Mandelbrot sets are defined, and three different examples are explored,
including the one which was discovered by Mandelbrot. A computergraphical
technique for producing images of these sets is described. Some basic theorems
are proved.

Chapter Nine is an introduction to measures on fractals, and to measures
in general. The chapter is an outline which can be used by a professor as the
basis of a course in fractal measure theory. It can also be used in a standard
measure theory course as a source of applications and examples. One goal is to
demonstrate that measure theory is a workaday tool in science and engineer-
ing. Models for real world images can be made using measures. The variations
in color and brightness, and the complex textures in a color picture can be
successfully modelled by measures which can be written down explicitly in
terms of succinct “formulas.” These measures are desirable for image en-
gineering applications, and have a number of advantages over non-negative
“density” functions. Section 9.1 provides an intuitive description of what
measures are, and motivates the rest of the chapter. The context is that of
Borel measures on compact metric spaces. Fields, sigma-fields, and measures
are defined. Carathéodory’s extension theorem is introduced and used to
explain what a Borel measure is. Then the integral of a continuous real-valued
function, with respect to a measure, is defined. The reader learns to evaluate
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some integrals. Next the space & of normalized Borel measures on a eompact
metric space is defined. With an appropriate metric, # becomes a compact
metric space. Succinctly defined contraction mappings on this space lead to
measures which live on fractals. Integrals with respect to these measures can
be evaluated with the aid of Elton’s ergodic theorem. The book ends with a
description of the application of these measures to computer graphics.

This book teaches the tools, methods, and theory of deterministic geome-
try. It is useful for describing specific objects and structures. Models are
represented by succint “formulas.” Once the formula is known, the model can
be reproduced. We do not consider statistical geometry. The latter aims at
discovering general statistical laws which govern families of similar-looking
structures, such as all cumulus clouds, all maple leaves, or all mountains.

In deterministic geometry, structures are defined, communicated, and
analysed, with the aid of elementary transformations such as affine transfor-
mations, scalings, rotations, and congruences. A fractal set generally contains
infinitely many points whose organization is so complicated that it is not
possible to describe the set by specifying directly where each point in it lies.
Instead, the set may be defined by “the relations between the pieces.” It is
rather like describing the solar system by quoting the law of gravitation and
stating the initial conditions. Everything follows from that. It appears always
to be better to describe in terms of relationships.



Metric Spaces;
Equivalent Spaces;
Classification of Subsets;
and the Space of Fractals

2.1

SPACES

In fractal geometry we are concerned with the structure of subsets of various
very simple “geometrical” spaces. Such a space is denoted by X. It is the space
on which we think of drawing our fractals; it is the place where fractals live.
What is a fractal? For us, for now, it is just a subset of a space. Whereas the
space is simple, the fractal subset may be geometrically complicated.

Definition 1. A space X is a set. The points of the space are the elements of
the set.

Although this definition does not say it, the nomenclature “space” implies
that there is some structure to the set, some sense of which points are close to
which. We give some examples to show the sort of thing this may mean.
Throughout this text R denotes the set of real numbers, and “ € ” means
“belongs to.”
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Figure 2.1.1
A point x in the space R.

Examples

1.1

1.2,

1.3.

X = R. Each “point” x € X is a real number. Equally well it is a dot on
a line. _

X = C0,1], the set of continuous functions which take the real closed
interval [0,1] = {x € R: 0 < x < 1} into the real line R. A “point”
f€ X is a function f: [0,1] <5 R where f may be represented by its
graph.

Notice that here f € X is not a point on the x-axis, it is the whole
function. A continuous function on an interval is characterized by the
fact that its graph is unbroken; as a picture it contains no rips or tears
and it can be drawn without removing the pencil from the paper.

X = R?, the Euclidean plane, the coordinate plane of calculus. Any pair
of real numbers x,, x, € R determine a single point in R% A point

Figure 2.1.2
A point f in the space of
continuous functions on

[0,1].
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Figure 2.1.3 >
A point x in the space
RZ. R - X

x € X is represented in several equivalent ways: x = (x;, x,) = (2) =
a point in a figure such as Figure 2.1.3.

The spaces in examples 1.1, 1.2, and 1.3 are each linear spaces. There is an
obviously defined way, in each case, of adding two points in the space to
obtain a new one in the same space. In 1.1 if x, and y € R then x + y is also
in R; in 1.2 we define (f+ g)x)=f(x)+ g(x); and in 1.3 we define
x+y= (2) + (f;) = (2 :::) Similarly, in each of the above examples, we
can multiply members of X by a scalar, that is, by a real number « € R. For
example, in 1.2 (af )(x) = af(x) for any a € R, and af € C[0, 1] whenever
f € CJ0,1). Example 1.1 is a one-dimensional linear space; 1.2 is an co-dimen-
sional linear space (can you think why the dimension is infinite?); and 1.3 is a
two-dimensional linear space. A linear space is also called a vector space. The
scalars may be complex numbers instead of real numbers.

14. The complex plane, X = C, where any point x € X is represented
=x, +ix, wherei=y-1,

for some pair of real numbers x,, x, € R. Any pair of numbers x,, x,
€ R determine a point of C. It is obvious that C is essentially the same
as R?% but there is an implied distinction. In C we can multiply two
points x, y and obtain a new point in C. Specifically, we define

Xy =(x Fix)(n + i) = (ap — x0m) +i(an + xmn).

1.5. X = €, the Riemann sphere. Formally ¢ = C U {o0}; that is, all the
points of C together with “The Point at Infinity.” Here is a way of
constructing and thinking about €. Place a sphere on the plane C, with
the South Pole on the origin, and the North Pole N vertically above it.
To a given point x € C we associate a point x’ on the sphere by
constructing the straight line from N to x and marking where this line
intersects the sphere. This associates a unique point x’ = h(x) with each




2.1 Spaces

Figure 2.1.4
Construction of a geomet-
rical representation for
the Riemann sphere. N
is the North Pole, and
corresponds to the “Point
at Infinity.”

point x € C. The transformation h: C — sphere is clearly continuous in the
sense that nearby points go to nearby points. Points further and further away
from 0 in the plane C end up closer and closer to N. € consists of the
completion of the range of 4 by including N on the sphere: “The Point at
Infinity (c0)” can be thought of as a giant circle, infinitely far out in C, whose
image under 4 is N. It is easier to think of € being the whole of the sphere,
rather than as the plane together with oo. It is of interest that #: C — sphere
is conformal: it preserves angles. The image under # of a triangle in the plane
is a curvaceous triangle on the sphere. Although the sides of the triangle on the
sphere are curvaceous they meet in well-defined angles, as one can visualize by
imagining the globe to be magnified enormously. The angles of the curvaceous
triangle are the same as the corresponding angles of the triangle in the plane.

Figure 2.1.5

A triangle in the plane
corresponds to a curva-
ceous triangle on the
sphere.
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Examples & Exercises

16. X = X, the code space on N symbols. N is a positive integer. The
symbols are the integers {0,1,2,..., N — 1}. A typical point in X is a
semi-infinite word such as
. x=2170012115(N - 1) 30....
There are infinitely many symbols in this sequence. In general, for a
given element x € X, we can write

X = X Xy X3X4XsXgX7Xg ... Whereeach x, € {0,1,2,..., N —1}.

1.7. A few other favorite spaces are defined as follows:

(a) A disk in the plane with center at the origin and with finite radius
R > 0:
. ={x€IR2:x12+x§sR2}.
(b) A “filled” square:
m={xeR:0<x <1,0<x,<1}.
(c¢) An interval:
[¢,6] = {x €R: a < x <b},where a and b are real numbers with a < b,

(d) Body space:
% = { x € R*: coordinate points implied by a cadaver frozen in R*} .
(e) Sierpinski space:

&= { x € R?: x is a point on a certain fixed Sierpinski triangle} .

Sierpinski triangles occur often in this text as displayed above. There is a
Sierpinski triangle in Figure 3.4.3.

1.8. Show that the examples in 1.5, 1.6, and 1.7 are not vector spaces, using
addition and multiplication by reals as defined in the usual way.

1.9. The notation 4 C X means A is a subset of X; that is, if x € 4 then
x € X,or x € A = x € X. Here, and elsewhere, “ = > means “implies.”
The symbol @ means the empty set. It is defined to be the set such that
the statement “x € @” is always false. We use the notation {x} to
denote the set consisting of a single point x € X. Show that if x € X,
then { x} is a subset of X.

1.10. Any set of points makes a space, if we care to define it as such. The
points are what we choose them to be. Why, do you think, have the
spaces defined above been picked out as important? Describe other
spaces which are equally important.

1.11. Let X, and X, be spaces. These can be used to make a new space
denoted X, X X,, called the Cartesian product of X; and X,. A point
in X] X X, is represented by the ordered pair (x,, x,) where x, € X,
and x, € X,. For example, R? is the Cartesian product of R and R.
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2.2 METRIC SPACES

We use the notation “V” to mean “for all.” We also introduce the nota-
tion 4\ B to mean the set A “take away” the set B. That is, A\ B =
{x € A: x & B}.

Definition 1. A metric space (X, d) is a space X together with a real-valued
function d: X X X — R, which measures the distance between pairs of points
x and y in X. We require that d obeys the following axioms:

@ d(x,y)=d(y,x)Vx,yeX

@) 0<d(x,y)<ocoVx,yEX, x#y

(i) d(x,x)=0Vx € X

@) d(x, y) <d(x,z)+d(z, y)Vx,y,z€X

Such a function d is called a metric.

The concept of shortest paths between points in a space, geodesics, is
dependent on the metric. The metric may determine a geodesic structure of the
space. Geodesics on a sphere are great circles; in the plane with the Euclidean
metric they are straight lines.

Examples & Exercises
2.1. Show that the following are all metrics in the space X = R:

a) d(x, y) = |x — y| (Euclidean metric)
b) d(x,y)=2"|x — y|
¢) d(x, y) =Ix> =)’

2.2. Show that the following are metrics in the space X = R™

a) d(x,y) = \/(x1 — )+ (x,— ) (Euclidean metric)
b) d(x, y) = |x; =yl + |x5 — ¥l (Manhattan metric)

Why is the name Manhattan used in connection with (b)?
2.3. Show that d(x, y) = |xy| does not define a metric in R. .
2.4. Let R?\ {0} denote the punctured plane. Define d(x, y) as follows:

d(x,y) =|n = n|+|0]
where r, = Euclidean distance from x to O, r, = Euclidean distance
from y to O, where O is the origin, and # is the smallest angle

subtended by the two straight lines connecting x and y to the origin.
Show that d is a metric.
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Figure 2.2.1
(The angle 8, and the X
distances r , r, used to

construct a metric on the
punctured plane.) Acute
angle subtended by two

straight lines. 0

2.5. On the code space ¥ define

0

le_yil
d(x, =d(x,x,x5..., )= _
(x,y) (x1x2x3 NWhys--) E:l (N+1)'

Show that every pair of points in X is a finite distance apart. That is, d
is indeed a function which takes ¥ x ¥ into R. Verify that (£, d) is a
metric space. Try to envisage a possible geometry for X. (Do not confuse
the symbol ¥ for the space, with the symbol for summation X2 ,.)

26. In X= , define d(x, y) to be the Euclidean length of the shortest

path lying entirely within X which connects x and y. Show that this is a
metric. Discuss the utility of this metric in anatomy. The distance from a
toenail to a fingertip does not much depend on the position of the body,
whereas the usual spatial distance does.

2.7. Invent a function d: B X B — R which is not a metric. Define a metric

for the space o namely an annulus, which makes it seem like the
curved wall of a cylinder:

2.8. Show that a metric on X = C is defined by the shortest great circle
distances on the sphere. Compare the distances from 0, and from 1 + ¢,
to 00,

Definition 2. Two metrics d; and d, on a space X are equivalent if there
exist constants 0 < ¢; < ¢, < oo such that

adi(x,y) <dy(x,y) < qd(x,y)V(x,y) € X XX.

Exercises & Examples

2.9. Definition 2 looks unsymmetrical; it does not appear to make the same
requirements on d; as it does on d,. Show that this is an illusion by
establishing that if the definition holds then there are constants 0 < e,
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< e, < co so that
edy(x, y) <di(x,p) <eydy(x,y)V(x,y) € X XX.

2.10. Are the Manhattan and Euclidean metrics equivalent on B C R?? What
about on R??
2.11. Show that the metric in 2.4 is not equivalent to the Euclidean metric on

& \ (0.

One notion underlying the concept of equivalent metrics is that any pair of
equivalent metrics gives the same notion of which points are close together,
and which are far apart. It is as though there were a standard way for
boundedly deforming the space, whereby distances are determined both before
and after deformation.

For example, consider a pair of points x, and y, in B C R2 Let the
Euclidean distance between these points be d,(x, y). Think of a thin rubber
sheet lying over B. This sheet is stretched in some repeatable fashion, carrying
copies of the points x and y to new locations, as illustrated in Figure 2.2.2.
The Euclidean distance between these moved points is called d,(x, y). The
condition of equivalence is the requirement that there is no extreme (infinite)
stretching or compression of 'the space.

This leads us to the idea of equivalent metric spaces.

Definition 3. Two metric spaces (X,, d,) and (X,, d,) are equivalent if there
is a function #: X; — X, which is one-to-one and onto (i.e, it is invertible),
such that the metric d; on X, defined by

di(x,y) =dy(h(x), h(¥))Vx, y € X,

is equivalent to d,.

One can think of Definition 3 as requiring that X, and X, are related to
one another by a bounded deformation, and nowhere is there an arbitrarily

13

Figure 2.2.2

A thin rubber sheet lies
over the W in the plane
and is stretched. The
Euclidean distances be-
tween points are de-
termined before and after
deformation, yielding two
metrics. These metrics
may be equivalent if the
deformation leads to no
rips, tears, or infinite
stretching.
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large compression or stretching. There is also no overlapping, folding or
ripping.

Definition 4. A function f: X; — X, from a metric space (X, d,) into a
metric*space (X,, d,) is continuous if, for each € > 0 and x € X, there is a
8 > 0 so that

di(x,y) <8=dy(f(x),f(»)) <e

If f is also one-to-one and onto, and thus invertible, and if also the inverse f~*
of f is continuous, then we say that f is a homeomorphism between X, and
X,. In such a case we say that X, and X, are homeomorphic.

The assertion that two spaces are equivalent is much stronger than the
statement that they are homeomorphic: to be equivalent there must be a
bounded relationship between ¢ and & independent of x.

Examples & Exercises

2,12, Let X; =[1,2] and X, = [0,1]. Let d, denote the Euclidean metric and
let dy(x, y)=2-|x —y| in X,. Show that (X, d,) and (X;, d,) are
equivalent metric spaces.

Figure 2.2.3

This picture suggests two
metric spaces X, and X,
which have the same
topology, but which are
not metrically equivalent:
their “geometries” are
deeply different.

Point at the corner is missing.

/

STRETCHG

The point which is not
at the corner is pulled
to infinity.

Xy and X, are homeomorphic : they have the same topology.

But they are not equivalent : their geometries are deeply different.




2.13.

2.14.

2.15.

2.16.

2.2 Metric Spaces

Show that (M, Euclidean) and (M, Manhattan) are equivalent metric
spaces.

Show that (C, Euclidean) and (R?, Manhattan) are equivalent metric
spaces.

Define two different metrics on the space X = (0,1] = {x €R: 0 <
x <1} by

1

1
di(x,y) =|x—y| and dy(x,y) =l;_;.

Show that (X, d)) and (X, d,) are not equivalent metric spaces.

Figure 2.2.4 suggests a subset (black) of (W, Euclidean). It also shows the
space and set deformed by a metric equivalence. Discuss the properties
of the image which would be invariant under (a) any metric equivalence,
and (b) any homeomorphism. To what extent might one be able to “see”
these invariances? Think about how much deformation an image can
withstand while remaining recognizably the same image. Look at reflec-
tions of sets and images in the back of a shiny spoon.

Figure 2.2.4(a)

What features of the set
(black) are invariant
under a metric equiv-
alence transformation?
Two sets which are metri-
cally equivalent to (a)
are shown in (b) and (c).

15
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Figure 2.2.4(b)

Figure 2.2.4(c)

2.17. Show that if two metric spaces are metrically equivalent then there is a
homeomorphism between them.

2.3 CAUCHY SEQUENCES, LIMIT POINTS, CLOSED SETS, PERFECT SETS,
AND COMPLETE METRIC SPACES

Fractal geometry is concerned with the description, classification, analysis, and
observation of subsets of metric spaces (X, d). The metric spaces are usually,
but not always, of an inherently “simple” geometrical character; the subsets
are typically geometrically “complicated.” There are a number of general
properties of subsets of metric spaces, which occur over and over again, which
are very basic, and which form part of the vocabulary for describing fractal
sets and other subsets of metric spaces. Some of these properties, such as
openness and closedness, which we are going to introduce, are of a topological
character. That is to say, they are invariant under homeomorphism.



2.3 Cauchy Sequences, Limit Points, Closed Sets

For us what is important, however, is that there is another class of
properties which are invariant under metric space equivalence. These include
openness, closedness, boundedness, completeness, compactness, and perfec-
tion; these properties are introduced in this and the next section. Later we will
discover another such property: the fractal dimension of a set. If a subset of a
metric space has one of these properties, and the space is deformed with
bounded distortion, then the corresponding subset in the deformed space still
has that same property.

We are also about another business in this section. In our search for
fractals we are always going to look in a certain type of metric space known as
“complete.” We need to understand this concept.

Definition 1. A sequence { x,}_, of points in a metric space (X, d) is called
a Cauchy sequence if, for any given number € > 0, there is an integer N > 0 so
that

d(x,,x,) <e foralln,m> N.

In other words, the further along the sequence one goes, the closer together
become the points in the sequence. Mentally one pictures something like the
image in Figure 2.3.1.

However, just because a sequence of points moves closer together as one
goes along the sequence, we must not infer that they are approaching a point.
Perhaps they are trying to approach a point that is not there?

Definition 2. A sequence {x,}>_, of points in a metric space (X, d) is said
to converge to a point x € X if, for any given number ¢ > 0, there is an
integer N > 0 so that

d(x,,x) <e foralln>N.

Figure 2.3.1
Image representing
successive magnifications

magnify

Xl' X2. magnify to revea
Xge o reveal ...and on a Cauchy sequence, an
X3 infinite sequence of points
Xge in X. Just because the
Xg- , ,
points are getting closer

and closer together as one
looks in at higher mag-
nification does not mean
that there is a point X to
which the sequence is con-
verging!

infinite sequence of
points in X
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Figure 2.3.2
Uncelebrated small ball
B(x, €) with its center at
x and radius €. Beware!
Balls do not usually look
like balls. It depends on
the metric and on the
space. Balls (a)-(c¢)
represent balls (marked
in black) in spaces X
which are subsets of R?,
with the Euclidean met-
ric. In (a) X has a
ragged boundary, viewed
as a subset of R%. In (b)
the point x € X is iso-
lated. In (¢) X is a
curvaceous Sierpinski tri-
angle. The ball depicted
in (d) is in R?, but the
metric is d(x, y) =
Max{|x, =y}, |x2=»l}

2 Metric Spaces; Equivalent Spaces; Classification of Subsets

In this case the point x € X, to which the sequence converges, is called the
limit of the sequence, and we use the notation

x = Lim x,.
n-> o0

The limit x of a convergent sequence {x,}>., has this property: Let
B(x,e) ={yeX:d(x,y) <¢}
denote a closed ball of radius € > 0 centered at x, as illustrated in Figure
2.3.2.
Any such ball centered'at x contains all of the points x, after some index N,

where N typically becomes larger and larger as € becomes smaller and smaller.
See Figure 2.3.3.

Theorem 1. If a sequence of points {x,}7 ., in a metric space (X, d) con-
verges to a point x € X, then {x,}¥_, is a Cauchy sequence. N

Definition 3. A metric space (X, d) is complete if every Cauchy sequence
{x,}¥_,in X has alimit x € X.

In other words, there actually exists, in the space, a point x to which the
Cauchy sequence is converging. This point x is of course the limit of the
sequence. If {x,}¥., is a Cauchy sequence of points in X and if X is
complete, then there is a point x € X such that, for each ¢ > 0, B(x,¢)
contains x, for infinitely many integers n.

We will sometimes use the notation {x,} in place of {x,}%_; and lim in
place of lim when it is clear from the context what the domain of the
index is.

n—o0

Exercises & Examples

3.1. Prove that if {x,}., is a Cauchy sequence of points in X and if X is
complete, then there is a point x € X such that, for each € > 0, B(x, €)
contains x, for infinitely many integers n.

3.2. Show that (R, Euclidean metric) is a complete metric space.

6

x.4—£—0

(a) (b) (c) (d)
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ZOOM IN ZOOM IN Figure 2.3.3

N . Magnifying glass looking
" at a magnifying glass near

ore points of a limit point.

3.3. Show that (R, Euclidean metric) is a complete metric space.

3.4. Show that (B, Euclidean metric) is a complete metric space.

3.5. Show that (€, metric on sphere) is a complete metric space.

3.6. Show that (X, code space) is a complete metric space.

3.7. Show that (C[0, 1], D) is a complete metric space, where the metric D is
defined by

D(f,g) = Max{|f(s) — g(s)|: s € [0.1]}.

38. Let (X,, d,) and (X,, d,) be equivalent metric spaces. Suppose ( X;, d;)
is complete. Show that (X,, d,) is complete.
3.9. Show that there are many different “shortest paths” between most pairs
of points in (M, Manhattan).
3.10. Prove Theorem 2.3.1.
3.11. Prove that any sequence in a metric space can have at most one limit.

Definition 4. Let S C X be a subset of a metric space (X, d). A point x € X
is called a limit point of S if there is a sequence { x, }5°_, of points x, € S\ {x}
such that Lim, |, x, = x.

Definition 5. Let S C X be a subset of a metric space (X, d). The closure of
S, denoted S, is defined to be § = § U {Limit points of S}. S is closed if it
contains all of its limit points, that is, S = §. S is perfect if it is equal to the
set of all its limit points.

-

Exercises & Examples

3.12. Show that 0 is a limit of the sequence {x,=1/n}2_, in the metric
space ([0, 1], Euclidean) but not in the metric space ((0, 1], Euclidean).

3.13. A metric space (X, d) consists of a single point X = {a}, together with
a metric defined by d(a, a) = 0. Show that X contains a Cauchy
sequence and the limit of the Cauchy sequence, but that it possesses no
limit points. Hence show that X is closed and complete but not perfect.

19
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3.14. Show that the sequence {x, = n}3.; has no limit in (R, Euclidean) but

that it does when the points are treated as belonging to (€, spherical).
3.15. Show that if 4: X; — X, makes the metric spaces (X, d,) and (X,, d,)
equivalent, then the statements “x € X, is a limit point of § C X,” and
“h(x) € X, is a limit point of A(S) C X,” are equivalent. Here we use
the notation

h(S) = {h(s):s€ S}.

3.16. Find all of the limit points of the set {x,= (1/n+ (-1)", 1/n+
(—1)?"): n=1,2,3,...} in the metric space (M, Euclidean).

3.17. Show that the subset S = {x = 1/n: n=1,2,3,...} is closed in ((0, 1],
Euclidean).

3.18. Show that S = [0,1] is a perfect subset of (R, Euclidean).

3.19. Show that § = {1/n: n=1,2,3,...} U {0} is not a perfect subset of
(R, Euclidean), but that S = S.

3.20. Show that S = X is a perfect subset of (L, code space metric).

3.21. Let S be a subset of a complete metric space (X, d). Then (S, d) is a
metric space. Show that (S, d) is complete if, and only if, S is closed
in X.

24 COMPACT SETS, BOUNDED SETS, OPEN SETS, INTERIORS, AND BOUNDARIES

We continue the description of the basic properties to be used to describe sets
and subsets of metric spaces. Where are the fractals? What are they? They are
everywhere, and soon you will be able to see them: not just the pictures, which
are shadows, but in your mind’s eye you will see what they really are.

Definition 1. Let S C X be a subset of a metric space (X, d). S is compact
if every infinite sequence {x,}., in S contains a subsequence having a limit
in S.

Definition 2. Let S C X be a subset of a metric space (X, d). S is bounded
if there is a point ¢ € X and a number R > 0 so that

d(a,x) <RVx€S.

Definition 3. Let S C X be a subset of a metric space (X, d). S is totally
bounded if, for each € > 0, there is a finite set of points { y;, y,,...,y,} € S
such that whenever x € S, d(x, y;) < € for some y, € { y1,¥..-.,),} This
set of points { y;, ¥,,...,»,} is called an e-nez.
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Theorem 1. Let (X, d) be a complete metric space. Let S C X. Then S is
compact if and only if it is closed and totally bounded.

Proof. Suppose that S is closed and totally bounded. Let {x, € S} be an
infinite sequence of points in S. Since S is totally bounded we can find a finite
collection of closed balls of radius 1 such that § is contained in the union of
these balls. By the Pigeon-Hole Principle (a huge number of pigeons laying
eggs in two letter boxes = at least one letter box contains a huge number of
angry pigeons), one of the balls, say B, , contains infinitely many of the points
x,. Choose N; so that x\ € B;. It is easy to see that B; N § is totally
bounded. So we can cover B, N § by a finite set of balls of radius 1/2. By the
Pigeon-Hole Principle, one of the balls, say B,, contains infinitely many of the
points x,. Choose N, so that x, € B, and N, > N;. We continue in this
fashion to construct a nestéd sequence of balls,
B>B>BO>BD>BO>DBOB,>DBD>DB D> --- DB, D ---

where B, has radius 1/2" ', and a sequence of integers { N,}%_, such that
xy € B,. It is easy to see that {xy };.;, which is a subsequence of the
original sequence {x,}, is a Cauchy sequence in S. Since S is closed, {xy }
converges to a point x in S. (Notice that { x} is exactly N>_,B,.) Thus, S is
compact.

Conversely, suppose that S is compact. Let € > 0. Suppose that there does
not exist an e-net for S. Then there is an infinite sequence of points { x, € S}
with d(x;, x;) > € for all i # j. But this sequence must possess a convergent
subsequence { x, }. By Theorem 2.3.1 this subsequence is a Cauchy sequence,
and so we can find a pair of integers N, and N, with N, +# N, so that
d(xy, xy) < € But d(xy, xy) > €, s0 we have a contradiction. Thus there
does exist an e-net. This completes the proof.

Definition 4. Let S C X be a subset of a metric space (X, d). S is open if
for each x € § there is an € > 0 such that B(x,e) = {y € X: d(x, y) <€}
CS.

Exercises & Examples

4.1. Show that if (X, d) is a metric space then X is closed. Give an example
of a metric space which is closed but not complete.

4.2. Let S be a closed subset of a complete metric space (X, d). Skow that
(S, d) is a complete metric space.

4.3. Let (X;, d;) and (X;, d,) be equivalent metric spaces, and let a trans-
formation : X; — X, provide this equivalence. Let § C X; be closed.
Show that 8(S) = {0(s): s € S} is closed. This idea is illustrated in
Figure 2.4.1.

4.4. If (X, d) is a metric space then X is open.
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Figure 2.4.1
A transformation 8 be- Xy

tween two metric spaces,
% ¢

establishing the equiv-
CLOSED

o(S) %

STILL
CLOSED

alence pf the spaces and
carrying the closed set S
onto a closed set 0(S).

Proof. Let x € X. Clearly B(x,1) C X.

4.5. If (X, d) is a metric space, then “S C X is open” is the same as “X \ S.
is closed.”

Proof. Suppose “S C X is open.” Suppose { x,} is a sequence in X\ S with
alimit x € X. We must show that x € X\ S. Assume that x € S. Then every
ball B(x, €) with € > 0 contains a point x, € X\ S which means that S is not
open. This is a contradiction. The assumption is false. Therefore x € X\ S.
Therefore “X \ § is closed.”

Suppose “X\ S is closed.” Let x € S. We want to show there is a ball
B(x,€¢) € S. Assume there is no ball B(x, ¢) C S. Then for every integer
n=1,273,... wecan find a point x, € B(x,1/n) N (X\ §). Clearly {x,} is
a sequence in X \ S, with limit x € X. Since X \ S is closed we conclude that
x € X\ S. This contradicts x € S. The assumption that there is no ball
B(x,¢) C S is false. Therefore there is a ball B(x,¢) C S. Therefore “S is
open.”

4.6. Every bounded subset S of (R?, Euclidean) has the Bolzano-Weierstrass
property: “Every infinite sequence {x,}_, of points of S contains a
subsequence which is a Cauchy sequence.” The proof is suggested by the
picture in Figure 2.4.2.

We deduce that every closed bounded subset of (R?, Euclidean) is
compact. In particular, every metric space of the form (closed bounded
subset of R?, Euclidean) is a complete metric space. Show that we can
make a rigorous proof by using Theorem 1. Begin by proving that any
bounded subset of R” is totally bounded.

4.7. Let (X, d) be a metric space. Let f: X — X be continuous. Let 4 be a
compact nonempty subset of X. Show that f(A4) is a compact nonempty
subset of X. (This result is proved later as Lemma 3.7.2.)
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Figure 2.4.2
Demonstration of the
Bolzano- Weierstrass The-
orem. (Government warn-
ing: This is not a proof.)
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4.8. Let S € (X;, d,) be open, and let (X,, d,) be a metric space equivalent
to (X;, d,), the equivalence being provided by a function 4: X; — X,.
Show that A(S) is an open subset of X, .

4.9. Let (X, d) be a metric space. Let C C X be a compact subset of X. Let
{C,: n=1,2,3,...} be a set of open subsets of X such that “x € C”
implies “x € C, for some n.” {C,} is called a countable open cover of
C. Show that there is a finite integer N so that “x € C” implies “x € C,
for some integer n < N.”

Proof. Assume that an integer N does not exist such that “x € C™ implies
“x € C, for some n < N.” Then for each N we can find

N
XNEC\ UC!

n=1

Since {x, }%.; is in C it possesses a subsequence with a limit y € C. Clearly
y does not belong to any of the subsets C,. Hence “y € C” does not imply
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“y € C, for some integer n.” We have a contradiction. This completes the
proof.

The following even stronger statement is true. Let (X, d) be a metric
space. Let C C X be compact. Let {C;: i € I'} denote any collection of open
sets such that whenever x € C, it is true that x € C; for some index i € I.
Then there is a finite subcollection, say {C;, C,,..., C,} such that C € UX,C,.
The point is that the original collection of open sets need not even be
countably infinite. A good discussion of compactness in metric spaces can be

found in Mendelson [1963, Chapter V].

4.10. Let X = (0,1) U {2}. That is, X consists of an open interval in R,
together with an ‘isolated’ point. Show that the subsets (0, 1) and {2} of
(X, Euclidean) are open. Show that (0,1) is closed in X. Show that {2}
is closed in X. Show that {2} is compact in X but (0,1) is not compact
in X.

Definition 5. Let S C X be a subset of a metric space (X, d). A point x € X
is a boundary point of S if for every number € > 0, B(x, €) contains a point in
X\ S and a point in S. The set of all boundary points of S is called the
boundary of S, and is denoted 4.

Definition 6. Let S C X be a subset of a metric space (X, d). A point x € S
is called an interior point of S if there is a number € > 0 such that B(x,€) C S.
The set of interior points of S is called the interior of S, and is denoted S°.

Exercises & Examples

4.11. Let S be a subset of a metric space (X, d). Show that 4§ = (X \ S).
Deduce that X = @.

4.12. Show that the property of being a boundary of a set is invariant under
metric equivalence.

4.13. Let (X, d) be the real line with the Euclidean metric. Let S denote the
set of all rational points in X (i.e., real numbers which can be written
p/q where p and g are integers with g # 0). Show that 4§ = X.

4.14. Find the boundary of C viewed as a subset of (C, spherical metric).

4.15. Let S be a closed subset of a metric space. Show that 4§ C S.

4.16. Let S be an open subset of a metric space. Show that SN § = &.

4.17. Let S be an open subset of a metric space. Show that S° = S. Con-
versely, show that if S® = S, then S is open.

4.18. Let S be a closed subset of a metric space. Show that S = S° U 9S.

4.19. Show that the property of being the interior of a set is invariant under
metric equivalence.




2.5 Connected Sets, Disconnected Sets, and Pathwise Connected Sets

4.20. Show that the boundary of a set S in a metric space always divides the
space into two disjoint open sets whose union, with the boundary d8, is
the whole space. Illustrate this result in the following cases, in the metric
space (R2, Euclidean): (a) S = {(x, y) € R% x? + y? < 1}; (b) S = R~

4.21. Show that the boundary of a set is closed.

4.22. Let S be a subset of a compact metric space. Show that 35 is compact.

4.23. Figure 2.4.3 shows how we think of boundaries and interiors. What
features of the picture are misleading?

4.24. To what extent does Mercator’s projection provide a metric equivalence
to a Cartesian map of the world?

4.25. Locate the boundary of the set of points marked in black in Figure 2.4.4.

4.26. Prove the assertion made in the caption to Figure 2.4.5.
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Definition 1. A metric space (X, d) is connected if the only two subsets of X
that are simultaneously open and closed are X and @. A subset S C X is
connected if the metric space (S, d) is connected. S is disconnected if it is not
connected. S is ftotally disconnected provided that the only nonempty con-
nected subsets of S are subsets consisting of single points.

Definition 2. Let S C X be a subset of a metric space (X, d). Then S is
pathwise connected if, for each pair of points x and y in S, there is a
continuous function f: [0,1] —» S, from the metric space ([0, 1], Euclidean)
into the metric space (S, d), such that f(0) = x and f(1) = y. Such a function
f is called a path from x to y in S. S is pathwise disconnected if it is not
pathwise connected.

One can also define simply connected and multiply connected. Let S be
pathwise connected. A pair of points x, y € S is simply connected in S if,

AN ] Figure 2.4.3
) @ Metric Space X, the world | F14y, well can topological
‘ .. concepts such as open,
1;::: gz::‘tcl;::y"if boundary, etos, be used to
the set called LAND |  model land, sea, and

and the set called coastlines?
SEA

S = SEA

(A~
ISLAND

The land is the interior
of the island.
The wet stuff is the interior of the sea.
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Figure 2.4.4

Should the black part be
called open and the white
part closed? Locate the
boundary of the set of
points marked in black.

Figure 2.4.5

The interior of the “land >
set is an open set in the
metric space (Y = )
Euclidean). The smaller
filled rectangle denotes a
subset Z =M of Y. The
intersection of the interior
of the land with Z is an
open set in the metric
space (Z, Euclidean),
despite the fact that it in-
cludes some points of the
“border” of M.
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fo(s)=g(s,0) Figure 2.5.1

A path f, which connects
the points x and y is con-
tinuously deformed, while
remaining “attached” to
x and y, to become a sec-
ond path f, .

X=g(0,t)

f(s)=g(s.1)

given any two paths f, and f; connecting x, y in S, we can continuously
deform f, to f; without leaving the subset S. What does this mean?

Let there be given the two points x, y € S and the two paths f,, f
connecting x, y in S. In other words, f,, f; are two continuous functions
mapping the unit interval [0, 1] into S so that f,(0) = f,(0) = x and f,(1) =
fi) = y. By a continuous deformation of f, and f; within § we mean a
function g continuously mapping the Cartesian product [0,1] X [0, 1] into S,
so that

(@) g(s, 0) =f0(s) (0 <s5s < 1)
d gssH=fi(s) (O=<s=<1
© 80,1)=x O<t<1
@ g1, t)=y O<t<)

Thus, we say that two points x, y in S are simply connected in S if, given
any two paths f;, f; going from x to y in S, there exists a function g as just
described. This idea is illustrated in Figure 2.5.1.

If x, y are not simply connected in S, then we say that x, y are multiply
connected in S. .

S itself is called simply connected if every pair of points x, y in S is
simply connected in S. Otherwise, S is called multiply connected. In the latter
case we can imagine that S contains a “hole”, as illustrated in Figure 2.5.2.

Exercises & Examples

5.1. Show that the properties of being (pathwise) connected, disconnected,
simply connected and multiply connected are invariant under metric
equivalence.

27




28

2 Metric Spaces; Equivalent Spaces; Classification of Subsets

Figure 2.5.2

In a multiply connected
space there exist paths
which cannot be continu-
ously déformed from one
to another. There is some
kind of “hole” in the
space.

Figure 2.5.3

Locate the largest con-
nected subsets of this sub-
set of R?,
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the dot at the corner
7] is missing

s-t-r-e-t-cchto <O

homeomorphism

Figure 2.5.4

A Cauchy sequence being
preserved by a metric
equivalence, and de-

(X.d) contains a
Cauchy Sequence

stroyed by a certain ho-
meomorphism.

(X,d) Cauchy Sequence
destroyed !

bail}

metric = IR
s X2-X3'

equivalence | X

():(, f:l) Cauchy Sequence
survived !

5.2.
5.3.

54.

5.5.

5.6.

5.7.

5.8.
5.9.

5.10.

Show that the metric space (M, Euclidean) is simply connected.
Show that the metric space (X = (0,1) U {2}, Euclidean) is discon-
nected.
Show that the metric space (X, code space metric) is totally discon-
nected.
Show that the metric space ( o, Manhattan) is multiply con-
nected.
Suppose §;, 2 8§, D -+ D §,D --- is a nested sequence of nonempty
connected subsets. Is NS, necessarily connected?
Identify pathwise connected subsets of the metric space suggested in
Figure 2.5.3.

R\;';Q%’f}
S
Discuss which set-theoretic properties (open, closed, connected, com-
pact, bounded, . ..) would be best suited for a model of a cloud, treated
as a subset of R>.
The property that {x,}7_, is a Cauchy sequence in the metric space
(X, d) is not invariant under homeomorphism but is invariant under
metric equivalence, as illustrated in Figure 2.5.4. .

, Euclidean) simply or multiply connected?
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2.6

THE METRIC SPACE (5 (X), h): THE SPACE WHERE FRACTALS LIVE

We come to the ideal space in which to study fractal geometry. To start with,
and always at the deepest level, we work in some complete metric space, such
as (R?, Euclidean) or (C, spherical), which we denote by (X, d). But then,
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when we wish to discuss pictures, drawings, “black-on-white” subsets of the
space, it becomes natural to introduce the space .

Definition 1. Let (X, d) be a complete metric space. Then (X ) denotes
the space*whose points are the compact subsets of X, other than the empty set.

Exercises & Examples

6.1. Show that if x and y € #(X), then x U y is in 3#(X). Show that
x Ny need not be in #(X). A picture of this situation is given in
Figure 2.6.1.

6.2. What is the difference between a subset of 3 (X) and a compact
nonempty subset of X?

Definition 2. Let (X, d)be a complete metric space, x € X, and B € #(X).
Define

d(x, B) = Min{d(x, y): y € B}.
Then d(x, B) is the distance from the point x to the set B.

Figure 2.6.1
Points in the space The whole smiley
H(R?) may be interpret- face is a point
ed as black-and-white in H(X).
images. Unions of points Call it xe H(X).
yield new points. Be care-
ful with intersections,
however.
This thin torso
( is a point
in H(X).
%/‘ Call it ye H(X).
]
This fellow is
XuYy.
He is a single
point in H(X).
S
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How do we know that the set of real numbers {d(x, y): y € B} contains
a minimum value, as claimed in the definition? This follows from the compact-
ness and nonemptyness of the set B € »#(X). Consider the function f:
B - R defined by

f(y)=d(x,y) forally€B.

From the definition of the metric it follows that f is continuous, viewed as a
transformation from the metric space ( B, d) to the metric space (R, Euclidean).
Let P = Inf{ f(y): y € B}, where “Inf” is defined in Example 2.6.20, and
also in Definition 3.6.2. Since f(y) = 0 for all y € B, it follows that P is
finite. We claim there is a point € B such that d(x, ) = P. We can find an
infinite sequence of points { y,: n =1,2,3,...} C B such that |f(y,) — P| <
1/n. Using the compactness of B, we find that {y,: n=1,23,...} has a
subsequence with limit € B. Using the continuity of f we discover that
f(p) = P, which is what we needed to show.

Color Plate 2.6.1 shows a picture of the metric space (M, Manhattan). It has
been colored as follows. Let # denote a certain subset of B whose ‘geometry’
is that of a piece of a fern. Then the color of each point a € B is fixed by the
value of d(a, #).

Definition 3. Let (X, d) be a complete metric space. Let A, B € £ (X).
Define

d( A, B) = Max{d(x, B): x € 4}.

d(A, B) is the distance from the set A € H#(X) to the set B € #(X).

Just as above, using the compactness of 4 and B, we can prove that this
definition is meaningful. In particular, there are points £ € 4 and § € B such
that d(A, B) = d(%, ).

Exercises & Examples

6.3. Show that B, C € 5#(X), with B C C implies d(x,C) < d(x, B).

6.4. Calculate d(x, B) if (X, d) is the space (R?, Euclidean), x € R? is the
point (1,1), and B is a closed disk of radius % centered at the point
(3,0). .

6.5. Same as 6.4, but use the Manhattan metric.

6.6. Calculate d(x, B) if (X, d) is (R, Euclidean), x = 3, and

n

B={x,,=3+(—1)" 1:n=1,2,3,...}u{3}.

n* +

6.7. Let 4, B € 5#(X) where (X, d) is a metric space. Show that, in general,
d(A, B) # d(B, A). Conclude that d does not provide a metric on
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Figure 2.6.2

This fractal image con-
tains a pair of disjoint
subsets of @ C R?,
“black” and “white”.
Let A denote the closure
of the set in black and let
B denote the closure of its
complement. Find a pair
of points x € Aandy €
B, such that d(x, y) =
d(A, B). Find a pair of
points X € Aandj € B
such that d(j, X) =

d(B, A). Why do we
“close” the sets before we
begin?

H#(X). It is not symmetrical: the distance from A4 to B need not equal
the distance from B to A.

6.8. Figure 2.6.2 shows two subsets, 4 and B, of (M C R?, Euclidean). 4 is
the white part and B is the black part. (a) Estimate the location of a pair
of points, x € 4 and y € B, such that d(x, y) = d( A, B). (b) Estimate
the location of a pair of points, X € 4 and j € B, such that d(%, j) =
d(B, A).
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Figure 2.6.3

Find a pair of points X
and p, one in the dark
fern and one in the pale
fern, such that the
Hausdorff distance be-
tween the two fern images
is the same as the dis-
tance between the points.

\ ':‘”'"’"”' W llll, ||,...||'|”’ i

,I 'Il,ll I"' "Ill oy

R i .Hm' - :

L![ﬁ"d'h[w oy ‘ﬂ’(
T
vmuh""' h J

Mgl
o

gy R
B

LT W
‘o B
"

6.9. Figure 2.6.3, shows two fern-like subsets, 4 and B, of (R2, Manhattan).

Locate points x € 4 and y € B such that: (a) d(x, y) = d(A4, B); (b)
d(x, y) = d(B, A).

6.10. Find d(France, USA) and d(USA, France) on (C, spherical metric).
Which is larger? Also compare d(Georgia, USA) to d(USA, Georgia).

6.11. Let (X, d) be a complete metric space. Let 4 and B be points in #(X)
such that 4 # B. Show that either d(A4, B) # 0 or d(B, A) # 0. Show
that if 4 C B then d(A4, B) = 0.

6.12. Let (X, d) be a complete metric space. Show thatif 4, B, and C € #(X)
then B € C = d(A,C) < d(A, B). (Hint: Use Example 6.3.)

6.13. Let (X, d) be a complete metric space. Show that if 4, B, and Ce
H#(X) then

d(AU B,C) =d(A,C) V d(B,C).

We use the notation x V y to mean the maximum of the two real
numbers x and y.

Proof. d(AU B,C)=Max{d(x,C): x€AUB}=Max{d(x,C): xEA}V
Max{d(x,C): x € B}.
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6.14. Let A, B and C belong to »#(X) where (X, d) is a metric space. Show
that

d(A,B) < d(A,C) + d(C, B).
Also determine whether or not the inequality

d( A, B) <d(C, A) + d(C, B)

is true in general.

Definition 4. Let (X,d) be a complete metric space. Then the Hausdorff
distance between points 4 and B in 3 (X) is defined by

h( 4, B) = d( A4, B) V d(B, A).

Exercises & Examples
6.15. Show that 4 is a metric on the space 3 ( X).

Proof. let A, B,C € #(X). Clearly h(A, A) = d(A, A)V d(A, A) =
d(A, A) = Max{d(x, A): x€ A} =0. h(A, B) = d(a, b) for some a € 4
and b € B, using the compactness of 4 and B. Hence 0 < h(A4, B) < co. If
A # B we can assume there is an a € 4 so that a & B. Then h(A4, B) >
d(a, B) > 0. To show that h(A, B) < h(A4,C) + h(C, B) we first show that
d(A, B) < d(A,C) + d(C, B). We have for any a € 4

d(a, B) = Min{d(a, b): b € B}
< Min{d(a,c) + d(c,b): be B}Vce C
= d(a,c) + Min{d(c,b): b€ B} Vc € C,so
d(a,B) < Min{d(a,c): c€ C} + Max{Min{d(c,b): b€ B}: c€ C}
=d(a,C) + d(C, B), so
d(A, B) <d(A,C) + d(C, B).
Similarly

d(B, A) < d(B,C) + d(C, A), whence
h(A, B) = d(A, B) V d(B, A) < d(B,C) V d(C. B) + d(A,C) V d(C, 4)
= h(B,C) + h(A4,C), as desired.

6.16. Show that /(A U B, CU D)< h(A4,C)V h(B, D), for all 4, B, C,
and D € #(X).

6.17. Let (X,d) be a compact metric space. Show that (#(X), h) is a
compact metric space, where & is the Hausdorff metric on the space
H(X).

6.18. Show that h(A4, B) = d(a, b) for some a € 4 and b € B.
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6.19. The same situation as in 6.9, but this time locate a pair of points £ € 4
and § € B such that d(£, §) = h(A, B), the Hausdorff distance from 4
to B.

6.20. Let S C R, with § # @. The supremum of S is denoted by Sup S. The
infimum of S is denoted by Inf S. If there is no real number which is
greater than all the numbers in S then Sup § = +c0; otherwise Sup S
= Min{x € R: x > s Vs € §). If there is no real number which is less
than all of the numbers in S then InfS = —o0; otherwise InfS =
Max{x €R: x <sVse€ S§}. Show that SupS and InfS are well-
defined. Show that if S is compact then Sup S = Max § and Inf§ =
Min S. Further exercises on Sup and Inf are given following Definition
3.6.2.

By replacing Max by Sup and Min by Inf, respectively, throughout the
definition of the Hausdorff metric, define a “distance” between arbitrary
pairs of subsets of a metric space. Give several reasons why this
“distance” is not usually a metric.
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2.7 THE COMPLETENESS OF THE SPACE OF FRACTALS

We refer to (3£ (X), h) as “the space of fractals”. It is too soon to be formal
about the exact meaning of ““a fractal”. At the present stage of development of
science and mathematics, the idea of a fractal is most useful as a broad
concept. Fractals are not defined by a short legalistic statement,-but by the
many pictures and contexts which refer to them. For us, for the first eight
chapters of this book, any subset of (S (X), &) is a fractal. However, as with
the concept of “a space”, more meaning is suggested than is formalized.

In this section our principal goal is to establish that the space of fractals
(#(X), h) is a complete metric space. We also want to characterize conver-
gent sequences in 3#(X). To achieve these goals using only the tools intro-
duced so far is quite difficult. Indeed, at this juncture, we want to introduce
another notion; namely, the idea of extending certain Cauchy subsequences.
Definition 1. Let SC XandletI' > 0. Then S+ I'={ye X: d(x,y)<T
for some x € §}. § + I' is sometimes called, for example, in the theory of set
morphology, the dilation of S by a ball of radius T.

Lemma 1. Ler A and B belong to #(X) where (X, d) is a metric space. Let
€> 0. Then

h(A,By<ee® ACB+eand BC A +ec
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Proof. Begin by showing that d(A4, B) < e < A C B + €. Suppose “d(A4, B)
<e” Then Max{d(a, B): a € A} < ¢ implies d(a, B) <€ for all a € 4.
Hence for each a € A we have a € B + ¢. Hence “4 C B + ¢.” Suppose
“A C B + ¢.” Consider d( A4, B) = Max{d(a, B): a € A}. Let a € 4. Since
A C B +e¢, thereis a b € B so that d(a, b) < . Hence d(a, B) < e. This is
true for each a € 4. So “d(A4, B) < ¢.” This completes the proof.

Let {4,: n=1,2,..., 00} be a Cauchy sequence of sets in (H#(X), k).
That is, given € > 0, there is N so that n, m > N implies

A,+eDA, and A, +eDA,,

ie., h(A,, A,) < e. We are concerned with Cauchy sequences {x,}%_, in X
with the property that x, € A, for each n. In particular, we need the
following property which allows the extension of a Cauchy subsequence
{x, €4, )%, with the property that x, € 4, for each j, to a Cauchy °
sequence {x, € 4,}7_,

Lemma 2. (The Extension Lemma) Let (X, d) be a metric space. Let
(A, n=1,2,...,00} be a Cauchy sequence of points in (¥ (X), h). Let
{n;}7L1 be an infinite sequence of integers

0<n <n<ny< ---

Suppose that we have a Cauchy sequence {x,, €4, j=123,...} in
(X, d) Then there is a Cauchy sequence {X, € A =1,2,...} such that
x Jforall j=1,23,.

n

S

Proof. We give the construction of the sequence {X,€ 4,: n=1,2,...}.
For each n € {1,2,...,n,}) choose X, € {x € 4,: d(x,x,)=d(x,,4,)}
That is, X, is the closest point (or one of the closest points) in 4, to x,, . The
existence of such a closest point is ensured by the compactness of 4,.
Similarly, for each j € {2,3,---} and each n € {n; +1,...,n,,,} choose
X, €E{x €A, dx, X, )= d(x,, A)}.

Now we show that {X,} has the desired properties, that it is indeed an
extension of {x, } to {4, }. Clearly ¥, = x, and x, € 4,, by construction.
To show that it is a Cauchy sequence let ¢ > 0 be given. There is N, so that
n,,n;> N, implies d(x, , x, ) < €/3. There is N, so that m, n > N, implies

d(4,,.,A,) <e/3.
Let N = Max{N,,N,} and note that, for m, n > N,
d( ma n) <d( m’ n ) + d( n > nk) + d(X”k,i")

where me {n,_ ; +1,n,_; +2,...,n;} and ne€{n_+ 1,n_; +
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Figure 2.7.1

The beginning of a
Cauchy sequence { 4, }
of sets in #(R?) is
shown. A Cauchy subse-
quence of points { x,, }
belonging to a subse-
quence of the sets is also
indicated. Make a photo-
copy of the figure, and
mark on it the extension
of the subsequence of
points to the visible sets
in {A,)}.

2,...,n,}. Since h(A4,, A,)<¢/3 there exists y € 4, N ({x,} +¢€/3) s0
that d(%,, x, ) <€/3. Similarly d(x, , ¥,) <e/3. Hence d(%,, £,) <€ for

all m, n > N. This completes the proof.

Exercises & Examples

7.1. A Cauchy sequence {4, } of sets in (#(R?), h) is sketched in the Figure
2.7.1. The underlying metric space is (R? Euclidean). A Cauchy sub-
sequence {x, € A, } is also shown. Sketch, in the same Figure, an

extension { X, }, of this subsequence, to {4, }.

7.2. Repeat 7.1 but this time with reference to Figure 2.7.2.

The central result we have been driving for is this:

Theorem 1. (The Completeness of the Space of Fractals) Let (X, d) be a
complete metric space. Then (3 (X), h) is a complete metric space. Moreover,

if {A, € H# (X)), is a Cauchy sequence then
A = Lim 4, € #(X)

n—-ow

By xn

Figure 2.7.2 )

The same problem as for
Figure 2.7.1. The sets

{ A, )} look very different
here.

37
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can be characterized as follows:

A = { x € X: there is a Cauchy sequence {x, € A, } that converges to x}.

Proof. Let {A,} be a Cauchy sequence in #(X) and let 4 be defined as in
the statement of the theorem. We break the proof up into the following parts:

(a) A+ I,

(b) A is closed and hence complete since X is complete;
(¢) for e > 0 thereis N such thatforn >N, A C A4, + ¢
(d) A is totally bounded and thus by (b) is compact;

(e) LimA4, = A.

Proof of (a). We shall prove this part by proving the existence of a Cauchy
sequence {a, € A;} in X. Towards this end find a sequence of positive
integers N, < N, < N; < --- <N, < --- such that

h(A,,,,A,,)<% form,n > N,

Choose x,, € Ay, . Then, since h(Ay, Ay,) < }, we can find an xy, € 4y,
such that d(xy, xy,) < 1. Assume that we have selected a finite sequence
xy €Ay; i=12,... k for which d(xy_ ,xy)<1/2"!. Then since
h(Ay,, Ay, ) <1/2% and xy, € A4y,, we can find xy €Ay, such that
d(xy,, xy,, ) < 1/2% For example let x,  be the point in 4y  which is
closest to x, . By induction we can find an infinite sequence {xy € 4, } such
that d(xy, xy )< 1/2" To see that {x, } is a Cauchy sequence in X, let
€ > 0 and choose N, such that X2 \1/2' < €. Then for m > n > N, we have

d(me’xN,.) = d(me’me»l) + d(me+1 4 an,+z) + e +d(an—1 ’an)
)
1
< Z > <e.

By the Extension Lemma, there exists a convergent subsequence {a, € 4,} for
which ay = xy . Then Lim a; exists and by definition is in 4. Thus 4 # &.

Proof of (b). To show that A is closed, suppose {a, € A} is a sequence that
converges to a point a. We will show that a € 4, hence making A4 closed. For
each positive integer i, there exists a sequence {x; ,€ A,} such that
Lim,_, _x;, , = a,. There exists an increasing sequence of positive numbers
{N;}iZ1 such that d(ay, a) < 1/i. Furthermore there is a subsequence of
integers {m;} such that d(x ,,,ay) < 1/i. Thus d(xy ,,,a) <2/i If we
let y, = xy , weseethat y, € A”;‘ and Lim,_, y,, =a By the Extension
Lemma {y,, } can be extended to a convergent sequénce {z, € 4,}, and so
a € A. Thus we have shown 4 is closed.

, m,
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Proof of (¢). Let €¢> 0. There exists an N such that for m,n > N,
h(A,,, A,) < €. Now let n > N. Then for m > n, A, C A, + ¢. We need to
show that 4 C 4, + €. To do this, let a € 4. There is a sequence {a; € 4,}
that converges to a. We may assume N is also large enough so that for
mz2= N, d(a,,a) <e Then a, € A, + ¢ since 4, C A, + €. Since 4, is
compact, it can be shown that A, + € is closed. Then since a,, € 4, + ¢ for
all m > N, a must also bein A4, + €. This completes the proof that 4 C 4, + ¢
for n large enough.

Proof of (d). Suppose A were not totally bounded. Then for some € > 0 there
would not exist a finite e-net. We could then find a sequence {x;}32, in 4
such that d(x;, x;) > e for i # j. We shall show that this gives a contradic-
tion. By (c) there exists an n large enough so that A € 4, + ¢/3. For each x,,
there is a corresponding y; € A, for which d(x,, y,) <¢/3. Since 4, is
compact some subsequence { y, } of {y;} converges. Then we can find points
in the sequence {y, } as close together as we wish. In particular we can find
two points y, and Y, such that d(y, , Yn) < €/3. But then

d(x,.%,) <d(x,,5) +d(n,n)+dn.5)<5+35+3

W] ™

and we have a contradiction to the way {x, } was chosen. Thus 4 is totally
bounded and by part (b) compact.

Proof of (). From part (d), A € s#(X). Hence by part (c) and Lemma 1 the
proof that Lim A, = 4 will be complete if we show that for € > 0, there exists
an N such that for n > N, A, C 4 + €. To show this let ¢ > 0 and find N
such that for m,n > N, h(A,, A,) < ¢/2. Then for m,n > N, 4, C A4, +
€/2. Let n > N. We will show that 4, € 4 + e. Let y € 4. There exists an
increasing sequence {N;} of integers such that n < Ny < N, < N; < --- <
N, < --- andform, k2N, A4, CA, +¢/2/" . Note that 4, C Ay + ¢/2.
Since y € 4, there is an x, € A, such that d(y, xy) < ¢/2. Since xy €
Ay, , there is a point xy, € Ay such that d(xy,, xy,) < ¢/2% In a similar
manner we can use induction to find a sequence xy , xy,, Xy,,... such that
xy €Ay and d(xy,xy )< ¢/2/%! Using the triangle inequality a number
of times we can show that N

d(y,xN’) <e forall j,

and also that { x,, } is a Cauchy sequence. { x, } converges to a point x which
is in A. Moreover d(y, xy) < € implies that d(y, x) < e. We have thus
shown that 4, C 4 + ¢ for n > N. This completes the proof that Lim 4, = 4
and consequently that (J#(X), ) is a complete metric space.
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Figure 2.7.3

A Cauchy sequence of sets
{A,} in the space

H# (R?) copuerging to a
fern-like set.




2.8 Additional Theorems about Metric Spaces

Exercises & Examples

7.3. A tree waves in the wind. A special camera photographs the tree at times
t,= (1~ 1/n)secs, n=1,23,.... Show that with reasonable assump-
tions the sequence of pictures thus obtained form a Cauchy sequence
(A4,}%2., in #(R?). What does 4 = Lim,, _, 4, look like?

7.4. The Sierpinski Triangle &@ is a compact subset of (R?, Euclidean).
Hence ( &@ , Euclidean) is a compact metric space. Give an example of
an infinite set in (ﬂ(& ), h). Demonstrate a Cauchy sequence

(A, €#( )} which is contained in your set, and describe its limit.

7.5. Figure 2.7.3 shows a convergent sequence of sets in ¢ (M) converging to a
fern. Pick a point in 4. Find a Cauchy sequence {x, € 4,} which
converges to it.
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2.8 ADDITIONAL THEOREMS ABOUT METRIC SPACES

We state here a number of theorems which we shall use later on. Full proofs
are not provided. They can be found in most introductory topology texts. We
particularly recommend Kasriel [1971] and Mendelson [1963]. These theorems
may be treated as exercises in metric space theory.

Theorem 1. Let (X, d) be a metric space. Let {x,} be a Cauchy sequence
convergent to x € X (or equivalently let {x,} be a sequence and x be a point,
such that Lim, _, d(x, x,) = 0). Let f: X — X be continuous. Then

Lim £(x,) = £(x).

Proof. See your first calculus book.

Theorem 2. Let (X, d,) and (X;, d,) be metric spaces. Let f: X| — X, be
continuous. Let E C X, be compact. Then f: E — X, is uniformly continuous:
that is, given € > 0 there is a number 8§ > 0 so that

dy(f(x). f(y)) <e¢ whenever d\(x, y) <8 forallx,y € E..

Proof. Use the fact that any countable open cover of E contains a finite
subcover.

Theorem 3. Let (X, d;) be metric spaces fori = 1,2,3. Let f: X; X X, = X;
have the following property. For each € > 0 there exists 8§ > 0 such that
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(i) di(xy, 1) <8 = dy(f(x1, X)), f(N, %)) <€, VX, y €EX, VX, €EX,,
and (ii) dy(xy, y,) <8 = dy(f(¥1, X3), f(V1, ) <€, Vy €EX;, Vx,,
Y2 € X,. Then f is continuous on the metric space (X = X, X X,, d) where

d((xl’xz}(yla »)) = Max{d,(x,, 1), d2(x5, y,)}-

Proof. Use d(f(xy, x3), f(y1. »)) < d([f(xy, X,), f()1, X3)) +
d(f(¥1, x5), f(¥1, y;)), but check first that 4 is a metric.

Theorem 4. Let (X, d;) be metric spaces for i = 1,2 and let the metric space
(X, d) be defined as in Theorem 3. If K|, C X, and K, C X, are compact then
K, X K, C X is compact.

Proof. Deal with the component in K, first.

Theorem 5. Let (X,, d,) be compact metric spaces fori = 1,2. Let f: X; > X,
be continuous, one-to-one and onto. Then f is a homeomorphism.




Transformations

on Metric Spaces;
Contraction Mappings;
and the Construction
of Fractals

3.1 TRANSFORMATIONS ON THE REAL LINE

Fractal geometry studies “complicated” subsets of geometrically “simple”
spaces such as R%, C,R,C. In deterministic fractal geometry the focus is on
those subsets of a space which are generated by, or possess invariance
properties under, simple geometrical transformations of the space into itself. A
simple geometrical transformation is one which is easily conveyed or explained
to someone else. Usually they can be completely specified by a small set of
parameters. Examples include affine transformations in R?, which are ex-
pressed using 2 X 2 matrices and 2-vectors, and rational transformations on
the Riemann Sphere, which require the specification of the coefficients in a
pair of polynomials.

Definition 1. Let (X,d) be a metric space. A transformation on X is a
function f: X — X, which assigns exactly one point f(x) € X to each point
x€X If §SCX then f(S)={f(x):x €S}. f is one-to-one if x,y €X
with f(x) = f(y) implies x = y. Function f is onio if f(X) = X. f is called
invertible if it is one-to-one and onto: in this case it is possible to define a
transformation f~': X — X, called the inverse of f, by f!(y) = x where
x € X is the unique point such that y = f(x).

AD
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Definition 2. Let f: X - X be a transformation on a metric space. The
forward iterates of f are transformations f°": X — X defined by f°%(x) = x,
£PNx) = f(x), £ () = fo for(x) = f(f(x)) for n = 0,1,2,... . If f is
invertible then the backward iterates of f are transformations f°( ™ (x):
X - X “defined by f°C"V(x)=f"1(x), fFU™(x)=(f°") }x) for m =
1,2,3,....

In order to work in fractal geometry one needs to be familiar with the basic
families of transformations in R, R?, C, and €. One needs to know well the
relationship between “formulas” for transformations and the geometric
changes, stretchings, twistings, foldings, and skewings of the underlying fabric,
the metric space upon which they act. It is more important to understand what
the transformations do to sets than how they act on individual points. So, for
example, it is more useful to know how an affine transformation in R? acts on -
a straight line, a circle, or a triangle, than to know to where it takes the origin.

Exercises & Examples
L1. Let f: X — X be an invertible transformation. Show that

oo for = folmtm  for all integers m and n.

1.2. A transformation f: R — R is defined by f(x) = 2x forall x e R. Is f
invertible? Find a formula for f°"(x) which applies for all integers n.

1.3. A transformation f: [0,1] — [0,1] is defined by f(x)= 3x. Is this
transformation one-to-one? Onto? Invertible?

1.4. The mapping f: [0,1] — [0, 1] is defined by f(x) = 4x - (1 — x). Is this
transformation one-to-one? Onto? Is it invertible?

1.5. Let € denote the Classical Cantor Set. This subset of the metric space
[0, 1] is obtained by successive deletion of middle third open subintervals
as follows. We construct a nested sequence of closed sets

LhoLho>LOLOL, DD, DL -+- DIyD -
where
IO= [0’1]’
L=10,3] V[3,3],
12= [0,51 U [3, 51 VI8, 51U IS, 3],
=10, 5V [H V5 H VIS FV IS 5]V IE H1V

HEIUE B

I,= I, take away the mlddle open third of each interval in I,

Iy= I,_, take away the middle open third of each interval in I _;.
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I0
0
I
0 3 2 1
I2
o S 3 T
I3
03 % » % 7y 3 ¥ o7 ar o 7 onn
This construction is illustrated in Figure 3.1.1. We define
’ 0
€= 1.
n=0
% contains the point x = 0, so it is nonempty. In fact € is a perfect set
which contains uncountably many points, as discussed in Chapter 4. €
is an official fractal and we will often refer to it.
We are now able to work in the metric space (¢, Euclidean).
A transformation f: € — % is defined by f(x) = yx. Show that this
transformation is one-to-one but not onto. Also, find another affine
transformation (see example 1.7) which maps % one-to-one into €.
1.6. f: R? > R? is defined by f(x,, x,) = (2x;, x5 + x;) for all (x;, x,) €
R2 Show that f is not invertible. Give a formula for f°2(x).
1.7. Affine transformations in R are transformations of the form f(x) = a -

x + b where a and b are real constants. Given the interval I = [0, 1],
f(I) is a new interval of length |a|, and f rescales by a. The left
endpoint 0 of the interval is moved to b, and f(I) lies to the left or right
of b according to whether a is positive or negative respectively (see
Figure 3.1.2).

We think of the action of an affine transformation on all of R as
follows. The whole line is stretched away from the origin if |a| > 1, or

Figure 3.1.1
Construction of the
Classical Cantor Set %.




3 Transformations on Metric Spaces; Contraction Mappings

Figure 3.1.2 Subsets of | are transported
The action of the affine a real interval

transformation f: R - R of length mength |al L
defined by f(x) = ax 0 b

+b. —

| T

rotate 180° about b
if a is less than zero.

contracted towards it if |a| < 1; flipped through 180° about O if @ < 0;
and then translated (shifted as a whole) by an amount b (shift to the left
if b <0, and to the right if b > 0).

1.8. Describe the set of affine transformations which take the real interval
X = [1,2] into itself. Show that if f and g are two such transformations
then fo g and g o f are also affine transformations on [1,2]. Under what

~ conditions does fog(X)U ge f(X) = X?

1.9. A sequence of intervals {7,}*_, is indicated in Figure 3.1.3. Find an
affine transformation f: R — R so that f°"(l,) =1, for n=
0,1,2,3,... . Use a straight-edge and dividers to help you. Also show
that {I,}*, is a Cauchy sequence in (J#(R), h), where / is the
Hausdorff distance on 5 (R) induced by the Fuclidean metric on R.
Evaluate / = Lim, _, _I,.

1.10. Consider the geometric series ¥*_b-a"=b +a-b + a’b+ a’b +
ah+ --- > 0,0 <a < 1. This is associated with a sequence of inter-
vals 1, = [0, b], I, = f°"(I,) where f(x)=ax +b,n=123...; as
illustrated in Figure 3.1.4,

Let I=U%_,I, and let / denote the total length of I. Show that
f(I) = I\ I, and hence deduce that a/ =/ — b so that / = b/(1 — a).
Deduce at once that

Y bean = b/(1 - a).
n=0

Figure 3.1.3

This Figure suggests a se-
quence of intervals
{I,¥—o. Find an affine
transformation f* R —» R
so that f°"(1,) = I, for
n=20123,.... Usea
straight-edge and dividers
to help you.
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lo I b I3 1y Iglg Picture of a convergent
geometric series in R*
(see Ex. 1.9).

Thus we see from a geometrical point of view a well-known result about
geometric series. Make a similar geometrical argument to cover the case
-1<a<0.

Definition 3. A transformation f: R — R of the form
f(x) =ag+ ayx + ax? + azx* + -+ +ayx?,

where the coefficients a; (i = 0,1,2,..., N) are real numbers, a, # 0, and N
is a nonnegative integer, is called a polynomial transformation. N is called the
degree of the transformation.

Exercises & Examples

1L.11. Show thatif /: R - R and g: R —» R are polynomial transformations,
then so is fog. If f is of degree N, calculate the degree of f°™(x) for
m=1,23,....

1.12. Show that for n > 1 a polynomial transformation f: R — R of degree n
is not generally invertible.

1.13. Show that far enough out (i.e., for large enough |x[), a polynomial
transformation f: R — R always stretches intervals. That is, view f as a
transformation from (R, Euclidean) into itself. Show that if I is an
interval of the form I = {x: |x — a| < b} for fixed a, b € R, then for
any number M > O there is a number 8 > 0 such that if » > B, then the
ratio (length of f(I))/(length of I) is larger than M. This idea is
illustrated in Figure 3.1.5.

[ Figure 3.1.5
x-axis at large positive x A po[ynomial transforma-
, ; , , f tion f: R = R of degree

R
H———— +
> 1 stretches R, more and
more the further out one
goes.
S A ——t

TTNOUD USUUY ERDUNS (R SR SR R S
et

X-axis at large positive x
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Figure 3.1.6 . .
i triply folded region
The polynomial transfor- . .
mation f(x) = x* — folcll point fold plomt
B+ e R L
¢ >
/9-) . S
&
A4 ¢ f 1 f t f 1
R -2 -1 0 1 2 3 4 5

1.14.

1.15.

1.16.

1.17.

L18.
1.19.

1.20.

A polynomial transformation f: R — R of degree » can produce at
most (n — 1) folds. For example f(x) = x* — 3x + 1 behaves as shown
in Figure 3.1.6.
Find a family of polynomial transformations of degree 2 which map the
interval [0,2] into itself, such that, with one exception, if y € f([0, 2])
then there exist two distinct points x; and x, in [0,2] with f(x,) =
f(x2)= . |
Show that the one-parameter family of polynomial transformations f:
[0,2] — [0,2], where

A(X)=A-x-(2-x),
and the parameter A belongs to [0, 2], indeed takes the interval [0, 2] into
itself. Locate the value of x at which the fold occurs. Sketch the behavior
of the family, in the spirit of Figure 3.1.6.
Let f: R = R be a polynomial transformation of degree ». Show that
values of x which are transformed into fold points are solutions of

%(x)=0, x€R.

Solutions of this equation are called (real) critical points of the function
f. If ¢ is a critical point then f(c)is a critical value. Show that a critical
value need not be a fold point.

Find a polynomial transformation such that Figure 3.1.7 is true.

Recall that a polynomial transformation of an interval f: ICR — I'is
normally represented as in Figure 3.1.8. This will be useful when we
study iterates { f°"(x)%_,. However the folding point of view helps us to
understand the idea of the deformation of space.

Polynomial transformations can be lifted to act on subsets of R? in a
simple way: we can define for example F(x) = ( fi(x,), f2(x,)) where f;
and f, are polynomial transformations in R, so that F: R*> > RZ
Desired foldings in two orthogonal directions can be produced; or
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Figure 3.1.7
. . . Find a polynomial trans-
f0|¢? point fold lpomt fold pr)mt formation f: R — R, so
e 4 —t H 1 ! 3| that this figure correctly
C represents the way it folds
D) the real line.

shrinking in one direction and folding in another. Show that the trans-
formation F(x;, x,) = (3x] — ¥x{ + “8x,, x,) acts on the triangular
set § in Figure 3.1.9 as shown.

The real line can be extended to a space which is topologically a
circle by including “The Point at Infinity.” One way to do this is to
think of R as a subset of €, and then include the North Pole on €. We
define this space to be R = R U {o0}, and will usually give it the
spherical metric.

Definition 4. A transformation f: R — R defined in the form

+b
f(x) = ?;+d, a,b,c,deR,  ad+# b,

is called a linear fractional transformation or a Mobius transformation. If ¢ # 0
then f(—d/c) = oo, and f(o0) = a/c. If ¢ = 0 then f(o0) = co.

Exercises & Examples

1.21. Show that a M&bius transformation is invertible.
1.22. Show that if f; and f, are both Mobius transformations then so is

fie hr

7} Figure 3.1.8
- The usual way of pictur-
e ing a polynomial transfor-

mation.

-

—_— e — - — — — —

2 .. .
critical pomnt
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Figure 3.1.9

A polynomial transforma-
tion acting on a set S in
the plane

fold lines

double cover
/ triple cover

-

1.23. What does f(x) = 1/x do to R on the sphere?

1.24. Show that the set of Mobius transformations f such that f(co) = o0 is
the set of affine transformations.

1.25. Find a Mdbius transformation f: R — R so that f(1) =2, f(2) =0,
f(0) = co. Evaluate f(o0).

1.26. Figure 3.1.11 shows a Sierpinski triangle before and after the polynomial
transformation x — ax(x — b) has been applied to the x-axis. Evaluate
the real constants a and b. Notice how well fractals can be used to
illustrate how a transformation acts.

3.2 AFFINE TRANSFORMATIONS IN THE EUCLIDEAN PLANE

Definition 1. A transformation w: R? — R? of the form
w(x ,x) = (ax, + bx, + e, cx; + dx; + f)

where a, b, ¢, d, e, and f are real numbers, is called a (two-dimensional)
affine transformation.

Figure 3.1.10
R U {oo} becomes a
circle on the sphere.
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y y
AFTER (X,Y)-(aX:(X-b),Y) BEFORE
41 1 TRANSFORMATION

Al

\
AbbAAL

)

B

A )

T

Figure 3.1.11
A Sierpinski triangle before and after the polynomial transformation x — ax(x — b) is
applied to the x-axis. Evaluate the real constants a and b.

We will often use the following equivalent notations

v =(2) = (¢ D) () - aee e

Here 4 = (‘: Z) is a two-dimensional 2 X 2 real matrix and ¢ is the column

vector (;) which we do not distinguish from the coordinate pair (e, f) € R2
Such transformations have important geometrical and algebraic properties.
Here and in all that follows we shall assume that the reader is familiar with
matrix multiplication.
The matrix A4 can always be written in the form
(a b) (r100801 —r,sinéd,

c d r, sinf,  rcosb,
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Figure 3.2.1

An affine transformation
takes parallelograms into
parallelograms.

length r, length r,

where (r,, 8,) are the polar coordinates of the point (a, ¢) and (r,,(8, + 7/2))
are the polar coordinates of the point (b, d). The linear transformation

) = ()

in R? maps any parallelogram with a vertex at the origin to another parallelo-
gram with a vertex at the origin, as illustrated in Figure 3.2.1. Notice that the
parallelogram may be “turned over” by the transformation, as illustrated in
Figure 3.2.2.

The general affine transformation w(x) = Ax + ¢ in R? consists of a
linear transformation, 4, which deforms space relative to the origin, as

Figure 3.2.2
A linear transformation
can turn pictures over.

2 A( Xu )_ (rl €os o I sin 92) Xi )
X I Sin o I €Os &: /\ X:
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described above, followed by a iranslation or shift specified by the vector ¢
(see Figure 3.2.3).

How can one find an affine transformation which approximately trans-
forms one given set into another given set in R?? Let’s show how to find the
affine transformation which almost takes the big leaf to the little leaf in Figure
3.2.4. This figure actually shows a photocopy of two real Ivy leaves. We wish
to find the numbers a, b, ¢, d, e, and f defined above, so that

w (BIG LEAF) approximately equals LITTLE LEAF.

Begin by introducing x and y coordinate axes, as already shown in Figure
3.2.4. Mark three points on the big leaf (we’ve chosen the leaf tip, a side spike,
and the point where the stem joins the leaf) and determine their coordinates
(x4, x3), (¥, %), and (z,, z;). Mark the corresponding points on the little
leaf, assuming that a caterpillar hasn’t eaten them, and determine their
coordinates; say (X,, £,), (J,, #,), and (%, 7,) respectively. Then a, b, and ¢
are obtained by solving the three linear equations

xa+ x,b+e=3%x,,
na+yb+e=
zia+z,b +e

I
=

It
N
2

while ¢, d, and f satisfy
x;c+x,d+f=%,,
yic +nd + f=75,
zZic+zd+ f=12,.

Figure 3.2.3
An dffine transformation
consists of a linear trans-
formation followed by a
FIRST MAKE A LINEAR translation.
TRANSFORMATION
(e,f)

THEN

TRANSLATE by t

53
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Figure 3.2.4

Two Ivy leaves lying on
the Euclidean Plane de-
termine an affine trans-
formatior.

Exercises & Examples

2.1

2.2,

23.

Find an affine transformation in R? which takes the triangle with
vertices at (0, 0), (0, 1), (1,0) to the triangle with vertices at (4, 5), (—1,2)
and (3,0). Show what this transformation does to a circle inscribed in
the first triangle. '

Show that a necessary and sufficient condition for the affine transforma-

tion
a by[* ey
(C d)(x2)+<f)-—Ax+t
to be invertible is det 4 # 0, where det A = (ad — bc) is the determi-
nant of the 2 X 2 matrix A4.

Show that if f;: R? > R? and f,: R> > R? are both affine transforma-
tions, then so is

L=hehh.

If f(x)=Ax+1,i=1273where 4, is a 2 X 2 real matrix, express
A, in terms of 4, and 4,.

Definition 2. A transformation w: R? — R? is called a similitude if it is an
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affine transformation having one of the special forms
x\ rcos —rsinf\({x +(e
Nx) T\ rsing  reosd |\ %2 f)
x\ [rcosd rsind X, e
w(xz " \rsind —rcosé (xz)+(f)
for some translation (e, f) € R2, some real number r # 0, and some angle 6,

0 < 8 < 27. 8 is called the rotation angle while r is called the scale factor or
scaling. The linear transformation

—sind X

cosd (xz)

x\ [cosd
Ra(xz)_(sin()
0y (1 0\[ X
R -0
is a reflection.

is a rotation. The linear transformation
Figure 3.2.5 shows some of the things that a similitude can do. Notice that
a similitude preserves angles.

55

BOMB

EITLIC=)

§%

Figure 3.25
Some of the things that a
similitude can do.
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Exercises & Examples
2.4. Find the scaling ratios r;, r, and the rotation angles 6,, 8, for the affine
transformation which takes the triangle (0,0), (0,1), (1,0) onto the
straight line segment from (1,1) to (2,2) in R? in such a way that both
(0;1) and (1,0) go to (1,1).
2.5. Let S be a region in R? bounded by a polygon or other ‘nice’ boundary.
Let w: R? > R? be an affine transformation, w(x) = Ax + ¢. Show that

(area of w(S)) = |detA| - (area of S)

(see Figure 3.2.6). Show that det 4 < 0 has the interpretation that § is
“flipped over” by the transformation. (Hint: Suppose first that S is a
triangle.)

2.6. Show that if w: R? = R? is a similitude, w(x) = Ax + ¢, where ¢ is the
translation and 4 is a 2 X 2 matrix, then 4 can always be written either -
A =rRyor A =rRR,.

2.7. View the railway tracks image in Figure 3.2.7 as a subset S of R2. Find a
similitude w: R? — R? such that w(S) C S, w(S) # S.

2.8. We use the notation introduced in Definition 3.2.2. Find a nonzero real
number 7, an angle 8, and a translation vector ¢ such that the similitude
wx = rRyx + t on R? obeys

L) b o L) da

where & denotes a Sierpinski Triangle with vertices at (0, 0), (1,0),

and (3,1).
Figure 3.2.6
The scaling factor by ——
which an affine transfor- -
mation changes area is AFFINE ~Y
determined by the de- TRANSFORMAT ION
terminant of its linear W(x)=fixst

part.
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- Figure 3.2.7

FIXED POINT Railway to Infinity. Can
you find an affine trans-
formation which nearly
maps the tracks into
themselves?

ind an affine mapping
which nearly takes

the tracks into
/ hemselves
/P;M‘( TO MNNTY

2.9. Show that if w: R* > R? is affine, w(x)= Ax + ¢, then it can be

reexpressed
(n O n 0\/x
w(x)—(0 rz)Ra(O r4)(x2)+t

where r, €R and 0 < # < 27. We call a transformation of the form

x\ [(n 0)(x
w( xz) o n ( xz)
a coordinate rescaling,

2.10. Let S denote the two-dimensional orchard subset of R? shown in Figure
3.2.8. Find two fundamentally different affine transformations which
map S into S but not onto S. Define the transformations by specifying
how they act on three points.
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Figure 3.2.8
Orchard Subset of R*. Can you find some interesting affine transformations which map
this set into itself ?

2.11. Let w(x) = Ax denote a linear transformation in the metric space
(R, D) where
_[a b
A—(c d)A

Define the norm of a point x € R? to be |x| = D(x,0) where O
denotes the origin. Define the norm of the linear transformation 4 by

|A|=Max{'lix’lf~|:xeua2,x¢o}

when this maximum exists. Show that |A4| is defined when D is the
Euclidean metric and when it is the Manhattan metric. Find an expres-
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sion for |A| in terms of a, b, ¢, and d in each case. Make a geometrical
interpretation of the |A|. Show that when | 4| exists we have

|Ax| < |4]-|x|  forall x € R2,
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3.3 MOBIUS TRANSFORMATIONS ON THE RIEMANN SPHERE

Definition 6. A transformation f: € — € defined by
_ (az+b)
1(2) = (v d)
where a, b, ¢, and d € C, ad — bc # 0, is called a Mobius transformation on
C.If ¢ # 0 then f(—d/c)= oo, and f(0) = a/c. If ¢ = 0 then f(c0) = oc0.

As shown by the following exercises and examples, one can think of a
Mobius transformation as follows. Map the whole plane C together with the
point at infinity, onto the sphere €, as described in Chapter 2. A sequence of
operations is then applied to the sphere. Each operation is elementary and has
the property that it takes circles to circles. The possible operations are:
rotation about an axis, rescaling (uniformly expand or contract the sphere),
and translation (the whole sphere is picked up and moved to a new place on
the plane, without rotation). Finally, the sphere is mapped back onto the plane
in the usual way. Since the mappings back and forth from the plane to the
sphere take straight lines and circles in the plane to circles on the sphere, we
see that a Mobius transformation transforms the set of straight lines and
circles in the plane onto itself. We also see that a Mébius transformation is
invertible. It is wonderful how the quite complicated geometry of Mobius
transformations is handled by straightforward complex algebra, where we
simply manipulate expressions of the form (az + 4)/(cz + d).

Exercises & Examples

3.1. Show that the most general Mobius transformation which maps co to o0
is of the form f(z)=az+ b, a,6 €C, a0, and that this is a
similitude. Show that any two-dimensional similitude which does not
involve a reflection can be written in this form. That is, diSregarding
changes in notation,

f(2) = f(x +ixy) = (@ + fa))(x, + ix;) + (by + iby)
re®(x, + ix;) + (b + iby), (i= ‘/__1)

=(rcos0 —rsinH)(xl + by
rsind  rcosf J\ X2 by |’
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sets in the plane are
mapped onto the sphere

the sphere may be moved to
a new location on the !Jlane,
rescaled, rotated, and inverted.

Figure 3.3.1
A Mobius transformation acting on England to produce a new country.

Find r and # in terms of 4, and a,. Show that the transformation can
be achieved as illustrated in Figure 3.3.2.

3.2. Show that the Md&bius transformation f(z) = 1/z corresponds to first
mapping the plane to the sphere, in such a way that the unit circle
{z € C: |z| =1} goes to the equator, followed by an inversion of the
sphere (turn it upside down by rotating about an axis through +1 and

" —1 on the equator), and finally mapping back to the plane.

3.3. Show that any Mdbius transformation which is not a similitude may be

written

f(z)=e+z£g forsomee,f,geC, f+#0.
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(1)map him onto (2) spin the globe
on its NS axis

hrough angle o

W)
S,

7]
— - - =

I?4)keeping the NS
vector constant
pick up and move
the sphere, putting
S down on b.

3 rescale the globe

' until it is r times
: as large as it was
I
1
I

S

— - — - -

(5) map hlm onto
the plane

34.

3.5.

3.6.

3.7.

Sketch what happens to the picture in Figure 3.3.3 under the Mobius
transformation f(z) =1/z. )

What happens to Figure 3.3.3 under the M&bius transformation f(z) =
1+ iz

Show algebraically that a Mobius transformation f: € - €is always
invertible.

Show that if f, and f, are Mobius transformations then f o f, is a
Mobius transformation.

Figure 3.3.2

The mechanism of the si-
militude f(z) = re'’z + b
in terms of the sphere.
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Figure 3.3.3
Up the Garden Path.
What does the Mobius
transformgtion z = 1 +
iz do to this picture?
O O
(-1,0) (0.0)
@ -1 ¢

3.8. Find a Mobius transformation which takes the real line to the unit circle
centered at the origin.
3.9. Evalvate f°"(z)if f(z)=1/1 + z),n € {-2,-1,0,1,2,3,... }.
3.10. Interpret the Mobius transformation f(z) =i+ 1/(z — i) in terms of
operations on the sphere.

3.4 ANALYTIC TRANSFORMATIONS

In this section we continue the discussion of transformations on the metric
spaces (C, Euclidean) and (é, Spherical). We introduce a generalization of the
Mobius transformations, called analytic transformations. We concentrate on
the behaviour of quadratic transformations. It is recommended that, during a
first reading or first course, the reader obtains a good mental picture of how
the quadratic transformation acts on the sphere. The reader may then want to
study this section more closely after reading about Julia Sets in Chapter 7.

The similitude f: € — €, defined by the formula f(z)=3z+ 1 is an
example of an analytic transformation. It maps circles to circles magnified by
a factor three. A disk with center at z, is taken to a disk with center at
f(zo) = 3zy + 1. The transformation is continuous, and it maps open sets to
open sets. Nowhere does it “fold back along the dotted line.”
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The similitude f: ¢ — € defined by f(z) = 3 + 3i)z + (1 — 2i) is simi-
larly described. The circles and disks are now rotated by 45° in addition to
being magnified and translated.

Loosely a transformation on € is analytic if it is continuous and locally it
“behaves like” a similitude. If you take a very small region indeed (How
small? Small enough! There is a smallness such that what is about to be said is
true!) and you watch what the transformation does to that tiny region, you will
typically find that it is magnified or shrunk, rotated, and translated, in almost
exactly the same manner that some similitude would do the job. The similitude
will always be of the special type discussed in example 3.1 above.

We make this description more precise. Let us decide to look at what our
transformation does in the vicinity of a point z, € €. Assume that z, is not a
critical point, defined below. Let T denote a tiny region, a disk for example,
which contains the point z, Let f(T) be its image under the transformation.
Then one can rescale T by a factor which makes it roughly the size of the unit
square, and one can rescale f(7T) by the same factor. The assertion of the
previous paragraph is that the action of the transformation, viewed as taking
T, rescaled, onto f(T), rescaled, can be described more and more accurately
by a similitude. If you like, one could consider a picture P drawn in 7 and
examine the transformed image f(P). If P and f(P) are rescaled by the same
factor so that P is the size of the unit square, then f(P) looks more and more
like a similitude applied to P. This description becomes more and more precise
the tinier the region under discussion.

Consider the quadratic transformation f: € — € defined by

f(zy =22 = (x +ix) = (] = x3) + 2x3,0 = fi 31, %) + (%, %),
where f,(x;, x,) = (x{ — x2), is called the real part of f(z), and f,(x;, x,) =
2x,x, is called the imaginary part of f. Pictures of what this transformation
does to some Sierpinski triangles in C appear in Figure 3.4.1.

Two features are to be noticed. (I) Provided that we stay away from the
Origin, the transformation behaves locally like a similitude: for points z close
to z,, f(z)is approximated by the similitude

w(z) =az+b  wherea=2z)and b= —z;.

This fact shows up in Figure 3.4.1: Upon close examination (we suggest the
use of a magnifying glass) of the transformed Sierpinski triangles® one sees
that they are built up out of small triangles whose shapes are only slightly
different from that of their preimages. The only place where this is not true is
at the forward image of the origin, which is a critical point. (II) The
transformation maps the space twice around the origin.

One can track analytically what happens to the point

z= Rcost + iRsin ¢
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Figure 3.4.1
Quadratic transforma- N ?\:&h Sierpinski triangle before
tions are described by transformation
] w
showing how they act on E &&h %&k
a Sierpinski triangle. Use
a magnifying glass to S )
check that the transfor-

mations behave locally
like similitudes. 0

After z 12

where R > 0. As the time parameter ¢ goes from zero to 2w, z moves
anticlockwise once around the circle of radius R. The transformed point f(z)
is given by

f(z) = R*cos2t + iR?sin 21,

As the time parameter ¢ goes from 0 to 27, f(z) goes twice around the circle
of radius R?.

On the Riemann sphere the transformation z — z? can be described as
follows. Let us say that the Equator corresponds to the circle of unit radius in
the plane, that the South Pole corresponds to the Origin, and that the North
Pole corresponds to the Point at Infinity. Then the transformation leaves both
Poles fixed. The Line of Longitude L connecting the Poles, which corresponds
to the positive real axis, is mapped into itself, and the Equator is mapped into
itself. Here is what we must picture. First, points which lie above the Equator
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are moved closer to the North Pole, points which lie below the Equator are
moved closer to the South Pole, and the Equator is not shifted. Second, the
skin of the sphere is cut along the Line of Longitude L. One side of the cut is
held fixed while the other side is pulled around the sphere (following the
terminator when the Sun is high above the Equator), uniformly stretching the
space, until the edge of the cut is back over L. The two lips of the cut are
rejoined. The sphere has been mapped twice over itself. The Poles are the
critical points of the transformation; they are the points about which wrapping
occurs. This description is illustrated in Figure 3.4.2.

The most general quadratic transformation on the sphere is expressible by
a formula of the form f(z) = Az%> + Bz + C where 4, B, and C are complex
numbers. One can show there is a change of coordinates, z ~ #(z), where 8 is
a similitude, such that f(z) becomes expressible in the special form f(z) =

Figure 3.4.2
The action of the
quadratic transformation

(1) POINTS ABOVE 22 in 1 "
THE EQUATOR MOVE . - * in_terms of the
CLOSER TO THE phere.

NORTH POLE; BELOW
THEY MOVE SOUTH,

(2)THE SPHERE IS CUT
ALONG THE LINE OF
LONGITUDE L.

(3) ONE EDGE OF THE

CUT IS PULLED RIGHT

AROUND THE SPHERE. -
THE SPHERE IS

COVERED TWICE.
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22+ C for some complex number C; see Exercise 3.5 (5.17). Hence the
description of the most general quadratic transformation on the sphere can be
made in the same terms as above, except that at the end there is a translation
by some constant amount C. This translation leaves the Point at Infinity fixed.

The quadratic transformation f(z) = z? maps the punctured plane C onto
itself twice. Each point z € C \ {0} has two preimages. Hence f: C-Cis
not an invertible transformation. In such situations we can define a set-valued
inverse function.

Definition 1. Let f: € — € be an analytic transformation such that 7€) =
C. Then the set-valued inverse of f is the mapping f!: Jf(é) —»Jf(é)
defined by

fiay={wel:f(wyea} forall 4 e#(C).

In Figure 3.4.3 we illustrate the transformation f~! acting on the Space of
Fractals, in the case of the quadratic transformation f(z) = z2.

One can obtain explicit formulas for f'(z) when f is a quadratic
transformation. For example, for f(z) = z2, f10)= O, f () = o0, and
Fl(2) = {wi(2), wy(z2)} for z € ¢ \ {0, o0}. Here wy(x; + ix,) = a(xy, x,)
+ ib(x,, x;), and w,(x,, x,) = —a(x,, x,) — ib(xy,x,), where

[ 2 2
X+ x, +Xx

a(x, x) = — when x, > 0,

[ 2 2
X+ x + X

a(x;, x) = — — when x, < 0,

[ 2 2
X"+ X —x

b(xl’x2)= 3

Each of the two functions w;(z) and w,(z) is itself analytic on C \ [0, o0].
The following definition formalizes what is meant by an analytic transfor-

mation on the complex plane. We recommend further reading, for example
[Rudi 1966].

Definition 2. Let (C, d) denote the complex plane with the Euclidean metric.
A transformation f: C — C is called analytic if for each z, € C there is a
similitude of the form

w(z) =az +b, for some pair of numbers a, b € C

such that d(f(z), w(z))/d(z,24) = 0 as z = z;,. The numbers a and b
depend on z,,. If, corresponding to a certain point z, = ¢, we have a = 0, then
¢ is called a critical point of the transformation; and f(c) is called a critical
value.
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If the analytic transformation f(z) is a rational transformation, which
means that it is expressible as a ratio of two polynomials in z, such as

(i) f(z) =1+2i+ 2727 - 923,

(i) ()= 1o,
2
@ 191225,

then the numbers a and b in the similitude w(z) of Definition 1 arg given by
the formulas

a=f(z)and b=f(z) — az.
The derivative f'(z) of the rational function f(z) can be calculated by treating
z as though it were the real variable x and applying the standard differentiat-
ion rules of calculus, The critical points ¢ € C are the solutions of the
equation f'(¢) = 0.

Figure 3.4.3

The set valued inverse,
1, of the quadratic
transformation f(z) =
2%, maps the Sierpinski
triangle AOB into the
POQ U POQ. More
generally ' maps the
Space of Fractals into it-
self. Look carefully at
this image! There are
several important features
of analytic transforma-
tions illustrated here.
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For example, close enough to any point z, € C such that f'(zy) # 0, the
cubic transformation (i) is well described by the similitude

w(z) = (54zy — 27z}) z + (1 + 2i — 27z + 182})
The finite critical points associated with (i) may be obtained by solving
54c — 272 =0

and are accordingly ¢ = 0 + i0 and ¢ = 2 + i0. By making the change of
coordinates z” = 1/z (see section 3.5), one can also analyse the behaviour near
the Point at Infinity. It turns out that ¢ = oo is always a critical point for a
polynomial transformation f(z) on €. The space is “wrapped” an integral
number of times about the image of a critical point. For example the cubic
transformation (i) wraps space twice about each of the points f(0 + i0) = 1 +
2i, and f(2 + i0) = 37 + 2i, and it wraps it three times about f(o0) = co.

Exercises & Examples

4.1. Sketch a globe representing €, including a subset which looks like Africa,
and show what happens to the subset under the quadratic transformation
f(z) = z2

4.2. Verify the following explicit formulas for f~!(z), corresponding to f(z)
=z2-1: (=1 =0; flo0)=00; and f}(z)= {w(2), wy(2)}
forz e € \ {—1, 0}, where w(x; + ix;) = a(x,, x,) + ib(xy, x,), and
wy( Xy, X5) = —a(xy, X,) — ib(x;, x,). Here

\/\/(1+x1)2+x§ +1+ x
2

a(x,x) = when x, > 0,
y(1+x 2+ x2 +1+x
a(x,, %) = —\/ ( Y 3 2 : when x, < 0,
and
VA +x)Y +x2 —-1-x
b(x,x) = 3 .

We remark that both w,(z) and w,(z) are analytic on C \ [—1, ).

4.3. Locate the critical points and critical values of the quadratic transforma-
tion f(z) =z2+ 1.

4.4, Draw a side view of a man with an arm stretched out in front of him,
holding a knife. The blade should point down. Choose the origin of
coordinates to be his naval. Draw another picture to explain how hara-kiri
may be achieved by applying the inverse of the quadratic transformation
f(z) = z? to your image.

4.5. Find a similitude which approximates the behaviour of the given analytic
transformation in the vicinity of the given point: (a) f(z) = z? near
zo=1; (b) f(z) =1/z near zo =1 + i; (¢) f(z) = (z — 1)® near z; =
1 -4

y
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3.5 HOW TO CHANGE COORDINATES

In describing transformations on spaces we usually make use of an underlying
coordinate system. Most spaces have a coordinate system by means of which
the points in the space are located. This underlying coordinate system is
implied by the specification of the space. For example, X = [1,2] provides a
collection of points together with the natural coordinate x restricted by
1 € x < 2. We can think of the space, made of points x € X, or equivalently
we can think of the system of coordinates. If the space X is R? or C then the
underlying coordinate system may be Cartesian coordinates. If X = € then
the coordinate system may be angular coordinates on the sphere.

In each case the underlying coordinate system is itself a subset of a metric
space. We denote this metric space by X.. Usually we do not consciously
distinguish between a point x € X and its coordinate x € X.. Notice how-
ever that the space X may contain points (coordinates) which do not
correspond to any point in the space X. For example, in the case of the space
X =W, it is natural to take X = R? then points x € X in the space
correspond to coordinates x = (x;, x,) € X restricted by 0 < x; <1 and
0 < x, < 1. However the coordinates (3, 5) € X do not correspond to a point
in X. We would like the reader to think of the space itself as “lying above” its
coordinate system, as suggested in Figure 3.5.1.

A change of coordinate system may be described by a transformation §:
X — X-. We can think of a change of coordinates being effected by physi-
cally moving each point x € X so that it no longer lies above x € X but
instead above the coordinate x’ = #(x) € X.. Thus we must now distinguish
between a point x lying in the space, X, and its coordinate x € X. Then we
want to think of the change of coordinates 8: X — X as moving X relative
to the underlying coordinate space X, as illustrated in Figure 3.5.2.

Example

5.1. Let X =[1,2] and take X, to be R. Let : R — R be defined by
6(x) = 2x + 1. Then the coordinate of the point x = 1.5 becomes
changed to 4. We want to think of the space X as being moved relative
to the coordinate space X, which is held fixed, as illustrated in Figure
3.5.3. :

Let 8: X — X denote a change of coordinates. In order that the
new coordinate system be useful it is usually necessary that 8, treated as
a transformation from X to #(X), be one-to-one and onto, and hence
invertible. Let f: X — X be a transformation on a metric space X. We
want to consider how the transformation f should be expressed after the
change of coordinates. Let x denote simultaneously a point in X and the
coordinates of that point. Let f(x) denote simultaneously the point to
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Figure 3.5.1

The underlying coordi-
nate system X for the
space X.

»

S /
S S S /,
PO

IaIa I

S S
S S S S

which x is transformed by f, and the coordinates of that point. Let x’
denote the point x € X ingdie new coordinate system. That is, x' =
6(x) € X, denotes the ne%oordinates of the point x. Let f'(x")
denote the same transformati® f: X — X, but expressed in the new
coordinate system. Then the relation between the two coordinate sys-
tems is expressed by the commutative diagram in Figure 3.5.5, and is
illustrated in Figure 3.5.4.

Theorem 1. Let X be a space and let X O X be a coordinate space for X. Let
a change of coordinates be provided by a transformation 8: X — X.. Let 8 be
invertible when treated as a transformation from X to 8( X). Let the coordinates
of a point x € X be denoted by x before the change of coordinates, and by x'
after the change of coordinates, so that

x' =0(x).
Let f: X — X be a transformation on the space X. Let x — f(x) be the formula
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Figure 3.5.2

A change of coordinates
in terms of X and X.
We think of X as being
moved relative to the un-
derlying coordinate space
X,

for f expressed in the original coordinates. Let x' — f'(x") be the formula for f
expressed in the new coordinates. Then

flx)y = (67 efo0)(x)
f(x)y=(8ef07")(x).

Exercises & Examples

5.2. Consider an affine transformation f(x) =ax + b, a#0, a# 1, a,b €
R. This has a fixed point x,€ R defined by f(x,) = x,. We find
x;=b/(1 — a). x; is clearly the interesting point in the action of an

-

Figure 3.5.3
A change of coordinates
4 . . . . . . for the space [1,2] given

by the transformation x’
0 1 2 3 4 5 6 =f(x) =2x+ 1.
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Figure 3.5.4

The transformation F
acting on X is equivalent
to F' acting on §(X).

Figure 3.5.5
Commutative diagram for
the coordinate change 8:
X - Xc.

&)

ORIGINAL
COORDINATES

NEW
COORDINATES
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affine transformation on R. Accordingly let us change coordinates to
move X, to the origin: that is x’ = 6(x) = x — x,. What does f look
like in this new coordinate system?

f(xy=(00feb0"")(x)y=0f(x+x)=a(x +x;)+b— x;
f'(x") = ax’ which is simply a rescaling! Now using the first formula we
get

f(x)y =a(x—x;) + x
and
f(xy=a"(x—x) +x forallme {0,+1,+2,+3,...}.

We now see a new way of vizualizing an affine transformation on R: for
example, if a > 1 we see the image in Figure 3.5.6.

5.3. Let X = [1,2] and let a change of coordinates be defined by x’ = 2x — 1.
Let a transformation f: X — X be defined by f(x)=(x ~ )2 + 1.
Express f in the new coordinate system.

Definition 1. Let f: X — X be a transformation on a metric space. A point
x, € X such that f(x;) = x, is called a fixed point of the transformation.

The fixed points of a transformation are very important. They tell us which
parts of the space are pinned in place, not moved, by the transformation. The
fixed points of a transformation restrict the motion of the space under
nonviolent, non-ripping transformations of bounded deformation.

Exercises & Examples
5.4. Find the fixed points x; and x, of the Mobius transformation
_(z+2)
f(z) - (4 _ z)
on €. Make a change of coordinates so that x, becomes the origin and

x, becomes the Point at Infinity. Hence interpret the action of f(z) on
the sphere in geometrical terms.

Figure 3.5.6

X
l ’ J f J ] t An affine transformation
on R. We see rescaling
\ / (magnification or diminu-
f

tion) centered at the fixed
point, together with a flip
of 180° ifa < 0.
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5.5.

5.6.

5.7.

5.8.

5.9.

Let W(x) = Ax + ¢t be a two-dimensional affine transformation acting
on the space X = R? where det(A-I) # 0. Find the fixed point x,.
Change coordinates so that x, becomes the origin of coordinates. Hence
describe the action geometrically of a two-dimensional nondegenerate
affine transformation. What can happen if det(A-I) = 0?

Analyze the behavior of the affine transformation w(z) =7z + 1 on ¢
near the Point at Infinity by making the change of coordinates h(z) =
1/z.

Two one-parameter families of transformations on R are f,(x) = x — p
and g,(x) = Ax(l — x), where g and A are real parameters. Find a
change of coordinates and a function p = p(A) so that f/,,(x") = g\(x")
is valid for an appropriate interval on the A-axis.

Find the real fixed points of g(x) = x* — 1. Analyze the behavior of g
near each of its fixed points by changing coordinates so as to move first
one then the other to the origin. Another method for looking at the
behaviour of g near a fixed point is to approximate g(x) by the first two
terms of its Taylor series expansion about the fixed point. Compare
these methods.

Let w: R? — R? denote the affine transformation

w X =(1 2\ %1 +(1
X2 2 3\ % 1)
Make a change of coordinates so that the transformation is simply a
coordinate rescaling. What are the rescaling factors?

Definition 2. Let F denote a set of transformations on a metric space X. F is
called a semigroup if f, g € F implies fo g € F. F is called a group if it is a
semigroup of invertible transformations, and f € F implies /™! € F.

We introduce this definition because we will use semigroups (and groups)
of transformations both to characterize and to compute fractal subsets of X.
However we do not use any deep theorems from group theory.

Exercises & Examples

5.10.

5.11.

Let f: X — X be a transformation on a metric space. Show that the set
of transformations { f°*: n = 0,1,2,3,...} forms a semigroup.
A transformation T: ¥ — ¥ on code space is defined by

T(x,X3X3X4X5 +* ) = X3X3X4XsXg -
and is called a shift operator. Describe the semigroup of transformations
(T°" n=0,1,2,3,...}. What are the fixed points of T°? if the code
space is built up from the two symbols {0,1}?
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5.12. Show that the set of Mdbius transformations on R form a group.

5.13. Show that the set of Mébius transformations on € form a group.

5.14. Show that the set of invertible affine transformations on R? form a
group.

5.15. Show that the set of transformations f: R? — R? such that f ( &@)

C &@ form a semigroup.

5.16. Show that a group of transformations is provided by the set of affine
transformations of the form w(x)= Ax 4+t where 4 = (Z ‘3) for
a, b,c € R, with ac # 0, and the translation vector # is arbitrary.

5.17. The most general analytic quadratic transformation f: € — € can be
expressed by a formula of the form f(z) = Az? + Bz + C where 4, B,
and C are complex numbers, and 4 # 0. Show that by means of a
suitable change of coordinates, z’ = 6(z), where # is a similitude, show
that f(z) can be reexpressed as a quadratic transformation of the special
form f(z) = (z)* + C for some complex number C.
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3.6 THE CONTRACTION MAPPING THEOREM

Definition 1. A transformation f: X — X on a metric space (X, d) is called
contractive or a contraction mapping if there is a constant 0 < s < 1 such that

d(f(x),f(y)) <s-d(x,y)Vx, y€X
Any such number s is called a contractivity factor for f.

It would be convenient to be able to talk about the largest number and the
smallest number in a set of real numbers. However a set such as § = (— 00, 3)
does not possess either. This difficulty is overcome by the following definition.

Definition 2. Let S denote a set of real numbers. Then the infimum of S is
equal to — oo if S contains negative numbers of arbitrarily large magnitude.
Otherwise the infimum of § = Max{x € R: x < s for all s € §}. The in-
fimum of § always exists, because of the nature of the real number system,
and it is denoted by InfS. The supremum of S is similarly defined. it is equal
to + oo if S contains arbitrarily large numbers; otherwise it is the minimum of
the set of numbers which are greater than or equal to all of the numbers in S.
The supremum of S always exists and it is denoted by Sup S.

Exercises & Examples

6.1. Find the supremum and the infimum of the following sets of real
numbers: (a) (— o0, 3); (b) ¥, the Classical Cantor Set; (¢) {1,2,3,4,...};
(d) the positive real numbers.
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6.2. Let f: X — X be a contraction mapping on a metric space (X, d).
Show that Inf{s € R: s is a contractivity factor for f} is a contractivity
factor for f.

6.3. Show that if f X —» X and g: X — X are contraction mappings on a
space (X, d), with contractivity factors s and ¢ respectively, then fo g is
a contraction mapping with contractivity factor si.

Theorem 1. [The Contraction Mapping Theorem] Let f: X — X be a con-
traction mapping on a complete metric space (X, d). Then f possesses exactly
one fixed point x; € X and moreover for any point x € X, the sequence { f°"(x):
n=0,1,2,...} converges to x;. That is,

Lim f*"(x) = x,, foreach x € X.
n-—>00

Figure 3.6.1 illustrates the idea of a contractive transformation on a compact
metric space.

Proof. Let x € X. Let 0 < 5 < 1 be a contractivity factor for f. Then
d( fon(x)’ fom(x)) < sm/\nd( x, fo\n—m))(x) (361)

for all m,n=0,1,2,..., where we have fixed x € X. The notation u A v
denotes the minimum of the pair of real numbers u and v. In particular, for
k=0,1,2,..., wehave

d(x, (%)) < d(x, [(%) + (f(%). [7(¥)) + -+ +d(f2470(x), f1(x))
<(l+s+s2+ 0 454 ) d(x, f( X))
= (1= 9) " d(x, f(x))
so substituting into equation (3.6.1) we now obtain
d(f(x), f(x)) < s (L —s) ' d(x, f(x))
from which it immediately follows that { f°"(x)}%_, is a Cauchy sequence.

Since X is complete, this Cauchy sequence possesses a limit x; € X, and we

have
Lim f*'(x) = x;.
n— 00

Now we shall show that x, is a fixed point of f. Since f is contractive it is
continuous and hence

f(x/) =f( Lirgfun(x)) = LiTofc(/nl)(x) = x/.
Finally, can there be more than one fixed point? Suppose there are. Let x, and
¥; be two fixed points of f. Then x, = f(x,), ;= f(y), and
d( ;. 57) = d(f(x). f(%,)) < sd( %, 57)

whence (1 — s5)d(x;, y;) < 0, which implies d(x,, y;) = 0 and hence x, = y;.
This completes the proof.
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Exercises & Examples

64. Let w(x)=Ax + ¢ be an affine transformation in two dimensions.
Make the change of coordinates 4(x) = x” = x — x,, under the assump-
tion that det(/ — 4) # 0, and show that w'(x’) = hew o h}(x") = Ax’,

that w(x) = (h~'ew’e h)(x) = A(x — x,) + x,, and hence that

w(x =A"(x— x)+ . forn=0.1.2.3. (367

Figure 3.6.1(a)
Tllustrates the idea of a
contractive transforma-
tion on a compact metric
space.

Figure 3.6.1(b)

A contraction mapping
doing its work, drawing
all of a compact metric
space X towards the fixed
point.
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6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

Give conditions on A such that it is contractive (a) in the Euclidean
metric, (b) in the Manhattan metric. Show that if |4| <1, where |4]
denotes any appropriate norm of A4 viewed as a linear operator on a
two-dimensional vector space, then {w°”(x)} is a Cauchy sequence
which converges to x,, for each x € R

Let f: B — W be a contraction mapping on (B, Euclidean). Show that
Figure 3.6.1 gives the right idea.

Let f: R —> R be the affine transformation f(x) = 3x + . Verify f isa
contraction mapping, and deduce

Lim f**(x) = x, foreach x € R,

n—oo
Use this formula with x = 0 to obtain a geometrical series for the fixed
point x, € R. Observe however that f(R) = R; indeed, that f is invert-
ible.
Let (X, d) be a compact metric space which contains more than one
point. Show that the situation in Example 6.6 cannot occur for any
contraction mapping f: X — X. That is, show that f(X)cC X but
f(X) # X. That is, show that a contraction mapping on a nontrivial
compact metric space is not invertible. Hint: Use the compactness of the
space to show that there is a point in the space which is furthest away
from the fixed point. Then show that there is a point that is not in f(X).
Show that the set of contraction mappings on a metric space form a
semigroup.
Show that the affine transformation w: & - & defined by
w(x) = Ax + t is a contraction, where

4 1cos120° —1sin120° i L
= an =
1sin120° 4 cos120° 0

Here is an equilateral Sierpinski Triangle with a vertice at the
origin and at (1,0). You need to begin by verifying that w does indeed
map & into itself! Locate the fixed point x,. Make a picture of this

contraction mapping “doing its work, mapping all of the compact metric
space towards the fixed point”. Use different colors to denote the

successive regions f°("’( & )\f"("“)( &) forn=0,1,2,3,....

Define a mapping on the code space of two symbols {0,1} by
f(xyx,x5x, ...) = 1x;x,x,x, ... . (Recall that the metric is d(x, y) =
% |x; — y,|/3' or equivalent.) Show that f is a contraction mapping.
Locate the fixed point of f.

Let (X, d) be a compact metric space, and let f: X — X be a contrac-
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tion mapping. Show that { f°"(X)}¥_, is a Cauchy sequence of points in
(#(X), h) and Lim,_, f°"(X) = {x,}, where x, is the fixed point
of f.

6.12. Let (X, d) be a compact metric space. Let f: X — X have the property

Lim, . f°"(X) = {x,}. Find a metric d on X such that f is a

contraction mapping, and the identity is a homeomorphism from (X, d)
- (X, d)

6.13. Let Ax = ( Z)( . ) with a, b, ¢, d € R, all strictly positive, be a linear

¢

transformation on R?. Show that 4 maps the positive quadrant {(x,, x,):
x, 20, x, >0} into itself. Let a mapping f: [0,90°] — [0,90°] be
defined by

A(cost9

sin@ ) = (some positive number)(

cosf(ﬂ))
sin f(6) ]

Show that { f°"(6)} converges to the unique fixed point of f. Deduce
that there exists a unique positive number A, and an angle 0 < § < 90°
such that A( < ’) = N ccs). See Figure 3.6.2.

sin@

.79

Figure 3.6.2

The existence of a posi-
tive eigenvalue of an ““an-
gle-squeezing™ linear
transformation.
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3.7 CONTRACTION MAPPINGS ON THE SPACE OF FRACTALS

Let (X, d) be a metric space and let (3 (X), h(d)) denote the corresponding
space of* nonempty compact subsets, with the Hausdorff metric h(d). We
introduce the notation A(d) to show that 4 is the underlying metric for the
Hausdorff metric 4. For example, we may discuss (#(C), h(spherical)) or
(#(R?), h(Manhattan)). We will drop this additional notation when we
evaluate Hausdorff distances.

We have repeatedly refused to define fractals: we have agreed that they are
subsets of simple geometrical spaces, such as (R?, Euclidean) and (€, Spheri-
cal). If we were to define a deterministic fractal, we might say that it is a fixed
point of a contractive transformation on (3£ (X), h(d)). We would require
that the underlying metric space (X, d) be “geometrically simple”. We would
require also that the contraction mapping be constructed from simple, easily
specified, contraction mappings on (X, d), as described below.

Lemma 1. Let w: X — X be a contraction mapping on the metric space
(X, d). Then w is continuous.

Proof. Let € > 0 be given. Let s > 0 be a contractivity factor for w. Then

d(w(x), w(y)) <sd(x,y) <e
whenever d(x, y) < 8 where § = ¢/s. This completes the proof.

Lemma 2. Let w: X — X be a continuous mapping on the metric space
(X, d). Then w maps H#(X) into itself.

Proof. Let S be a nonempty compact subset of X. Then clearly w(S) =
{w(x): x €S} is nonempty. We want to show that w(S) is compact. Let
{ ¥, = w(x,)} be an infinite sequence of points in S. Then {x,} is an infinite
sequence of points in S. Since S is compact there is a subsequence {x, }
which converges to a point X € S. But then the continuity of w implies that
{yn, = f(xy,)} is a subsequence of { y,} which converges to j = f(X) € w(S).
This completes the proof.

The following lemma tells us how to make a contraction mapping on
(£ (X), h) out of a contraction mapping on (X, d).

Lemma 3. Ler w: X — X be a contraction mapping on the metric space
(X, d) with contractivity factor s. Then w: ' (X) = (X)) defined by

w(B) = {w(x): x € B} V B € #(X)

is a contraction mapping on (3#(X), h(d)) with contractivity factor s.



3.7 Contraction Mappings on the Space of Fractals

Proof. From Lemma 1 it follows that w: X — X is continuous. Hence by
Lemma 2 w maps (X)) into itself.
Now let B, C € 3#(X). Then

d(w(B),w(C)) = Max{Mm{ d(w(x),w(y)): yeC}:x€ B}
< Max{Min{s-d(x,y): y€C}: x €B} =5 -d(B,C).
Similarly d(w(C), w(B)) < s - d(C, B). Hence
h(w(B), w(C)) = d(w(B), w(C)) V d(w(C), w(B)) < s d(B,C) V d(C, B)
<s-h(B,C).
This completes the proof.

The following lemma gives a characteristic property of the Hausdorff
metric which we will shortly need. The proof follows at once from Exercise
2.6.13.

Lemma 4. Forall B, C, D, and E_in 3#(X)
h(BUC,DVUE)<h(B,D)V h(C, E)

where as usual h is the Hausdorff metric.

The next lemma provides an important method for combining contraction
mappings on (3£ (X), k) to produce new contraction mappings on (#(X), k).
This method is distinct from the obvious one of composition.

Lemma 5. Let (X,d) be a metric space. Let {w: n=12_...,N} be
contraction mappings on (H#(X), h). Let the contractivity factor for w, be
denoted by s, for each n. Define W: #(X) - H#(X) by
W(B) = w,(B) Uwy,(B)U -+ Uwy(B)
N
= U w(B), foreach Bex(X).

n=1

Then W is a contraction mapping with contractivity factor s = Max{s,: n=
L2,...,N}. -

Proof. We demonstrate the claim for ¥ = 2. An inductive argument then
completes the proof. Let B, C € 5#(X). We have

h(W(B), W(C)) = h(w(B) U wy(B), w(C) U wy(C))
< h(w(B), m(C)) V h(%(B), w,(C)) (by Lemma4)
<s5;h(B,C) V s,h(B,C) < sh(B,C).
This completes the proof.
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Definition 1. A (hyperbolic) iterated function system consists of a complete
metric space (X, d) together with a finite set of contraction mappings w,:
X - X, with respective contractivity factors s,, for n=1,2,..., N. The
abbreviation “IFS” is used for “iterated function system.” The notation for
the IFS just announced is {X; w,, n=1,2,..., N} and its contractivity
factoris s = Max{s,: n=12,... N}

We put the word “hyperbolic” in parentheses in this definition because it
is sometimes dropped in practice. Moreover, we will sometimes use the
nomenclature “IFS” to mean simply a finite set of maps acting on a metric
space, with no particular conditions imposed upon the maps.

The following theorem summarizes the main facts so far about a hyper-
bolic IFS.

Theorem 1. Let {X; w, n=1,2,..., N} be a hyperbolic iterated function
system with contractivity factor s. Then the transformation W: #(X) - H#(X)
defined by

N

w(B) = U w,(B)
n=1
for all B € 3¢ (X), is a contraction mapping on the complete metric space
(#(X), h(d)) with contractivity factor s. That is

h(W(B), W(C)) < s-h(B,C)

for all B, C € 3#(X). Iis unique fixed point, A € # (X)), obeys
N
A=w(a) = Uw(4),

n=1

and is given by A = Lim__ _W°"(B) for any B € 3 (X).
Definition 2. The fixed point A € 5#(X) described in the theorem is called
the attractor of the IFS.

Sometimes we will use the name “attractor” in connection with an IFS
which is simply a finite set of maps acting on a complete metric space X. By
this we mean that one can make an assertion which is analagous to the last

sentence of Theorem 3.7.1.

We wanted to use the words “deterministic fractal” in place of “attractor”
in Definition 2. We were tempted, but resisted. The nomenclature “iterated
function system” is meant to remind one of the name “dynamical system.” We
will introduce dynamical systems in Chapter 4. Dynamical systems often
possess attractors, and when these are interesting to look at, they are called
strange attractors.




3.7 Contraction Mappings on the Space of Fractals

Exercises & Examples

7.1

7.2,

7.3.

74.

75.

7.6.

7.7

This exercise takes place in the metric spaces (R, Euclidean) and
(5#(R), h(Euclidean)). Consider the IFS {R; w,, w,} where wy(x) = ix
and wy(x) = §x + 3. Show that this is indeed an IFS with contractivity
factor s = 1. Let B, = [0,1]. Calculate B, = W°"(B,), n=1,2,3,....
Deduce that 4 = Lim, _, B, is the classical Cantor set. Verify directly
that 4 = 34 U {14 + %}. Here we use the following notation: for a
subset A of R, x4 = {xy: y€Ad}and A + x={y+ x1 y€ 4}.
With reference to example 7.1, show that if w;(x) = s;x and wy(x) =
(1 — 5;)x + s, where s; is a number such that0 < s; < 1, then B, = B,
= B, = --- . Find the attractor.

Repeat example 7.1 with wy(x) = §x and w,(x) = 5x + 3. In this case
A =Lim_ _ B, will not be the classical Cantor set, but it will be
something like it. Describe 4. Show that 4 contains no intervals. How
many points does A contain?

Consider the IFS {R, {x + 3, 3x, $x + 3}. Verify that the attractor
looks like the image in Figure 3.7.1.

Show precisely how the set in Figure 3.7.1 is'a union of three “shrunken
copies of itself.” This attractor is interesting: it contains countably many
holes and countably many intervals.

Show that the attractor of an IFS having the form {R; wi(x) = ax + b,
w,(x) = (¢x + d)} where a, b, ¢, and d € R, is either connected or
totally disconnected.

Does there exist an IFS of three affine maps in R? whose attractor is the
union of two disjoint closed intervals?

Consider the TFS
S HRHIEH G

v

Let A,={(3,y) 0<y<1}, and let W°"(A4,)=A, where W is

ns

defined on J#(R?) in the usual way. Show that the attractor is 4 =

oo T =n ]

Figure 3.71 «
Attractor for three affine
maps on the real line. Can
you find the maps?

32 48 56 64
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Figure 3.7.2
A sequence of sets con-
verging to a line segment.
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A‘T: WM/\A

o

V><

7.8.

71.9.

7.10.

{(x,y):x=y, 0 < x<1} and that Figure 3.7.2 is correct. Draw a
sequence of pictures to show what happens if 4,= {(x, y) € R%:
0<x<1,0< y<1}.

Consider the attractor for the IFS {R; wy(x) =0, wy(x) = 3x + 3}.
Show that it consists of a countable increasing sequence of real points
{x,; n=20,12,...} together with {1}. Show that x, can be expressed
as the n™ partial sum of an infinite geometric series. Give a succinct
formula for x,,.

Describe the attractor A for the IFS {[0,2]; wi(x) = $x°, wy(x) = 3x +
1} by describing a sequence of sets which converges to it. Show that A4 is
totally disconnected. Show that 4 is perfect. Find the contractivity
factor for the IFS.

Let (r,8), 0 <r < o0, 0 <8 < 27 denote the polar coordinates of a
point in the plane, R% Define wi(r, 8) = (3r + 1, 18), and w,(r, 0) =



7.11.

7.12.

7.13.

7.14.

7.15.

7.16.

7.17.

3.7 Contraction Mappings on the Space of Fractals

(3r + §,30 + 27/3). Show that {R?* w,, w,} is not a hyperbolic IFS
because both maps w; and w, are not continuous on the whole plane.
Show that {R% w,, w,} nevertheless has an attractor; find it (just
consider r and # separately).

Show that the sequence of sets illustrated in Figure 3.7.3 can be written
in the form A, = W°"(A,) for n=1,2,... and find W: #(R?) -
H(R?).

Describe the collection of functions which constitute the attractor 4 for
the IFS

{C10,1]; wi(f(x)) = 3(x), wo(f(x)) = $f(x) + 2x(1 = x)}.

Find the contractivity factor for the IFS.

Let C°[0,1] = (f€ C[0,1]: f(0) = f(1) =0}, and define d(f, g) =
Max{|f(x) — g(x): x €[0,1}}. Define w,;: €°0,1] - C°[0,1] by
(w(/Nx) = 3f@x mod 1) + 2x(1 — x) and (wy(f))Nx) = ().
Show that { C°[0,1]; w;, w,} is an IFS, find its contractivity factor, and
find its attractor. Draw a picture of the attractor.

Find conditions such that the Mobius transformation w(x) = (ax +
b)/(cz+d), a,b,¢c,d€ C, ad — bc # 0, provides a contraction map-
ping on the unit disk X = {z € C: |z| < 1}. Find an upper bound for
the contractivity factor. Construct an IFS using two Mobius transforma-
tions on X, and describe its attractor.

Show that a Mobius transformation on € is never a contraction in the
spherical metric.

Let (¥, d) be the code space on three symbols {0, 1,2}, with metric

1%, = Dl
1

411

)»
d(x,y) ="
Define w;: £ = L by wi(x) = 0x,x,x; ... and wy(x) = 2x,X,X; ... .
Show that w; and w, are both contraction mappings and find their
contractivity factors. Describe the attractor of the IFS {X¥; wy, w,}.
What happens if we include in the IFS a third transformation dgfined by
wyx = lx;x5%5,... 2
Let & C R? denote the compact metric space consisting of an
equilateral Sierpinski triangle with vertices at (0,0), (1,0) and (4, V3 /2),

and consider the IFS { & , 3z

plex number notation. Let 4, =

+ 1, 1e2™/3; 4 %}where We use com-
and 4, = W°"(A4,) for n =

1,2,3,... . Describe 4,, A,, and the attractor 4. What happens if the
third transformation ws(z) = 1z 1 (V3 /4)i is incl ided in the TFS9

>

.85

Figure 3.7.3

The first three sets A,
A,, and A, in a conver-
gent sequence of sets in
H#(R?). Can you find a
transformation W:
H(R?) - H(R?) such
that A, ., = W(A,)?
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3.8 TWO ALGORITHMS FOR COMPUTING FRACTALS FROM ITERATED
FUNCTION SYSTEMS

In this .section we take time out from the mathematical development to
provide two algorithms for rendering pictures of attractors of an IFS on the
graphics display device of a microcomputer or workstation. The reader should
establish a computergraphical environment which includes one or both of the
software tools which are suggested in this section.

The algorithms presented are (1) the Deterministic Algorithm, and (2) the
Random Iteration Algorithm. The deterministic algorithm is based on the idea
of computing directly a sequence of sets {4, = W°"(A4)} starting from an
initial set 4,. The Random Iteration Algorithm is founded in ergodic theory;
its mathematical basis will be presented in Chapter 9. An intuitive explanation
of why it works will be presented in Chapter 4. We defer important questions
concerning discretization and accuracy. Such questions are considered to some
extent in later chapters.

For simplicity we restrict attention to hyperbolic IFS of the form {R?% w,:
n=172,..., N}, where each mapping is an affine transformation. We il-
lustrate the algorithms for an IFS whose attractor is a Sierpinski triangle. Here
is an example of such an IFS,

w—x1]=[0.5 0]'x1]+ —1]
L X2 0 05]ix (1]
'x1]=[0.5 0]'x1]+'1]
"2 x, 0 05][x] " Ls0)
W =[0.5 o]'xl +'5o]
3 X2 0 05f|l* | 50]°

This notation for an IFS of affine maps is cumbersome. Let us agree to

write

wi(x) = w

X
X

|-|

a;

¢

Al

X
X

|

(4

ay

] =Ax+t.

Then Table 3.8.1 is a tidier way of conveying the same iterated function

system.

Table 3.8.1 also provides a number p, associated with w, for i =1,2,3.
These numbers are in fact probabilities. In the more general case of the IFS

Table 3.8.1

IFS code for a Sierpinski triangle.
w a b ¢ d e f p
1 05 0 0 0.5 1 1 0.33
2 05 0 0 0.5 1 50 0.33
3 0.5 0 0 0.5 50 50 0.34
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n

1,2,..., N} which obey
pi*+p+p+ o 4+py=1 and p>0 fori=12,..,N.

{X; w: n=12... N} there would be N such numbers {p; i=

These probabilities play an important role in the computation of images of the
attractor of an IFS using the Random Iteration Algorithm. They play no role
in the Deterministic Algorithm. Their mathematical significance is discussed in
later chapters. For the moment we will use them only as a computational aid,
in connection with the Random Iteration Algorithm. To this end we take their
values to be given approximately by

|det 4| __lad, - b

N N
Z |detA1| Z Iaidi - blC(I
i=1

i=1

fori=1,2,..., N.

; =

Here the symbol = means “approximately equal to.” If, for some i, det 4, =
0, then p, should be assigned a small positive number, such as 0.001. Other
situations should be treated empirically. We refer to the data in Table 3.8.1 as
an IFS code. Other IFS codes are given in Tables 3.8.2, 3.8.3 and 3.8.4.

Table 3.8.2
IFS code for a Square.
w a b c d e f P
1 0.5 0 0 0.5 1 1 0.25
2 0.5 0 0 0.5 50 1 0.25
3 0.5 0 0 0.5 1 50 0.25
4 0.5 0 0 0.5 50 50 0.25
Table 3.8.3
IFS code for a Fern.
w a b c d e f P
1 0 0 0 016 0 0 0.01
2 0.85 004 -004 08 0 16 085
3 0.2 —0.26 023 022 0 16 0.07
4 —015 028 026 024 0 044 007 ;
Table 3.8.4
IFS code for a Fractal Tree.
w a b c d e )/
1 0 0 0 0.5 0 0 005
2 042 -042 042 042 0 02 04
3 0

0.42 042 -042 042 02 04
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(1) The Deterministic Algorithm

Let {X; w,, w,,...,wy} be a hyperbolic IFS. Choose a compact set 4, C R~
Then compute successively 4, = W°"(4) according to
N

A= Uw(4,) forn=12,....

j=1
Thus construct a sequence {A4,: n=0,1,2,3,...} C3#(X). Then by Theo-
rem 3.7.1 the sequence {A,} converges to the attractor of the IFS in the
Hausdorff metric.

We illustrate the implementation of the algorithm. The following program
computes and plots successive sets 4, , , starting from an initial set 4, in this
case a square, using the IFS code in Table 3.8.1. The program is written in
BASIC. It should run without modification on an IBM PC with a Color
Graphics Adaptor or Enhanced Graphics Adaptor, and Turbobasic. It also
can be modified to run on any personal computer with graphics display
capability. On any line, the words which are preceded by a ° are comments,
they are not part of the program.

PROGRAM 3.8.1 (Example of the Deterministic Algorithm)

screen 1: cls ’initialize graphics

dim (100, 100): dim t(100,100) ’allocate two arrays of pixels

a(l) = 0.5:b(1) = 0:¢(1) = 0:d(1) = 0.5:¢(1) = 1:f(1) = 1 ’input the
IFS code

a(2) = 0.5:b(2) = 0:c(2) = 0:d(2) = 0.5:¢(2) = 50:f(2) = 1

a(3) = 0.5:b(3) = 0:¢(3) = 0:d(3) = 0.5:¢(3) = 50:f(3) = 50

fori = 1t0 100 ’input the initial set A(0), in this case a square, into
the array t(i, j)

t(i,1) = 1: pset(i,1) ’A(0)can be used as a condensation set

t(1,1) = 1:pset(1,i) ’A(0) is plotted on the screen

t(100,1) = 1:pset(100, 1)

t(i, 100) = 1:pset(i, 100)

next: do

fori=1t0100 ‘apply W to set A(n) to make A(n + 1) in the array s(i,J)

forj = 1 to 100: if t(i,j) = 1 then

s(a(l)*i + b(1)*j + e(1),c(1)*i + d(1)*j + f(1)) = 1 ’and apply W
to A(n)

s(a(2)*i + b(2)*j + e(2),c(2)*1 + d(2)*j + {(2)) =1

s(a(3)*i + b(3)*j + e3),c(3)*i + d(3)*j + {(3)) =1

end if: next j: next i

cls ’clears the screen—omit to obtain sequence with a A(0) as a condensa-
tion set (see section 3.9)
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fori =1 to 100: forj = 1 to 100

t(i,j) = s(i,j) ’put A(n + 1)into the array t(i,j)

s(i,j) = 0 ’reset the array s(i, ) to zero

if t(3,j) = 1 then

pset(i,j) ’plot A(n + 1)

end if: next: next

loop until instat ’if a key has been pressed then stop, otherwise compute
A(n + 1) = W(A(n + 1))

The result of running a higher resolution version of this program on a
Masscomp 5600 workstation, and then printing the contents of the graphics
screen is presented in Figure 3.8.1. In this case we have kept each successive
image produced by the program.

Figure 3.8.1

The result of running the
Deterministic Algorithm

( Program 1) with various
values of N, for the IFS
code in Table 1.
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Notice that the program begins by drawing a box in the array s(i, j). This
box has no influence on the finally computed image of a Sierpinski triangle.
One could just as well have started from any other (nonempty) set of points in
the array s(i, ), as illustrated in Figure 3.8.2.

To a(fapt Program 3.8.1 so that it runs with other IFS codes it usually will
be necessary to change coordinates to ensure that each of the transformations
of the IFS map the pixel array s(i, j) into itself. Change of coordinates in an
IFS is discussed in 3.10, example 10.5. As it stands in Program 3.8.1, the array
s(i, j)is a discretized representation of the square in R? with lower left corner
at (1,1) and upper right corner at (100,100). Failure to correctly adjust
coordinates will lead to unpredictable and exciting results!

Figure 3.8.2

The result of running the
Deterministic Algorithm

(Program 1), again for
the IFS code in Table 1,
but starting from a dif-

ferent initial array. The
final result is always the
same!
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(2) The Random lteration Algorithm

Let {X; w,,w,,...,wy} be a hyperbolic IFS, where probability p, > 0 has
been assigned to w; for i = 1,2,..., N, where ¥, p, = 1. Choose x, € X and
then choose recursively, independently,

x, € {w(x,_1),m(x,_ 1), o, wy(x,-1)) forn=1,2,3,...,

where the probability of the event x, = w;(x,_,) is p,. Thus construct a
sequence {x,: n =0,1,2,3 ...} C X.

>> The reader should skip the rest of this paragraph and come back to it
after reading section 3.9. If {X, wy, w;, w,,...,wy} is an IFS with con-
densation map w,, and associated condensation set C € )#(X) then the
algorithm is modified by (a) attaching a probability p, > 0 to w,, so now
N op; = 1; (b) whenever wy(x,_,) is selected for some », choose x, “at
random” from C. Thus, in this case too, we construct a sequence {x:
n=0172,...} of points in X.

The sequence {x, }7., “converges to” the attractor of the IFS, under
various conditions, in a manner which will be made precise in Chapter 9.

We illustrate the implementation of the algorithm. The following program
computes and plots a thousand points on the attractor corresponding to the
IFS code in Table 3.8.1. The program is also written in BASIC and runs without
modification on an IBM PC with Enhanced Graphics Adaptor and Turbo-
basic. On any line the words which are preceded by a’ are comments: they are
not part of the program.

PROGRAM 3.8.2

a[1] = 0.5:b[1] = 0: [1] = 0:.d[1] = .5: ¢[1] = 1: f[1] = 1 ’lterated
Function System Data

a[2] = 0.5: b[2] = 0: ¢[2] = 0: d[2] = 5: ¢[2] = 50: f[2] =1

a[3] = 0.5: b[3] = 0: ¢[3] = 0: d[3] = .5: ¢[3] = 50: f[3] = 50

screen 1: cls ’initialize computer graphics

window (0, 0)-(100,100) ’set plotting window to0 < x <1,0 <y <1

x = 0:y = 0: numits = 1000 ’initialize (x,y) and define the nupber of
iterations, numits

forn = 1 to numits ’Random Iteration begins!

k = int(3+rnd-0.00001) + 1 ’choose one of the numbers 1, 2, and 3
with equal probability

"apply affine transformation number k to (X, y)

newx = a[k]*x + blk]*y + e[k]: newy = c[k]*x + d[k]*y + f[k]

X = newx: y = newy ’set (X,y) to the point thus obtained

if n > 10 then pset (x,y) ’plot (x,y) after the first 10 iterations

PR |
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The result of running an adaptation of this program to data in Table 3.8.3
on a Masscomp workstation, and then printing the contents of the graphics
screen is presented in Figure 3.8.3. Notice that if the size of the plotting
window is decreased, for example by replacing the window call by wWINDOW
(O, 0)—(50: 50), then only a portion of the image is plotted, but at a higher
resolution. Thus we have a simple means for “zooming in” on images of IFS
attractors. The number of iterations may be increased to improve the quality
of the computed image.

Exercises & Examples

8.1. Rewrite Programs 3.8.1 and 3.8.2 in a form suitable for your own
computer environment, then run it and obtain hard copy of the output.
Compare their performance.

8.2. Modify Programs 3.8.1 and 3.8.2 so that they will compute images
associated with the IFS code given in Table 3.8.2.

8.3. Modify Program 3.8.2 so that it will compute images associated with the
IFS codes given in Tables 3.8.3 and 3.8.4.

8.4. By changing the window size in Program 3.8.2, obtain images of “zooms”
on the Sierpinski triangle. For example, use the following windows:
(1, 1)-(50,50); (1,1)-(25,25); (1,1)-(12,12);...(1,1)«(N, N). How must
the total number of iterations be adjusted as a function of N in order that
(approximately) the number of points which land within the window
remains constant? Make a graph of the total number of iterations against
the window size.

Figure 3.8.3
The result of running the Chaos Algorithm for increasing numbers of iterations. The
randomly dancing point starts to suggest the structure of the attractor of the IFS given in

Table 3.8.3. ‘
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8.5. What should happen, theoretically, to the sequences of images computed
by Program 1 if the set A, is changed? What happens in practice? Make a
computational experiment to see if there is any difference in say A4y,
corresponding to two different choices for 4.

8.6. Rewrite Program 3.8.2 so that it applies the transformation w, with
probability p,, where the probabilities are input by the user. Compare the
number of iterations needed to produce a “good” rendering of the
Sierpinski triangle, for the cases (a) p, = 0.33, p, = 0.33, p, = 0.34; (b)
p, =02, p, =046, p, =034; (c) p, =01, p, =056, p; = 0.34.
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3.9 CONDENSATION SETS

There is another important way of making contraction mappings on J#(X).

Definition 1. Let (X, d) be a metric space and let C € 5#(X). Define a
transformation wy: X (X) — H#(X) by wy(B) = C for all B € #(X). Then
wy is called a condensation transformation and C 1is called the associated
condensation set.

Observe that a condensation transformation wy: H#(X) - #(X) is a
contraction mapping on the metric space (#(X), h(d)), with contractivity
factor equal to zero, and that it possesses a unique fixed point, namely the
condensation set.

Definition 2. Let { X, wy, w,,...,wy } be a hyperbolic IFS with contractivity
factor 0 < s < 1. Let wy: #(X) — #(X) be a condensation transformation.
Then { X, wy, wy,...,wy ) is called a hyperbolic IFS with condensation, with
contractivity factor s.

Theorem 3.7.1 can be modified to cover the case of an IFS with con-
densation.

Theorem 3.7.1. Let {X; w,; n=0,1,2,..., N} be a hyperbolic iterated
function system with condensation, with contractivity factor s. Then the transfor-
mation W: H#(X) - #(X) defined by

N

W(B) = U w,(B)VBEF(X)

n=0
is a contraction mapping on the complete metric space (H(X), h(d)) with
contractivity factor s. That is

2 £ ¥yrf MmN wwrd o~ T/ em o~ c PPN
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Its unique fixed point A € H#°(X) obeys

N

A=w(Ay= U w(4),
n=0

and is given by A = Lim, _, W°"(B) for any B € #(X).

Exercises & Examples

9.1

9.2,

9.3.

94.

A sequence of sets { A, C X}>_,, where (X, d) is a metric space, is said
to be increasing if Ay C A4, C A, € .-+ and decreasing if 4,0 4, D A4,
D --- . The inclusions are not necessarily strict. A decreasing sequence
of sets {4, CH(X)}* ., is a Cauchy sequence (prove it!). If X is
compact, then an increasing sequence of sets {4, CH#(X)}5, is a
Cauchy sequence (prove it!). Let { X; wy, wy,...,w, } be a hyperbolic IFS
with condensation set C, and let X be compact. Let Wy(B) = U }_,w,(B)
VB € #(X) and let W(B) = UN_w,(B). Define {C, = W,°"(C)}2_,.
Then Theorem 3.7.1 tells us {C,} is a Cauchy sequence in 5 ( X') which
converges to the attractor of the IFS. Independently of the theorem
observe that

G, =CUW(C)UW3(C)u - UW(C)

provides an increasing sequence of compact sets. It follows immediately
that the limit set 4 obeys Wy(4) = A4.

This example takes place in (R? Euclidean). Let C = % =

A, € R? denote a set which looks like a scorched pine tree standing at the
origin, with its trunk perpendicular to the x-axis. Let

X X
WI(Y)=(OgS 025)(Y)+(0'§5)'
Show that {R?% w,, w;} is an IFS with condensation and find its contrac-
tivity factor. Let 4, = W°"(A,) for n=12,3,... where W(B)=
UM w,(B) for B € #(R?). Show that 4, consists of the first (n + 1)
pine trees reading from left to right in Figure 3.9.1.
If the first tree required 0.1% of the ink in the artist’s pen to draw, and if
the artist had been very meticulous in drawing the whole attractor

correctly, find the total amount of ink used to draw the whole attractor.
What happens to the trees in Figure 3.9.1 if wl(_':) is replaced by

m(y) = (0(.)5 025)(;) - (065)
in Exercise 9.2.

Find the attractor for the IFS with condensation {R; w,,w, }, where the
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Figure 3.9.1
A geometric series of pine

/\\ trees, the attractor of an
\\’\_ IFS with condensation.

A T

condensation set is the interval [0,1} and w,(x) = $x + 2. What happens
if wy(x) = 3x?

9.5. Find an IFS with condensation which generates the treelike set in Figure
3.9.2. Give conditions on r and 8 such that the tree is simply connected.
Show that the tree is either simply connected or infinitely connected.

9.6. Find an IFS with condensation which generates Figure 3.9.3.

9.7. You are given a condensation map wy(x) in R? which provides the largest
tree in Figure 3.2.8. Find a hyperbolic IFS with condensation, of the form

95

Figure 3.9.2

Sketch of a fractal tree,
the attractor of an IFS
with condensation.
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Figure 3.9.3

An endless spiral of little

men.

{R% wy, w,, w, )}, which produces the whole orchard. What is the contrac-
tivity factor for this IFS? Find the attractor of the IFS {R?; wy, w, ).

9.8. Explain why removing the command which clears the screen (“cls™) from
Program 3.8.1 will result in the computation of an image associated with
an IFS with condensation. Identify the condensation set. Run your
version of Program 3.8.1 with the “cls” command removed.

3.10 HOW TO MAKE FRACTAL MODELS WITH THE HELP OF THE COLLAGE THEOREM

The following theorem is central to the design of IFS’s whose attractors are

close to given sets.

Theorem 1.

[The Collage Theorem, [Barnsley, 1985b}] Let (X, d) be a
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complete metric space. Let L € 32 (X) be given, and let ¢ > 0 be given. Choose
an IFS (or IFS with condensation) { X; (wy), wy, Wy, ..., wy | with contractivity
factor 0 < s <1, so that

h(L, L]j w,,(L)) <e
=0,
where h(d) is the Hausdorff metric. Then

h(L, Ay <e/(1—5)
where A is the attractor of the IFS. Equivalently,

h(L,A)<(1-5)"'h

N
L, U w,,(L)) forall L € #(X).
n=1

(n=0)

The proof of the Collage Theorem is given in the next section. The theorem
tells us that to find an IFS whose attractor is “close to” or “looks like” a given
set, one must endeavor to find a set of transformations—contraction map-
pings on a suitable space within which the given set lies—such that the union,
or collage, of the images of the given set under the transformations is near to
the given set. Nearness is measured using the Hausdorff’ metric.

Exercises & Examples
10.1. This example takes place in (R, Euclidean). Observe that [0,1] = [0, 3]
U [$,1]. Hence [0,1] is the attractor for any pair of contraction
mappings w,;: R > R and w,: R — R such that w,([0,1]) = [0, 3] and
wy([0,1]) = [5,1]. For example w,(x) = 5x and wy(x) = 3x + 5 does
the trick. The unit interval is a collage of two smaller “copies” of itself.
10.2. Suppose we are using a trial-and-error procedure to adjust the coeffici-
ents in two affine transformations w,(x) = ax + b, w,(x) = cx + d,
where a, b, ¢, d € R, to look for an IFS {R; w,, w, } whose attractor is
[0,1]. We might come up with w(x) = 0.51x — 0.01 and w,(x) =
0.47x + 0.53. How far from [0, 1] will the attractor for the IFS be? To

find out compute

2
h([O,lL U W.([O,l])) = h([0,1],[ -0.01,0.5] L [0.53,1])
i=1
= (.015,
and observe that the contractivity factor of the IFS is s = 0.51. So by
the Collage Theorem, if A is the attractor,

h([0,1], 4) < 0.015/0.49 < 0.04.
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Figure 3.10.1

The Collage Theorem ap-

plied to a region bounded

by a polyganalized leaf

boundary.
«

. e
5 S
*n
A
10.3. Figure 3.10.1 shows a target set L C R2 a leaf, represented by the

104.

10.5.

polygonalized boundary of the leaf. Four affine transformations, con-
tractive, have been applied to the boundary at lower left, producing the
four smaller deformed leaf boundaries. The Hausdorff distance between
the union of the four copies and the original is approximately 1.0 units,
where the width of the whole frame is taken to be 10 units. The
contractivity of the associated IFS {R? wy, w,, wy, w,} is approxi-
mately 0.6. Hence the Hausdorff distance 4 (Euclidean) between the
original target leaf L and the attractor A of the IFS will be less than
2.5 units. (This is not promising much!) The actual attractor, translated
to the right, is shown at lower right. Not surprisingly, it does not look
much like the original leaf! An improved collage is shown at the upper
left. The distance h(L, U%_,w,(L)) is now less than 0.02 units whilst
the contractivity of the IFS is still approximately 0.6. Hence h(L, A)
should now be less than 0.05 units and we expect that the attractor
should look quite like L at the resolution of the figure. A, translated to
the right, is shown at the upper right.

To find an IFS whose attractor is a region bounded by a right angle
triangle, observe the collage in Figure 3.10.2.

A nice proof of Pythagoras’ Theorem is obtained from the collage in
Figure 3.10.2. Clearly both transformations involved are similitudes.
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Figure 3.10.2

The region bounded by a
right-angle triangle is the
union of the results of two
similitudes applied to it.

The contractivity factors of these similitudes involved are (b/c) and
(a/c). Hence the area <7 obeys &/ = (b/c)% + (a/c)*«/. This implies

c?=a? + b? since &> 0.

10.6. Figures 3.10.3 through 3.10.7 provide exercises in the application of the
Collage Theorem. Condensation sets are not allowed when working

these examples!

10.7. 1t is straightforward to see how the Collage Theorem gives us sets of

Figure 3.10.3

Use the Collage Theorem
to help you find an IFS
consisting of two affine
maps in R? whose attrac-
tor is close to this set.

99



100

3 Transformations on Metric Spaces; Contraction Mappings

Figure 3.10.4
This image represents the atiractor of fourteen affine transformations in R>. Use the
Collage Theorem to help you find them.

Figure 3.10.5

Use the Collage Theorem S
to help find a hyperbolic ™~
IFS of the form {R?; 1]
Wy, Wy, Wy }, where M
wy, Wy, and wy are simil-
itudes in R?, whose at-
tractor is represented
here. You choose the co-
ordinate system.
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A
l“ B

: .
3.
2

Figure 3.10.6

Find an IFS of the form {R%; wy, wy, wy, w, }, where the w,’s are affine transformations
on R?, whose attractor when rendered contains this image. Check your conclusion using
Program 3.8.2. *

maps for IFS’s which generate & Menger Sponges, look like this:

f . Find an IFS for which a sponge is the attractor.

10.8. The IFS which generates the Black Spleenwort fern, shown in Figures
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Figure 3.10.7

How many dffine trans-

formations in R? are
needed to generate this
attractor? You do not
need to use a con-
densation set.

o wn
ﬂg% g’;\ zﬁ&%%&

3.10.8(a) and (b), consists of four affine maps in the form

x\ [rcosf —ssing)/x h o .
W"(Y)_(rsino scos¢)()’)+<k) (i =1,2,3,4); see Table 3.10.1.

10.9. Find a collage of affine transformations in R?, corresponding to Figure
3.10.9.
10.10. A collage of a leaf is shown in Figure 3.10.10(a). This collage implies
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the IFS {C; wy, w,, w;, w, } where, in complex notation,

w(z) =sz+(1-ys)a, fori=1,2,3,4
Verify that in this formula a; is the fixed point of the transformation. The
values found for s; and a; are listed in Table 3.10.2. Check that these

make sense in relation to the collage. The attractor for the IFS is shown in
Figure 3.10.10(b).

Figure 3.10.8(a)

The Black Spleenwort
fern. This image il-
lustrates one of the four
affine transformations in
the IFS whose attractor
was used to render the
fern. The transformation
takes the triangle ABC to
the triangle abc. The Col-
lage Theorem provides the
other three transforma-
tions. The IFS code for
this image is given in Ta-
ble 3.8.3. Observe that the
stem is the image of the
whole sel under one of the
transformations. De-
termine to which map
number in Table 3.8.3 the
stem corresponds.

Figure 3.10.8(b)
The Black Spleenwort
fern and a close-up.
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Table 3.10.1

The IFS code for the Black Spleenwort, expressed in scale
and angle format.

Translations Rotations Scalings

Map h k 0 ¢ r s
1 00 00 0 0 0.0 0.16
2 00 16 =25 -25 085 085
3 00 16 49 49 03 0.34
4 00 044 120 -50 03 0.37

10.11. The attractor in Figure 3.10.11 is determined by two affine maps.
Locate the fixed points of two such affine transformations on R2.

10.12. Figure 3.10.12 shows the attractor for an IFS {R? w,, i =12 3 4)
where each w, is a three-dimensional affine transformation. See
also Color Plate 3.10.1. The attractor is contained in the region
{(x1,x,, x;) €R* -10 < x; < 10,0 < x, <10, —10 < x; < 10}.

Figure 3.10.9

Use the Collage Theorem
to find the four affine
transformations corre-
sponding to this image.
Can you find a transfor-
mation which will put in
the “missing corner?”

(% { ) gk E. ;

i

:il m el a X

) (o

) .,Q—'-{ CS 3
5, ST ’f :ﬁg
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Table 3.10.2
Scaling factors and fixed points for the collage in Figure
3.10.10.
s a

0.6 0.45 + 0.9

0.6 045 + 031

0.4 — 031 0.60 + 0.3i

0.4 + 03i 0.30 + 0.3i

Wi

Wy

W3

Wy

X1
X2

X3_

X1
X2

| X3

X
X

| X3

X1
X2

[ X3

0 0 ol x 0

0 018 Of|*x|+]o

0 0 0l]x; 0

0.85 0 0 Xy 0

0 085 01 [{x2]|+|16

[0 —01 085]] % 0

[02 -02 0 X 0

02 02 0 |[|x]|+]08

K 0 03]|x% 0

-02 02 0 |[*x 0
02 02 0 ||*x2|+]|08
0 0 03]|x 0

10.13. Find an IFS of similitudes in R? such that the attractor is represented
by the shaded region in Figure 3.10.13. The collage should be “just-

yl

Figure 3.10.11

Locate the fixed points of
a pair of affine transfor-
mations in R? whose at-
tractor is rendered here.

105

(b) Attractor

Figure 3.10.10

A collage of a leaf is ob-
tained using four simili-
tudes, as illustrated in
(a). The corresponding
IFS is presented in com-
plex notation in Table
3.10.2. The attractor of
the IFS is rendered in (b).
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Figure 3.10.12 N
Single three-dimensional |3

fern. The attractor of an | B\
IFS of affine maps in R>.

Figure 3.10.13

Find a “ just-touching”
collage of the area under
this Devil’s Staircase.
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touching,” by which we mean that the transforms of the region provide
a tiling of the region: they should fit together like the pieces of a jigsaw
puzzle.

10.14. This exercise suggests how to change the coordinates of an IFS. Let
{X,.d,} and {X,,d,} be metric spaces. Let { X; w;, w,,...,w,} be

Figure 3.10.14
Determine some of the affine transformations used in the design of this fractal scene. For
example, where do the dark sides of the largest mountain come from?
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Figure 3.10.15
“Typical” fractals are
not pretty: use the Col-
lage Thegrem to find an
IFS whose attractor ap-
proximates this set.

Figure 3.10.16
Determine the affine
transformations for an
IFS corresponding to this
fractal. Can you see, just
by looking at the picture,
if the linear part of any of
the transformations has a
negative determinant?
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a hyperbolic IFS with attractor A4;. Let 6: X; —» X, be an invertible
continuous transformation. Consider the IFS {X,; fow, 007
Gow,o8 1 ..., 00wyo8 1} Use 8 to define a metric on X, such that
the new IFS is indeed a hyperbolic IFS. Prove that if 4, € #(X,) is
the attractor of the new IFS, then 4, = 6(4,). Thus we can readily
construct an IFS whose attractor is a transform of the attractor of
another IFS.

Figure 3.10.17

Use the Collage Theorem
to analyse this fractal. On
how many different scales
is the whole image ap-
parently repeated here?
How many times is the
smallest clearly discern-
ible copy repeated?
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Figure 3.10.18

Consider the white areas
in this figure to represent
a set S in R%. Locate the
boundary of the largest
pathwise connected subset
of S. It is recommended
that you work with a pho-
tocopy of the image, a
magnifying glass, and a
fine red felt-tip pen.

10.15. Find some of the affine transformations used in the design of thé fractal
scene in Figure 3.10.14.

10.16. Use the Collage Theorem to find an IFS whose attractor approximates
the set in Figure 3.10.15.

10.17. Solve the problems proposed in the captions of (a) Figure 3.10.16,
(b) Figure 3.10.17, (c) Figure 3.10.18.
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3.11 BLOWING IN THE WIND: THE CONTINUOUS DEPENDENCE OF FRACTALS

ON PARAMETERS

The Collage Theorem provides a way of approaching the inverse problem:
Given a set L, find an IFS for which L is the attractor. The underlying
mathematical principle is very easy: the proof of the Collage Theorem is just
the proof of the following lemma.

Lemma 1. Let (X,d) be a complete metric space. Let f: X — X be a
contraction mapping with contractivity factor 0 < s < 1, and let the fixed point
of fbe x; € X. Then

d(x,x;) < (1 —s)""-d(x,f(x)) forallx €X.

Proof. The distance function d(a,b) for fixed a € X is continuous in
b € X. Hence

d(x, %) = d( x, Lim f°"(x)) = Lim d(x, f*'(x))

A

Lim 3 d( £ (x), 17 (x))

N0 ye

Lim d(x, ()1 + 5+ +5"71) < (1= ) d(x, /()

IA

This completes the proof.

The following results are important and closely related to the above
material. They establish the continuous dependence of the attractor of a
hyperbolic IFS on parameters in the maps which constitute the IFS.

Lemma 2. Let (P, d,) and (X, d) be metric spaces, the latter being complete.
Let w: P X X = X be a family of contraction mappings on X with contractivity
factor 0 < s < 1. That is, for each p € P, w(p, ) is a contraction mapping on
X. For each fixed x € X let w be continuous on P. Then the fixed point of w
depends continuously on p. That is, x;: P — X is continuous.

Proof. Let x;(p) denote the fixed point of w for fixed p € P. Let p € P
and € > 0 be given. Then for all ¢ € P,

d(x,(p), x,(q)) = d(w( p, x,(p)), w(q, x,(q)))
< d(w( p, x,(p)), w(q, x,(p)))
+d(w(q, (), w(q. x,()))

< d(w(p, % (), w(q. %, ())) +5d(x, (), %, ()
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which implies

d(x,(p), x,(q)) < (1 =) 'd(w(p, x(p)), w(a, x(p)))-

The right-hand side here can be made arbitrarily small by restricting ¢ to be
sufficiently close to p. (Notice that if there is a real constant C such that

d(w(p,x),w(q,x)) < Cd(p,q) forall p,q € P, forall x € X

then d(x,(p), x;(q)) < (1 - s)7Y- C-d(p, q), which is a useful estimate.)
This completes the proof.

Exercises & Examples

11.1. The fixed point of the contraction mapping w: R — R defined by
w(x) = 3x + p depends continuously on the real parameter p. Indeed,
x;=12p.

11.2. Show that the fixed function for the transformation w: C°[0,1] —»
CO[0,1] defined by w(f(x)) = pf(2x mod 1) + x(1 — x) is continuous
in p for p e (—1,1). Here, C°[0,1] = {f e C[0,1]: f(0) = f(1) = 0}
and the distance is d(f, g) = Max{|f(x) — g(x)|: x € [0,1}}.

Lemma 3. Let (X, d) be a metric space and suppose we have continuous
transformations w,: X —- X (n=1,2,..., N) depending continuously on a
parameter p € P, where (P, d,) is a compact metric space. That is w,(p, x)
depends continuously on p for fixed x € X. Then the transformation W: 5#(X)
— H(X) defined by
N
W(p,B) = U w(p, B)VBE#(X)

n=1

is also continuous in p. That is, W( p, B) is continuous in p for each B € #( X),
in the metric space (' (X), h(d)).

Proof. It suffices to consider the case N = 1, and then extend the result using

Lemma 3.7.4. For B € 5#(X) we have for p,q € P, and given € > 0,

d(w(p, B),w(q,B)) = Max Migd(wl(p,x),wl(q,y))

x€B ye

Il

A

Max Min { d(w( p, x), wi( P, »))

x€B yeB
+d(W1(Ps y)*wl(qw Y))}

Now P X B is compact and w,: P X B — X is continuous. Hence w, is
uniformly continuous: There is a number § > 0 so that d(w,(p, y), w,(q, ¥))
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<eforall y € B, whenever d,(p, q) < 8. So assuming d,(p, q) < & we have
d(w(p, B), wm(q, B)) < MaxMin {d(w,(p.x).wm(p.)) + ¢}

<d(w(p,B),w(p,B)) +e=¢.
Similarly
d(w(q, B),w(p,B)) <eford,(p,q) <8,  andwe deduce

h(w(p, B),w (g, B)) <eford,(p,q) <3.
This completes the proof.

We now combine Lemmas 2 and 3 to obtain the result we want.

Theorem 1. Let (X, d) be a metric space. Let { X; (wy), wy, wy, ..., wy} be
a hyperbolic IFS (with condensation), of contractivity s. Forn =1,2,... N, let
w, depend continuously on a parameter p € P, where P is a compact metric
space. Then the attractor A( p) € H(X) depends continuously on p € P, with
respect to the Hausdorff metric h(d).

In other words, small changes in the parameters will lead to small changes
in the attractor, provided that the system remains hyperbolic. This is very
important because it tells us that we can continuously control the attractor of
an IFS, by adjusting parameters in the transformations, as is done in image
compression applications. It also means we can smoothly interpolate between
attractors: this is useful for image animation, for example. The frames from
the video “A Cloud Study” [Barnsley, 1987a] shown in Color Slide 3.11.1
provides an illustration of the application of this technique.
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Figure 3.11.1

A one-parameter family
of IFS which tells the
time'
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Exercises & Examples

11.3.

114.

Construct a one-parameter family of IFS, of the form {R?% wy, w,, w3},
where each w, is affine and the parameter p lies in the interval [0, 24},
The attractor should tell the time, as illustrated in Figure 3.11.1. A( p)
dénotes the attractor at time p.

Imagine a slightly more complicated clockface, generated using a one-
parameter family of IFS of the form (R?; wy, wy,w,, w3}, p € [0,24]. w,
creates the clockface, w, and w, are as in Exercise 11.3, and w; is a
similitude which places a copy of the clockface on the hour hand, as
illustrated in Figure 3.11.2. Then as p goes from 0 to 12, the hour hand
sweeps through 360°, and the hour hand on the smaller clockface sweeps
through 720°, and the hour hand on the yet smaller clockface sweeps

Figure 3.11.2

This fractal clockface de-
pends continuously on
time in the Hausdorff
metric.
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11.5.

11.6.

11.7.

Blowing in the Wind: The Continuous Dependence of Fractals on Parameters

through 1080°, and so on. Thus as p advances, there exist lines on the
attractor which are rotating at arbitrarily great speeds. Nonetheless we
have continuous dependence of the image on p in the Hausdorff metric!
At what times do all of the hour hands point in the same direction?
Find a one-parameter family of IFS in R2, whose attractors include the
three trees in Figure 3.11.3.

Run your version of Program 3.8.1 or Program 3.8.2, making small
changes in the IFS code. Convince yourself that resulting rendered
images “vary continuously” with respect to these changes.

Solve the following problems with regard to the images (a)-(f) in Figure
3.11.4. Recall that a “just-touching” collage in R? is one where the
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Figure 3.11.3

Blowing in the wind. Find
a one-parameter family of
IFS whose attractors in-
clude the trees shown
here. The Random Itera-
tion Algorithm was used
to compute these images.
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Figure 3.11.4(a) - (d)
Classical Collages. Can
you find an IFS corre-
sponding to each of these
classical geometrical ob-
Jects?

Figure 3.11.4(e), (f)
Classical Collages. Can
you find an IFS corre-
sponding to each of these
Euclidean objects?

(0, ?P ) (P,2P)

(2P.P)

(2pr.0) )
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transforms of the target set do not overlap. They fit together like the
pieces of a jigsaw puzzle.

(a) Find a one-parameter family collage of affine transformations.

(b) Find a “just-touching” collage of affine transformations.

(c) Find a collage using similitudes only. What is the smallest
number of affine transformations in R?, such that the boundary
1s the attractor?

(d) Find a one-parameter family collage of affine transformations.

(e) Find a “just-touching” collage, using similitudes only, para-
meterized by the real number p.

(f) Find a collage for circles and disks.
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4 Chaotic Dynamics
on Fractals

41 THE ADDRESSES OF POINTS ON FRACTALS

We begin by considering informally the concept of the addresses of points on
the attractor of a hyperbolic IFS. Figure 4.1.1 shows the attractor of the IFS

{Csw(z) = (013 +0.64i)z,wy(z) = (0.13 + 0.64i)z + 1}.

This attractor, A, is the union of two disjoint sets, w;(A)and w,(4), lying to
the left and right, respectively, of the line ab. In turn, each of these two sets is
made of two disjoint sets:

w(A) = Wl(Wl(A)) v Wl(Wz(A))a wy(4) = Wz(Wl(A)) U Wz(Wz(A))-
This leads to the idea of addressing points in terms of the sequences of
transformations, applied to 4, which lead to them. All points belonging to A,
in the subset w,(w,(A4)), are situated on the piece of the attractor which lies
below dc and to the left of ab, and their addresses all begin with 11....
Clearly, the more precisely we specify geometrically where a point in A4 lies,
the more bits to the address we can provide. For example, every point to the
right of ab, below ef , to the left of 3k, has an address which begins 212... . In
Theorem 4.2.1 we prove that, in examples such as this one, it is possible to
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Every point in this part Addresses begin  Figure 4.1.1
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assign a unique address to every point of 4. In such cases we say that the IFS
is “totally disconnected.”

Here is a different type of example. Consider the IFS

{(Ciwm(z) =3z, wmy(2) =32+ %, wy(2) =%z + i},
The attractor, A4, of this IFS is a Sierpinski triangle with vertices at (0,0),
(1,0), and (0, 1). Again we can address points on A4 according to the sequences
of transformations which lead to them. This time there are at least three points
in A which have two addresses, because there is a point in each of the sets
wi(A) N wy(A), wy(A) O wy(A), and wy(A) N w,(A4), as illustrated in Figure
41.2.

On the other hand, some points on the Sierpinski triangle have only one
address, such as the three vertices (0,0), (1,0), and (0,1). Although the
attractor is connected, the proportion of points with multiple addresses is
“small,” in a sense which we do not yet make precise. In such cases as this we
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Figure 4.1.2

Some points on this
Sierpinski triangle have
two addresses, while
others have only one
address. Overlining on the
last symbols, in an ex-
pression such as 31111,
means that the overlined
symbols are repeated end-
lessly. For example,
31111= 31111111111111
111111..., and 31123=
31123123123123....

33
3 31\ /32
23
1 2 b N\ Lo
33333
1y RbERER
NG
L
N

say that the IFS is “just-touching.” Notice that this terminology refers to the
IFS itself rather than to its attractor.

Let us look at a third fundamentally different example. Consider the
hyperbolic IFS

([0,1}: 4x, 3x + 1)
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The attractor is A = [0, 1], but now
“(4) M) = [0.4] 0 (1] = [ 4]

so w,(A4) N wy(A) is a significant piece of the attractor. The attractor would
look very different if this overlapping piece [4, 4] were missing. Now observe
that every point in [}, 3] has at least two addresses. On the other hand, the
points 0 and 1 have only one address each. Nonetheless, it appears that the
proportion of points with multiple addresses is large. In such cases we say that
the IFS is “overlapping.”

The terminologies “totally disconnected,” “just-touching,” and “overlap-
ping” refer to the IFS itself rather than to the attractor. The reason for this is
that the same set may be the attractor of several different hyperbolic IFS’s,
Consider, for example, the two IFS

{[0,1]; wi(x) = $x, wmy(x) = 3x + 5}
and
{10,1}; wi(x) = 4x,wy(x) = —§x + 1}.
The attractor of each one is the real interval [0, 1]. We can obtain two different
addressing schemes for the points in [0, 1}, as illustrated in Figure 4.1.3.
These two IFS are “just-touching.” However the IFS
{10,1]; wi(x) = 3x,wy(x) = 3x + &}

is “overlapping” while its attractor is also [0, 1}.

Exercises & Examples

1.1. Figure 4.1.4 shows the attractor of an IFS of the form {R?% w,,
n = 1,23} where each of the transformations w,: R* - R? is affine.
The addresses of several points are given. Find the addresses of a, b,

and c.
Figure 4.1.3
0 1.0 1 Different IFS’s with the
b+ 4+ + | o+ | Same attractor provide
0000  0011.. 0111 0111 il 0000 o0010.. 0100 10100 1000 dlfferem addwsslng
and and end end schemes. Here the sym-
1008 1000 1100 11008

bols {0,1} are used in
place of {1,2} for obvi-
Binary addressing of the Alternative addresses of the OUS reasons.

interval [0,1] induced by the interval {0,1] induced by the
IFS {[0,1},0.5x,0.5x+0.5} IFS {{0,1],0.5x,-0.5x+1}
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Figure 4.1.4
Can you find the addres-
ses of a, b, and c?

1.2. In Figure 4.1.4, locate the point whose address is 11111.

1.3. A quadtree is an addressing scheme used in computer science for
addressing small squares in the unit square @ = {(x,, x,) € R% 0 < x,
< 1,0 < x, <1} as follows. The square is broken into four quarters.
Points in the first quarter have addresses which begin with 0, points in

33 32123 | » the second quarter have addresses which begin with 1, and so on, as
illustrated in Figure 4.1.5. Find an IFS which gives rise to the addressing
30 | 31 ) 20 | 21 scheme suggested in Figure 4.1.5. Is this a “totally disconnected,”

“just-touching,” or an “overlapping” IFS?
03 | 02 | 13 | 12 1.4. Addresses are assigned to the Sierpinski triangle, as in Figure 4.1.2.
Characterize the addresses of the set of points which lie on the outer-

00 | 01 | 10 | 11 most boundary, the triangle with vertices 11, 22 and 33.
1.5. Characterize the addresses of points belonging to the boundary of the
Figure 4.1.5 largest hole in Figure 4.1.6.

Addresses at depth two in 1.6. Consider a hyperbolic IFS with condensation set C. Suppose the con-
a quadtree. densation set is itself the attractor of another hyperbolic IFS. Design an
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123

1.7.

1.8.

1.9.

addressing scheme for the attractor of the IFS with condensation. Can
all possible addresses occur?

Figure 4.1.7 shows an “overlapping” IFS attractor for two affine trans-
formations in R2 Choose one point in each of the marked regions on the
attractor. Find the first four numbers in two different addresses for each
of these points. To remove ambiguities you should state a choice for how
the two transformations act on the attractor.

» Identify the set of addresses of points on the attractor, A4, of a
hyperbolic IFS with code space. Argue that nearby codes correspond to
points on A which are nearby.

Address the real number 0.7513 in each of the two coding schemes given
in Figure 4.1.3.

In thinking about the addresses of points on fractals, already we have been
led to trying to compare “how many” points have a certain property to how
many have another property. For example, in the case of the addressing
scheme on the Sierpinski triangle described above, we wanted to compare the

Figure 4.1.6

Can you describe the ad-
dresses of the points on
the boundary of the
central white region?
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Figure 4.1.7

Attractor of a hyperbolic
IFS in the overlapping
case. In the overlapping
regions multiple ad-
dresses are available.

Overlapping
regions.
Multiple
addresses
are available

number of points with multiple addresses to the number of points with single
addresses. It turns out that both numbers are infinite. Yet still we want to
compare their numbers. One way in which this may be done is through the
concept of countability.

Definition 1. Let S be aset. S is countable if it is empty or if there is an onto
transformation ¢: I — S where I is either: one of the sets {1}, (1,2},
{1,2,3},---,{1,2,3,...,n},--- or: the positive integers {1.2,3,4,...}. S is
uncountable if it is not countable.

We think of an uncountable set as being larger than a countable set.

We are going to make fundamental use of code space to formalize the
concept of addresses. How many points does code space contain?
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Theorem 1. Code space on two or more symbols is uncountable.

Proof. The code space on the two symbols {1,2} is proved here. Denote an
element of code space & by w = w,w,w;... where each w, € {1,2}. Define p:
{1,2} - {1,2} by p(1) = 2 and p(2) = 1. Suppose code space is countable.
Let the counting function be ¢: {1,2,3,...} — X. Consider the point 6 € ¥
defined by

0 = 0,0,03...

where o, = p((c(n)),), and (c(n)),) means the n* symbol of c(n). When
does the counting function reach ¢? Never! For example, ¢(3) # o because
their third symbols are different! This completes the proof.

Exercises & Examples
1.10. The set of integers Z = {0, +1, £2,... } is countable. Define c: N —» Z

by c(z)y=(z — 1)/2if z isodd, ¢(z) = —z/2if z is even.

1.11. A countable union of countable sets is countable. An uncountable set,
take away a countable set, is uncountable.

1.12. The rational numbers are countable. A rational number is one which can
be written in the form p/q, where p and ¢ are integers with ¢ # 0.
Figure 4.1.8 shows how to count the positive ones, some numbers being
counted more than once. Make a rule which gets rid of the redundant
countings. Also show how to include the negative rationals in the
scheme.

1.13. Show that a Sierpinski triangle contains countably many triangles.

1.14. Let S be a perfect subset of a complete metric space. Suppose that S
contains more than one point. Prove that S is uncountable.

1.15. Characterize the addresses of the missing pieces in Figure 4.1.9.
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Figure 4.1.8

How to count the positive
rational numbers. What is
c(24)?

4.2 CONTINUOUS TRANSFORMATIONS FROM CODE SPACE TO FRACTALS

Definition 1. Let { X; w,, w,,...,wy} be a hyperbolic IFS. The code space

associated with the IFS, (X, d ), is defined to be the code space on N symbols

{1,2,..., N}, with the metric d given by
N A

df(w,o) = Z W forall w,0 € .

n=1

Our goal is to construct a continuous transformaticn ¢ from the code
space associated with an IFS onto the attractor of the IFS. This will allow us
to formalize our notion of addresses. In order to make this construction, we
will need two lemmas. The first lemma tells us that if we have a hyperbolic IFS
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Figure 4.1.9
Characterize the
addresses of the missing
pieces.
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acting on a complete metric space, but we are only interested in studying how
the IFS acts in relation to a fixed compact subset of X, then we can treat the
IFS as though it were defined on a compact metric space.

Lemma 1. Let (X,d) be a complete metric space. Let {X; w,: n=
1,2,...,N} bea hyperbolic IFS. Let K &€ H#(X). Then there exists Ke %”(X)
Such thatKCKandw K - Kforn=12... N. In other words {K w,

n=1273,..., N} is a hyperbolic IFS where the underlying space is compact.

Proof. Define W: #(X) — s#(X) by
N
w(B)y = U w,(B) forall B €s#(X).
1

n=

To construct K consider the IFS with condensation {X; w,; n =
0,1,2,..., N} where the condensation map w, is associated with the con-
densation set K. By Theorem 3.7.1’ the attractor of this IFS belongs to £ (X).

By example 9.1 it can be written

K=(KUWIY(K)UW?K)yU W?(K)yu WH(K) - UW(K)U -+ U)

It is readily seen that K C K and that W(K y C K. This completes the proof.
The next lemma provides the first step in linking code space to IFS

attractors, by introducing a certain transformation ¢ which maps the Carte-
sian product space ¥ X N X X into X. By taking appropriate limits, in
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Theorem 1 below, we will eliminate the dependences on N and X to provide
the desired connection between ¥ and X.

Lemma 2. Let (X,d) be a complete metric space. Let {X; w,: n=
1,2,..., N} be a hyperbolic IFS of contractivity s. Let (X, d.-) denote the code
space associated with the IFS. For each 0 € ¥, n € N, and x € X, define

(o, n,x) = Wy, © Wy, © 70 ow(,n(x).

Let K denote a compact nonempty subset of X. Then there is a real constant D
such that

d(9(o,m, x),¢(0,n,x,)) < Ds" "
forall o € 2, all m,n € N, and all x, , x, € K.

Proof. Llet o,m,n, x,, and x, be as stated in the lemma. Construct K as in
Lemma 1. Without any loss of generality we can suppose that m < n. Then
observe that

d(o,n,x)=0¢(0,m¢(w,n—m,x,))
where w = 0,,,,0,,,, - 0, - EL,
Let x, = ¢(w, n — m, x,). Then x, belongs to K. Hence we can write
d(o(o, m,x),6(0,n,x))=d(o(e, m x), (0, m x;))
< sd(wpo o ow, (X)), Woy© °Wam(x3))
< $%d(wp,0 0w, (X)), W50 e 0w, (X))
< s"d(x;, x3) <s"D,

where D = Max{d(x,, x3): x,, x; € K}. D is finite because K is compact.
This completes the proof.

Theorem 1. Let (X, d) be a complete metric space. Let {X, w,: n=
1,2,..., N} be a hyperbolic IFS. Let A denote the attractor of the IFS. Let
(X, d;) denote the code space associated with the IFS. For each 6 € ¥, n € N,
and x € X, let
$(0,n,x) =w, ow, © - oW, (X). .
Then
4(a) = Lim p(a,n, x)

exists, belongs to A, and is independent of x € X. If K is a compact subset of X
then the convergence is uniform over x € K. The function ¢: L — A thus
provided is continuous and onto.
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Proof. Let x € X. Let K € #(X) be such that x € K. Construct K as in
Lemma 1. Define W: »#(X) — 5#(X) in the usual way. By Theorem 3.7.1, W
is a contraction mapping on the metric space (5#(X), h(d)); and we have
4= lim {W(K)).

In particular {W°"(K)} is a Cauchy sequence in (5¢, ). Notice that
¢(o,n,x) € Wer(K). It follows from Theorem 2.7.1, that if
Lim _ ¢(e, n, x) exists, then it belongs to 4.

That the latter limit does exist follows from the fact that, for fixed ¢ € ¥,
{¢(0, n, x)}>_, is a Cauchy sequence: by Lemma 2

d(¢(o, m,x),d(a,n, x)) < Ds""" forall x € K,
and the right-hand side here tends to zero as m and » tend to infinity. The
uniformity of the convergence follows from the fact that the constant D is
independent of x € K.
Next we prove that ¢: ¥ — A is continuous. Let € > 0 be given. Choose n
so that s"D < ¢, and let 0, w € ¥ obey

ad N 1
dr(o,w) < "= .
() m=zn:+z(N+1) (N+1"

Then one can verify that ¢ must agree with w through » terms; that is,
0, =@, 0, = w,,...,0, = w, . It follows that, for each m > n we can write

d(¢(o,m,x),d(w, m,x)) =d(e(a,n,x),(0,n, x,)),
for some pair x,, x, € K. By Lemma 2 the right-hand side here is smaller than
s”D which is smaller than e. Taking the limit as m — oo we find
d(¢(0), ¢(w)) <e.
Finally, we prove that ¢ is onto. Let a € A. Then, since A =
Lim Wwer({x}), it follows from Theorem 2.7.1 that there is a sequence

n—o

(0 €X: n=1,2,3,...}) such that

Lim ¢( o™, n, x) = a.

n— o
Since (¥, d) is compact, it follows that {w™: n=1,2,3,...}) possesses a
convergent subsequence with limit w € Y. Without loss of generality assume
Lim,_, ) = w. Then the number of successive initial agreements between
the components of w™ and « increases without limit. That is, if

a( n) = number of elements in { JEN: ) =w, forl <k sj},
where N = {1,2,3,...}, then a(n) — oo as n — oo. It follows that
d(¢(w, n, x), (", n, x)) < s*D.

By taking the limit on both sides as n — o0 we find d(¢(w), a) = 0 which
implies ¢(w) = a. Hence ¢: > — A is onto. This completes the proof.
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Definition 2. Let {X;w,, n=1,23,..., N} be a hyperbolic IFS with asso-
ciated code space L. Let ¢: ¥ — A be the continuous function from code
space onto the attractor of the IFS constructed in Theorem 1. An address of a
point a € A is any member of the set

¢ '(a) = {weE€L: ¢(w) =a}.

This set is called the set of addresses of a € A. The IFS is said to be totally
disconnected if each point of its attractor possesses a unique address. The IFS
is said to be just-touching if it is not totally disconnected yet its attractor
contains a nonempty set @ which is open in the metric space 4, such that

B w(O)Nnw(0)=2Vije(l2.. N} withi#+j
N
i) Uw(0)co.
i=1
An IFS whose attractor obeys (i) and (ii) is said to obey the open set condition.

The IFS is said to be overlapping if it is neither just-touching nor discon-
nected.

Theorem 2. Let {X;w, n=1,2 ..., N} bea hyperbolic IFS with invertible
maps and attractor A. The IFS is totally disconnected if and only if

w(d)nw(Ad)y=0Vi je{l1,2,...,N}  withi#j. (4.2.1)

Proof. 1f the IFS is totally disconnected then each point on its attractor
possesses a unique address. This implies Equation (4.2.1). If the IFS is not
totally disconnected then some point on its attractor possesses two different
addresses. These must disagree at some first place: choose inverse images to
get this place out front, to produce a contradiction to Equation (4.2.1). This
completes the proof.

Exercises & Examples

2.1. Show that the IFS {R; ix, $x + 3} is just-touching. Classify the IFS
{R; 3x,1}.

2.2. Prove that the IFS {R; x, ;x + %) is overlapping.

2.3. Consider the IFS ({[0,1], w,(x) = (n — 1)/10) + f5x, n=1,2,
3,...,10) and for the associated code space use the symbols
{0,1,2,...,9}. Show that the attractor of the IFS is [0, 1] and-that it is
just-touching. Identify the addresses of points with multiple addresses.
Show that the address of a point is just its decimal representation.
Comment on the fact that some numbers have two different representa-
tions.

2.4. Prove that the IFS {[0,1]; wy(x) = 3x, wy(x) = 3x + 3} is totally
disconnected.
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2.5. Prove that the IFS which generates the Black Spleenwort fern, given in
Chapter 3, p. 103, is just-touching,
2.6. Show that the IFS {[0, 1]; wy(x) = %, w,(x) = 3} is overlapping.

We need to understand the structure of code space. Theorem 1 told us that
the code space on N symbols is the mother of all hyperbolic IFS consisting of
N maps. We will use the following theorem to show that mother is metrically
equivalent to a Classical Cantor Set.

Theorem 3. Let ¥ denote the code space of the N symbols, {1,2,..., N} and
define two different metrics on ¥ by

& m-al =
hx ) El(N +1) E

Then (X, d,) and (X, d,) are equivalent metric spaces.

D dy(x, y) =

(N+1)

Proof. We give the proof for the case N = 10. Let x, y € ¥ be given. Clearly
we have d,(x, y) < di(x, y). We must show that there is a constant C so that
Cd(x, y) < d,(x, y) where C is independent of x and y. Here we pick C = 5
and we show that it works.

We can suppose that for some k € {1,2,3 ...} x; =y, x,=y,,..
Xp-1= Yk-1> Xk # Y- Then

b

— 00 — v,
> Ixe = wl y |x, — ¥l
= 11 icke1 1T
1%~ wl - 9 ( 9\ 1
A YT |xk“}’k|__)—
11 o1 10/ 11%
1 9V 1
2 7ol X —xl + 1_0)'1?»
(verify this by checking it for |x, — y| € {1,2,...,9},)
(I =nl o $ 9) 1“m—m S
=5 + X 2l Ty L
19( 11¢ i=k+1 1 19 11¢ i=k+1 11
|x y,l
2 19 E = -—d(x y).

n=1

This completes the proof.

We now show that code space is metrically equivalent to a totally discon-
nected Cantor subset of [0, 1]. Define a hyperbolic IFS by {[0,1]; w,(x) =



4.2 Continuous Transformations from Code Space to Fractals

Figure 4.2.1

/\g\ Nothing lands here.

\
'NOTHING / w, w, \ W
LANDS
 HERE

0 1/4 1/2 3/4 1

/(N +1)x+n/(N+1):n=12,... N) Thus

n n+1]

w,([0,1]) = N+l NT1 forn=1,2,...,N,

as illustrated for N = 3 in Figure 4.2.1.

The attractor for this IFS is totally disconnected, as illustrated in Figure
422 for N = 3.

In the case N = 3, the attractor is contained in [}, 1]. The fixed points of
the three transformations wy(x) = fx + 4, wy(x) = x + 3, wy(x) = 4x + 3
are respectively 3, %, and 1. Moreover, the address of any point on the
attractor is exactly the same as the string of digits which represents it in base
N + 1. What is happening here is this. At this zero” level we begin with all
numbers in [0, 1] represented in base (N + 1). We remove all those points
whose first digit is 0. For example in the case N = 3 this eliminates the
interval [0, 4]. At the second level we remove from the remaining points all

Figure 4.2.2
A special ternary Cantor
set in the making.

w,(th1) wo(iL.1p W,(1L1])
3 3 3
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Nt
—
oI~
WIN
B




132

4 Chaotic Dynamics on Fractals

those which have the digit 0 in the second place. And so on. We end up with
those numbers whose expansion in base (N + 1) does not contain the digit 0.
Now consider the continuous transformation ¢: (X, d-) — (4, Euclidean). It
follows from Theorem 3 that the two metric spaces are equivalent. ¢ is the
transformation which provides the equivalence. Thus, we have a realization, a
way of picturing code space.

Exercises & Examples

2.7. Find the Figure analogous to Figure 4.2.2, corresponding to the case
N=09.

2.8. What is the smallest number in [0, 1] whose decimal expansion contains
no zeros?

We continue to discuss the relationship between the attractor 4 of a
hyperbolic IFS { X; wy, w,,..., wy } and its associated code space L. Let ¢:
Y — X be the code space map constructed in Theorem 1. Let w = w,w,w,0, .. .
be an address of a point x € 4. Then

@ = jw w0y ...

is an address of w;(x), for each j € {1,2,..., N }.

Definition 3. Let A be the attractor of a hyperbolic IFS { X, wy, wy, ..., wy }.
A point a € A4 is called a periodic point of the IFS if there is a finite sequence
of numbers {o(n) € {1,2,..., N})”_, such that

a=Wypy°Wyp_1,° * " °Wy,(@a). (42.2)
If a € A is periodic, then the smallest integer P such that the latter statement
is true is called the period of a.

Thus, a point on an attractor is periodic if we can apply a sequence of w,’s
to it, in such a way as to get back to exactly the same point after finitely many
steps. Let a € 4 be a periodic point which obeys equation (4.2.2). Let o be
the point in the associated code space, defined by

c=0d(P)s(P—-1)--- a(l)a(P)o(P—-1) - a()a(P)o(P —-1) -
=o(P)o(P—1)--- a(1). (4.2.3)

Then, by considering Lim  _ _¢(o0, n, a), we see that ¢(o) = a.

Definition 4. A point in code space whose symbols are periodic, as in
equation (4.2.3), is called a periodic address. A point in code space whose
symbols are periodic after a finite initial set is omitted, is called eventually
periodic.
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Exercises & Examples
2.9. An example of a periodic address is:
121212121212121212121212121212121212121212121212121212 ...

where (12) is repeated endlessly. An example of an eventually periodic
address is:

11211111121111211112111121221211212121212121212121212121 . ..

where (21) is repeated endlessly.
2.10. Prove the following theorem: “Let { X; w;, w,,..., wy} be a hyperbolic
IFS with attractor 4. Then the following statements are equivalent:

(I) x € 4 is a periodic point;

(I) x € A possesses an address which is periodic;

(IIl) x € A4 is a fixed point of an element of the semigroup of trans-
formations generated by {wy, w,,..., wy}.”

2.11. Show that a point x € [0, 1] is a periodic point of the IFS
{[0,1];3x,3x + 1}

if and only if it can be written x = p/(2Y — 1) for some integer
0 < p <2V -1 and some integer N € {1,2,3,...).

2.12. Let {X; w;,w,,...,wy} denote a hyperbolic IFS with attractor A.
Define W(S) = U}_,w,(S) when S is a subset of X. Let P denote the
set of eventually periodic points of the IFS. Show that W(P) = P.

2.13. Locate all the periodic points of period 3 for the IFS {R?% 3z, 4z + 3,3z
+ %}. Mark the positions of these points on the attractor.

2.14. Locate all periodic points of the IFS {R; wy(x) = 0, wy(x) = ix + 7).

Theorem 4. The attractor of an IFS is the closure of its periodic points.

Proof. Code space is the closure of the set of periodic codes. Lift this
statement to A using the code space map ¢: L — 4. (¢ is a continuous
mapping from a metric space L onto a metric space 4. If § C X is such that
its closure equals ¥, then the closure of f(S) equals 4.)

Exercises & Examples

2.15. Prove that the attractor of a totally disconnected hyperbolic IFS of two
or more maps is uncountable.

2.16. Under what conditions does the attractor of a hyperbolic IFS contain
uncountably many points with multiple addresses? Do not try to give a
complete answer, just some conditions-—and think about the problem.

2.17. Under what conditions do there exist points in the attractor of a
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hyperbolic IFS with uncountably many addresses? As in 2.16, do not try
to give a full answer.

2.18. In the standard construction of the Classical Cantor Set €, described in
section 3.1 (example 1.5), a succession of open subintervals of [0, 1] are
removed. The endpoints of each of these intervals belongs to . Show
that the set of such interval endpoints is countable. Show that & itself is
uncountable. % is the attractor of the IFS {[0,1]; 3x, }x + 3)}. Char-
acterize the addresses of the set of interval endpoints in €.

43 INTRODUCTION TO DYNAMICAL SYSTEMS

We introduce the idea of a dynamical system, and some of the associated
terminology.

Definition 1. A dynamical system is a transformation f: X — X on a metric
space (X, d). It is denoted by { X; f}. The orbit of a point x € X is the

sequence { f°"(x)}%_,.

As we will discover, dynamical systems are sources of deterministic fractals.
The reasons for this are deeply intertwined with IFS theory, as we will see.
Later we will introduce a special type of dynamical system, called a shift
dynamical system, which can be associated with an IFS. By studying the orbits
of these systems, we will learn more about fractals. One of our goals is to learn
why the Random Iteration Algorithm, used in Program 3.8.2, successfully
calculates the images of attractors of IFS. More information about the deep
structure of attractors of IFS will be discovered.

Exercises & Examples
3.1. Define a function on code space, f: ¥ — X, by
f(xaXyxaxy -0 ) = X X3X4%5 -
Then {¥; f} is a dynamical system.
3.2. {[0,1}; f(x)=Ax(1 — x)} is a dynamical system for each A € [0,4].
We say that we have a one-parameter family of dynamical systems.
3.3. Let w(x) = Ax + ¢ be an affine transformation in R% Then {R% w} is
a dynamical system.
3.4. Define T: C[0,1] — C[0,1] by
(Tf)(x) = 3/(3x) +3f(3x +3).
Then {C[0,1]; T} is a dynamical system.
3.5. Let w: C — C be a Mobius transformation. That is w(z) = (az + b)/
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(cz + d), where a, b, ¢, d € C, and (ad — bc) + 0. Then (€C;w(z))isa
dynamical system.

3.6. {[0,1};2xmod1} is a dynamical system. Here 2x mod1 = 2x — [2x]
where [2x] denotes the greatest integer less than or equal to 2x.

3.7. Define a transformation f: @ — W as illustrated in Figure 4.3.1. {W; f}
is a dynamical system.

In dynamical systems theory one is interested in what happens when one
follows a typical orbit: is there some kind of attractor which usually occurs?
Dynamical systems become interesting when the transformations involved are
not contraction mappings, so that a single transformation suffices to produce
interesting behavior. The orbit of a single point may be a geometrically
complex set. Some thought about horizontal slices through Figure 4.3.2 will

SQUEEZE Figure 4.3.1

An example of a “Stretch,
Squeeze, and Bend”
dynamical system.

START

L

FINISH : Put deformed space back
inside itself.
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Figure 4.3.2

One million points of an
orbit of a “Stretch,
Squeeze, and Bend” dy-
namical system. Can you
find a relationship to IFS
theory?

quickly suggest to the inquisitive student that there is a close relationship
between this noncontractive dynamical system and a hyperbolic IFS.

Definition 2. Let { X; f} be a dynamical system. A periodic point of f is a
point x € X such that f°"(x) = x for some n€ {1,2,3,...}. If x is a
periodic point of f then an integer n such that f°"(x) = x,n € {1,2,3,...}
is called a period of x. The least such integer is called the minimal period of
the periodic point x. The orbit of a periodic point of f is called a cycle of f.
The minimal period of a cycle is the number of distinct points which it
contains. A period of a cycle of f is a period of a point in the cycle.

Definition 3. Let {X; f} be a dynamical system and let x, € X be a fixed
point of f. The point x, is called an attractive fixed point of f if there is a
number ¢ > 0 so that f maps the ball B(x,, ¢) into itself, and moreover f is a
contraction mapping on B(x,, ¢). Here B(x; €)= {y € Xt d(x,, y) <€}
The point x, is called a repulsive fixed point of f if there are numbers ¢ > 0
and C > 1 such that

d(f(x;), f(y)) = Cd(x;, y) forall y € B(x,,¢€).

A periodic point of f of period n is attractive if it is an attractive fixed point
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of f°". A cycle of period n is an attractive cycle of f if the cycle contains an
attractive periodic point of f of period n. A periodic point of f of period n is
repulsive if it is a repulsive fixed point of f°”. A cycle of period n is a repulsive
cycle of f if the cycle contains a repulsive periodic point of f of period 7.

Definition 4. Let { X, f} be a dynamical system. A point x € X is called an
eventually periodic point of f if f°™(x) is periodic for some positive integer m.

Exercises & Examples

3.8. The point x, = 0 is an attractive fixed point for the dynamical system
(R; 1x}, and a repulsive fixed point for the dynamical system {R;2x }.
3.9. The point z = 0 is an attractive fixed point, and z = oo is a repulsive
fixed point, for the dynamical system
{€;(cos10° + isin10°)(0.9)z}.
A typical orbit, starting from near the Point at Infinity on the sphere, is
shown in Figure 4.3.3 (a) and (b).
3.10. The point x, = 111111 is a repulsive fixed point for the dynamical
system {X; f} where f: ¥ — ¥ is defined by

J(XyXaX3X4X5 =00 ) = XgXyXgXs * -
Show that x = 121212 is a repulsive periodic point of period 2, and that
{1212,2121} is a repulsive cycle of period 2.
3.11. The dynamical system {[0,1]; 2x(1 — x)} possesses the attractive fixed
point x, = . Can you find a repulsive fixed point for this system?

There is a delightful construction for representing orbits of a dynamical
system of the special form {R; f(x)}. It utilizes the graph of the function f:
R — R. We describe here how it is used to represent the orbit {x, =
[ (xp)}Y5o, of a point x; € R.

For simplicity we suppose that f: [0,1] - [0,1]. Draw the square
{(x,y):0<x<1,0<y<1} and sketch the graphs of y = f(x)and y = x
for x €[0,1]. Start at the point (x,, x,) and connect it by a straight line
segment to the point (x4, x; = f(xy)). Connect this point by a straight line
segment to the point (x,, x,). Connect this point by a straight line segment to
the point (x;, x, = f(x;)); and continue. The orbit itself shows up on the
forty-five degree line y = x, as the sequence of points (xg, x4), (x1, x;),
(x5, X5),--- . We call the result of this geometrical construction & web di-
agram.

It is straightforward to write computergraphical routines which plot web
diagrams on the graphics display device of a microcomputer. The following
program is written in BASIC. It runs without modification on an IBM PC with
Color Graphics Adaptor and Turbobasic. On any line the words preceded by a
> are comments: they are not part of the program.
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Figure 4.3.3(a) ON THE REPULSIVE FIXED POINT
The dynamics of a simple
Mobius transformation. SPHERE
Points spiral away from
one fixed point and they
spiral in towards the
other. What happens if
the fixed points coincide?

ATTRACTIVE FIXED POINT

IN THE /**\
*,

PLANE ‘/* \

Figure 4.3.3(b)

Points belonging to an
orbit of a Mobius trans-
formation on a sphere.
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Y=X

¥ (XpXy)

> (XgXg) Flgyre 4.34
This shows an example of

a web diagram. A web
diagram is a means for
displaying and analysing
the orbit of a point x, €
R for a dynamical system
(R, f}. The geometrical
construction of a web di-
agram makes use of the

graph of f(x).

-
ot

PROGRAM 4.3.1

1=379:xn = 0.95
def fnf(xn) = 1*xn* (1 — xn)

screen 1 : cls
window (0,0) — (1,1)

fork = 1 to 400
pset(k /400, fnf(k /400))
next k

do
n=n+1
y = fnf(xn)

line (xn, Xxn) — (xn,y),n
line (xn,y) — (v, y),n
Xn =y

loop until instat : end

’parameter value 3.79, orbit starts

at 0.95

’change this function f(x) for other
dynamical systems

’initialize computer graphics

’set plotting window to 0 < x < 1,
0<y<l1

’plot the graph of the f(x)

’the main computational loop
’increment the counter, n

’compute the next point on the orbit
’draw a line from (xn, xn) to (xn, y)
in color n

’draw a line segment from (xn, y)

to (y,y) in color n *

’set xn to be the most recently
computed point on the orbit

’stop running if a key is pressed.

An example of some web diagrams computed using this program are

shown in Figure 4.3.5. The dynamical system used in this case is {[0,1];
f(x) =379 — x)}.
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Figure 4.35

Two examples of web di-

agrams computed using

Program 4.3.1. The dy- CHAOS
namical system in this *
caseis {[0,1]; f(x) =

Ax(1 — x)}, for two dif-

ferent values of A &

(0,4). The system corre-

sponding to the lower e
value of A is orderly, the / il iy
other is close to being .
chaotic.

!

i

e
@ ORDER
/ N
/// \\\\
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Exercises & Examples

3.12. Rewrite Program 1 in a form suitable for your own computer environ-
ment. Use the resulting system to study the dynamical systems {[0, 1];
Ax(1 — x)} for A =0.55, 1.3, 2.225, 3.014, 3.794. Try to classify the
various species of web diagrams that occur for this one-parameter family
of dynamical systems.

3.13. Divide [0,1] into sixteen subintervals [0, {5), [, %), ..., (1%, ), [12, 1].
Let f:[0,1} — [0,1] be defined by f(x) = Ax(1 — x) where A €[0,4] is
a parameter. Compute { f°"(3): » = 0,1,2,...,5000} and keep track of
the frequency with which f°"(}) falls in the k™ interval for k =
1,2,...,16, and A = 0.55, 1.3, 2.225, 3.014, 3.794. Make histograms of
your results.

3.14. Describe the behavior for the one-parameter family of dynamical sys-
tems {R U {oo0}; Ax}, where A is a real parameter, in the cases
HA=0;G)0 <A <1; (i) A= -1;(ivyA=1;(v) 1 <X < 0.

3.15. Analyze possible behaviors of {R% Ax + t} where Ax + ¢ is an affine
transformation.

3.16. Study possible behaviors of orbits for the dynamical system { C; Mobius
transformation}. You should make appropriate changes of coordinates
to simplify the discussion.
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- (X3:X3)
A Y
A -<
XX
« (Xg.Xg)
Y=1-X
A \
%Xy Y *
Y=14X ‘\ Y=X
A (Xo-xo)

Figure 4.3.6

An orbit of the “Slide and
Fold” dynamical system
described in example
3.17. Can you prove that
all orbits are eventually
periodic?
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Figure 4.3.7
A sign of things to come.

3.17.

3.18.

Show that all points are eventually periodic for the slide-and-fold
dynamical system {R; f} where

7 -

This system is illustrated in Figure 4.3.6.

x+1 ifx<0,
-x+1 ifx=>=0.

Let {X; wy, w,,..., wy} be a hyperbolic IFS. Then {#(X); W} is a
dynamical system, where
N
w(B) = U w,(B) forall Be#(X).
n=1

Dynamical systems which act on sets in place of points are sometimes
called set dynamical systems. Show that the attractor of the IFS is an
attractive fixed point of the dynamical system { #(X); W }. You should
quote appropriate results from earlier theorems.
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44 DYNAMICS ON FRACTALS: OR HOW TO COMPUTE ORBITS BY LOOKING AT
PICTURES

We continue with the main theme for this chapter, namely dynamical systems
on fractals. We will need the following result.

Lemma 1. Let {X; w,, n=12,..., N} be a hyperbolic IFS with attractor
A. If the IFS is totally disconnected, then for each n € {1,2,... N}, the
transformation w,: A — A is one-t0-one.

Proof. We use a code space argument. Suppose that there is an integer
n€{1,2,..., N} and distinct points a,, a, € 4 so that w (a,) = w,(a,;) =
a€ A. If a has address w and a, has address o, then a has the two
addresses nw and no. This is impossible because the IFS is totally discon-
nected. This completes the proof.

Lemma 1 shows that the following definition is good.

a-=a Figure 4.4.1
E:R"‘; An orbit of a shift
NN dynamical system on a
Ba N
E:t‘h &h‘h fractal.

Buke BuBa RubnBuaBa
B
Bh
Ba B Bu
B
13NN
Ba  Ru
YN
R
Bukn
Ba  Bu
Babu Babe &
Bn
N
Babu A .
E: Ba Bube
N
Bh Bak
B B Bn R
NN NN Ba X a Subu BaBa
2 B N
E:k.. &h &h NN &h NN N Bu b
E:E:&h. hh&h Ba B B B Ba B B A
BuBube RuBe Ruba  BubBaRabe BubeBaba BobnBube Babe BubBe  BuBuBabe RabaBaby
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Definition 1. Let {X, w,, n=1,2,..., N} be a totally disconnected hyper-
bolic IFS with attractor A. The associated shift transformation on A is the
transformation S: 4 — A defined by

. S(a) =w, '(a) fora€w,(4),

where w, is viewed as a transformation on A. The dynamical system { 4; S} is
called the shift dynamical system associated with the IFS.

Exercises & Examples
4.1. Figure 4.4.1 shows the attractor of the IFS

{R2;0.47( 2),0.47( 2) + (?),0.47( 2) + (é)}

Figure 4.4.1 also shows an eventually periodic orbit {a, = S°"(a,)}*_,
for the associated shift dynamical system. This orbit actually ends
up at the fixed point ¢(2222). The orbit reads a, = ¢(123132222),
a, = $(23132222), a, = $(3132222), a, = $(132222), a, = $(32222),
as = ¢(22ﬁ), where ¢: X — A is the associated code space map. The
point a, € A4 is clearly a repulsive fixed point of the dynamical system.

Figure 4.4.2 VWY
BN
This orbit ends up in a Xﬂ X \X
cycle of period three. Q
<

PERIOD
THREE




4.4 Dynamics on Fractals: or How to Compute Orbits by Looking at Pictures

Figure 4.43

A chaotic orbit getting
going. The shift dynamics
are often wild. Why?

Figure 4.4.4

The orbit of the point a is
shown. Can you plot the
first few points of the
orbits of b and ¢? Warn-
ing! The IFS here is not
the usual one. See how
the knowledge of some
dynamics can imply some
more!
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Figure 4.4.5 ”?

This figure shows a sketch 7 Ry
of part of an orbit of an 1/

IFS (.11 wowom) g S ; —
on its attractor [0,1]. The

transformation w;:{0,1]

— [0,1] is affine fori =

1,2 3. Sketch part of the

orbit of b.

Notice how one can read off the orbit of the point a, from its address.
Start from another point very close to a, and see what happens. Notice
how the dynamics depend not only on A itself, but also on the IFS. A
different IFS with the same attractor will in general lead to different shift
dynamics.

4.2. Each of Figures 4.4.2 and 4.4.3 show attractors of IFS’s. In each case the
implied IFS is the obvious one. Give the addresses of the points {a, =
S°"(ay))*_, of the eventually periodic orbit in Figure 4.4.2. Show that
the cycle to which the orbit converges is a repulsive cycle of period 3. The
orbit in Figure 4.4.3 is either very long or infinitely long: why is it hard
for us to know which?

4.3. Figure 4.4.4 shows an orbit of a point under the shift dynamical system
associated with a certain IFS {R?;, wy, w,, w;} where w, w,, and w; are
affine transformations. Deduce the orbits of the points marked b and ¢ in
the figure.

4.4. Figure 4.4.5 shows the start of an orbit of a point under the shift
dynamical system associated with a certain hyperbolic IFS. The IFS is of
the form {R; w;, w,, w;} where the transformations w,: R - R are
affine, and the attractor is [0,1]. Sketch part of the orbit of the point
labelled b in the Figure. (Notice that this IFS is actually just-touching:
nonetheless, it is straightforward to define uniquely the associated shift
dynamics on the open set ¢ referred to in Definition 4.2.2.)

4.5 EQUIVALENT DYNAMICAL SYSTEMS

Definition 1. Two metric spaces (X;, d,) and (X, d,) are said to be topo-
logically equivalent if there is a homeomorphism f: X; — X,. Two subsets
S; € X, and S, C X, are topologically equivalent, or homeomorphic, if the
metric spaces (S, d;) and (S,, d,) are topologically equivalent. S, and S, are
metrically equivalent if the (S|, d,) and (S,, d,) are equivalent metric spaces.

The Cantor set and code space, discussed following Theorem 4.2.3, are
metrically equivalent. Theorem 2.8.5 tells us that if f; X; = X, is a continu-
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ous one-to-one mapping from a compact metric (X,.d;) onto a compact
metric space (X,, d,), then f is a homeomorphism. So by means of the code
space mapping ¢: 2 — A (Theorem 4.2.1) one readily establishes that the
attractor of a totally disconnected hyperbolic IFS is topologically equivalent to
a classical Cantor set.

Topological equivalence permits a great deal more “stretching and com-
pression” to take place than is permitted by metric equivalence. Later we will
define a quantity called the fractal dimension. The fractal dimension of a
subset of a metric space such as (R? Euclidean) provides a measure of the
geometrical complexity of the set; it measures the wildness of the set, and it
may be used to predict your excitement and wonder when you look at a
picture of the set. We will show that two sets which are metrically equivalent
have the same fractal dimension. If they are merely topologically equivalent,
their fractal dimensions may be different.

With the naturally implied metrics, [0,1] is homeomorphic to [0,2].

SR

il ’Y*é,
< - . 1 k
=¥ is homeomorphic to . <* , and

’

W is homeomorphic to @

— is homeomorphic to ‘A,\h,/\\,\‘ .

In fractal geometry we are especially interested in the geomerry of sets, and
in the way they look when they are represented by pictures. Thus we use the
restrictive condition of metric equivalence to start to define mathematically
what we mean when we say that two sets are alike. However, in dynamical
systems theory we are interested in motion itself, in the dynamics, in the way
points move, in the existence of periodic orbits, in the asymptotic behavior of
orbits, and so on. These structures are not damaged by homeomorphisms, as
we will see, and hence we say that two dynamical systems are alike if they are
related via a homeomorphism.

Definition 2. Two dynamical systems { X,; f;} and {X,; f,} are said to be
equivalent, or topologically conjugate, if there is a homeomorphism §: X, — X,
such that

fi(x) =071 e f,00(x) forall x, € X,
fr(x) =00 f 207 (xy) forall x, € X,.

In other words, the two dynamical systems are related by the commutative
diagram shown in Figure 4.5.1.

The following Theorem expresses formally what already should be clear
intuitively from our experience with shift dynamics on fractals.

Theorem 1. Let { X; w, w,,..., wy} be a totally disconnected hyperbolic IFS
and let { A; S be the associated shift dynamical system. Let ¥ be the associated
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Figure 4.5.1
Commutative diagram
which establishes the
equivalence between two
dynamical systems

{X\; fi} and (X35 /).
The function h: X, = X,
is a homeomorphism.
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code space of N symbols and let T: . — Y. be defined by

T(0,0,05 -+ ) = 0,050, - - forall 0 = 0,0,0, -+ €X.
Then the two dynamical systems {A; S} and {¥; T} are equivalent. The
homeomorphism which provides this equivalence is ¢: ¥ — A, as defined in
Theorem 4.2.1. Moreover {a1,a,,...,a,)} is a repulsive cycle of period p for S

if, and only if, {¢"Y(ay), ¢~ '(ay),..., ¢~ (a,)} is a repulsive cycle of period p
for T.

Exercises & Examples

5.1. Let {X; f;} and {X,; f,} be equivalent dynamical systems. Let a
homeomorphism which provides this equivalence be denoted by
0: X; - X,. Show that {x;, x,,...,x,} is a cycle of period p for
{Xy; f1} if and only if {8(x,),8(x;),...,0(x,)} is a cycle of period p
for { X,; f,}. Suppose that {x,, x,,..., x,} is an attractive cycle for f; .
Show that this does not imply that {8(x,),...,8(x,)} is an attractive
cycle for f,.

52. Let {X;; f,} and {X,; f,} be equivalent dynamical systems. Let a
homeomorphism which provides this equivalence be denoted by
0: X, - X,. Let {f2"(x)}7-, be an eventually periodic orbit of f;.
Show that { f2"(8(x))}-, is an eventually periodic orbit of f,.

53. Let {X; f,} and {X,; f,} be equivalent dynamical systems. Let a
homeomorphism which provides this equivalence be denoted by
0: X, - X,. Let this homeomorphism be such as to make the two
spaces ( X;, d,) and (X,, d,) metrically equivalent. Construct an exam-
ple where x, € X; is a repulsive fixed point of the dynamical system
{ X1, f1}, yet 8(x,) is not a repulsive fixed point of { X;, f,}.

54. Let {X;; f,} and { X,; f,} be equivalent metric spaces. Let a homeo-
morphism which provides their equivalence be denoted by 6: X; — X,.
Let x, € X, be a fixed point of f,. Suppose there is an open set ¢ which
contains x, and is such that x € ¢ implies Lim,, _, . f{"(x) = x,. Show
that there is an open neighborhood of 6(x;) in X, with a similar
property.

5.5. Our definition of attractive and repulsive fixed points and cycles, Defin-
ition 4.3.4, has the feature that it depends heavily on the metric. It is
motivated by the situation of analytic dynamics where small disks are
almost mapped into disks. Show how one can use example 5.4 to make a
definition of an attractive cycle in such a way that attractiveness of
cycles is preserved under topological conjugacy.

56. Let A C R. Then a function f: A4 — A is differentiable at a point
Yo €Al Lim {10 2£C0) )

XX X = Xy

x€A
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exists. If this limit exists it is denoted by f'(x;). Let {R; wy, wy,..., wy }
be a totally disconnected hyperbolic IFS acting on the metric space
(R, Euclidean). Suppose that, for each n=1,2,... N, w,(x) is dif-
ferentiable, with |w/(x)| > 0 for all x € R. Show that the associated
shift dynamical system {4; S} is such that S is differentiable at each
point x, € A, and moreover |S(x,)| > 1 for all x € 4.

Let {R; f} and {R; g} be equivalent dynamical systems. Let a homeo-
morphism which provides their equivalence be denoted by 6: R — R. If
6(x) is infinitely differentiable for all x € R, then the dynamical sys-
tems are said to be diffeomorphic. Suppose that §(x) # 0 for all x € R.
Prove that a, is an attractive fixed point of f if and only if 8(a,) is an
attractive fixed point of g.

Let {R; f} be a dynamical system such that f is differentiable for all
x € R. Consider the web diagrams associated with this system. Show
that the fixed points of f are exactly the intersections of the line y = x
with the graph y = f(x). Let a be a fixed point of f. Show that a is an
attractive fixed point of f if and only if |f'(a)| < 1. Generalize this
result to cycles. Note that if {ay, a,,..., a,} is a cycle of period p then
(d/dx)(f°P(X)|c=q, = f(a1)f'(ay) ... f'(a,). Assure yourself that the
situation is correctly summarized in the web diagram shown in Figure
4.5.2.

Figure 4.5.2

Attractive and Repulsive
fixed points in a web di-
agram for a differentiable
dynamical system.
Analyse the ? points.

ATTRACTIVE

FIXED POINT
IFX)I <1
i ?
REPULSIVE ’
FIXED POINT
IF'(X)| >1

Y=£(X)

A
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5.9. Consider the dynamical system {[0,1}; f(x)} where
1-2x when x € [0,4],

!

-1  whenx € [},1].

Consider also the just-touching IFS {[0,1],4x + 3, — 4x + 4}. Show
that it is possible to define a “shift transformation,” S, on the attractor,

Figure 4.5.3

Continuous transforma-
tion of a Cantor set into
a Sierpinski triangle. The
inverse transformation
would involve some rip-

ping.
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A, of this IFS in such a way that {[0,1]; S} and {[0,1}; f(x)} are
equivalent dynamical systems. To do this you should define §: 4 —» A4
in the obvious manner for points with unique addresses; and you should
make a suitable definition for the action of S on points with multiple
addresses.

Let {R? wy, w,, w;) denote a one-parameter family of IFS, where

VP L B P
l(y) 0 (1:1,) (y)
N (CE IR
- 0| F )
WB(;)= ( -i—p) (1—22) (;)+ 3—52 for p € [0,1].

Let the attractor of this IFS be denoted by A( p). Show that A4(0) is a
Cantor set and A(1) is a Sierpinski triangle. Consider the associated
family of code space maps ¢(p): L — A(p). Show that ¢(p)(o) is
continuous in p for fixed o € L; that is ¢( }o): [0,1] > R? is a
continuous path. Draw some of these paths, including ones which meet
at p = 1. Interpret these observations in terms of the Cantor set becom-
ing “joined to itself” at various points to make a Sierpinski triangle.

Since the IFS is totally disconnected when p =0, ¢(p =0): £ —
A(0) is invertible. Hence we can define a continuous transformation 6:
A(0) = A(1) by 8(x) = ¢(p = 1) (¢~ '(p = 0)(x)). Show that if we de-
fine a set J(x) = {y € A(0): 8(y) = x} for each x € A(1), then J(x)
is the set of points in A4(0) whose associated paths meet at x € A(1)
when p = 1. Invent shift dynamics on paths.
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4.6

THE SHADOW OF DETERMINISTIC DYNAMICS

Our goal in this section is to extend the definition of the shift dynamical
system associated with a totally disconnected hyperbolic IFS to cover the
just-touching and overlapping cases. This will lead us to the idea of a random
shift dynamical system and to the discovery of a beautiful theorem. This
theorem will be called the Shadow Theorem.

Let {X; w, w,,..., wy} denote a hyperbolic IFS, and let 4 denote its
attractor. Assume that w,: 4 — 4 is invertible for each n = 1,2,..., N, but
that the IFS is not totally disconnected. We want to define a dynamical system
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{A; S} which is analogous to the shift dynamical system defined earlier.
Clearly we should define

S(x) =w, '(x)  when x € w,(A),but x & w,(4) for m # n,
- foreach n=1,2,..., N.

However, at least one of the intersections w,,(A4) N w,(A) is nonempty for
some m # n. One idea is simply to make an assignment of which inverse map
is to be applied in the overlapping region. For the case N = 2 we might define,
for example,

s B w{l(x) when x € w (4),
()= wy, }(x)  when x € 4\ w(4).

In the just-touching case the assignment of where S takes points which lie
in the overlapping regions does not play a very important role: only a
relatively small proportion of points will have somewhat arbitrarily specified
orbits. We look at some examples, just to get the flavor.

Exercises & Examples
6.1. Consider the shift dynamical systems associated with the IFS
{[0,1]; ix,ix + §}.

We have S(x) = 2x for x € [0, %) — and S(x) = 2x — 1 for x € (},1].
We can define the value of S(}) to be either 1 or 0. The two possible
graphs for S(x) are shown in Figure 4.6.1. The only points x € [0,1] = 4
whose orbits are affected by the definition are those rational numbers
whose binary expansions end ...0111 or ...1000, the dyadic rationals.

6.2. Show that, if we follow the ideas introduced above, there is only one
dynamical system { 4; S} which can be associated with the just-touching
IFS {[0,1}; — 1x + 4, ix). The key here is that w; }(x) = w, '(x) for
all x € w,(A4) N wy(A).

Figure 4.6.1 1
The two possible shift dy-
namical systems associ-

ated with the just-touch-

ing IFS {{0,1];3x,4x

+ %) are represented by

the two possible graphs of
S(x).

“Most” orbits are unaf-
fected by the difference 0
between the two systems.
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Consider some possible “shift” dynamical systems { A; S} which can be
associated with the IFS

{Cidz,3z+ 4,52+ 4}

The attractor, & , is overlapping at the three points a = wy( & )

ﬁwz(&), b=w2(&)ﬁw3(&), and c=w3(&)ﬁ
wi A ). We might define S(a) = wi'(a) or wy (a), S(b) = w; '(b)
or w; (b), and S(c) = w; !(c) or wi }(¢). Show that regardless of which
definition is made, the orbits of a, b, and ¢ are eventually periodic.

Consider a just-touching IFS of the form {R?% wy, w,, wy} whose attrac-
tor is an equijlateral Sierpinski triangle . Assume that each of the
maps is a similitude of scaling factor 0.5. Consider the possibility that
each map involves a rotation through 0°, 120°, or 240°. The attractor,

& , is overlapping at the three points a = wy( & AR & )
b=w2(&)ﬁw3(&), and c=w3(& )ﬁwl(&). Show

that it is possible to choose the maps so that w '(a) = w, '(a), w; '(b)
= w; (b), and w; '(c) = w }(¢).
Is code space on two symbols topologically equivalent to code space on
three symbols? Yes! Construct a homeomorphism which establishes this
equivalence.
Consider the hyperbolic IFS {¥; ¢,, ¢,,..., t 5} where ¥ is code space on
N symbols {1,2,..., N} and

to=no foralle €XL.

Show that the associated shift dynamical system is exactly {X; T}
defined in Theorem 4.5.1. Can two such shift dynamical systems be
equivalent for different values of N? To answer this question consider
how many fixed points the dynamical system {¥; T} possesses for
different values of N.

1 Figure 4.6.2

Two possible shift dy-
namical systems which
can be associated with the
overlapping IFS {[0,1];
$x,3x + 1} In what
ways are they alike?
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Figure 4.6.3 OVERLAPPING

A partially random and ~ NON-OVERLAPPING NON-OVERLAPPING
partially deterministic 1 4 o

shift dynamjcal system

associated with the IFS
{0,1]; ix,3x + ).

=4x-
v=ix}
Y=2X [—
o
'——
0 1
UNIQUE RANDOM UNIQUE
DYNAMICS  DYNAMICS DYNAMICS

6.7. Consider the overlapping hyperbolic IFS ([0,1]; 3x, 3x + }}. Compare
the two associated “shift” dynamical systems whose graphs are shown in
Figure 4.6.2. What features do they share in common?

6.8. Demonstrate that code space on two symbols is not metrically equiv-
alent to code space on three symbols.

In considering exercises such as 6.7 where two different dynamical systems
are associated with an IFS in the overlapping case, we are tempted to entertain
the idea that no particular definition of the shift dynamics in the overlapping
regions is to be preferred. This suggests that we define the dynamics in
overlapping regions in a somewhat random manner. Whenever a point on an
orbit lands in an overlapping region, we should allow the possibility that the
next point on the orbit is obtained by applying any one of the available
inverse transformations. This idea is illustrated in Figure 4.6.3, which should
be compared with Figure 4.6.2.

Definition 1. Let { X; w;, w,} be a hyperbolic IFS. Let 4 denote the attrac-
tor of the IFS. Assume that both w;: 4 — 4 and w,: 4 — A are invertible. A
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sequence of points {x,}%., in A is called an orbit of the random shift
dynamical system associated with the IFS if

wl_l(xlz) when X, € WI(A)7a‘nd x, & Wl(A) N WZ(A),
Xp41 = w2_l(x;l) When anWZ(A)aand xnewl(A)OWZ(A)5
one of { w 1(x,), ws '(x,)}, when x, € w(4) N wy(A),

for each n € {0,1,2,...}. We will use the notation x, ; = S(x,) although
there may be no well-defined transformation S: 4 — 4 which makes this true.
Also we will write { 4; S} to denote the collection of possible orbits defined
here, and we will call { 4; S’} the random shift dynamical system associated
with the IFS.

Notice that if w;(A4) N w,(A) = & then the IFS is totally disconnected
and the orbits defined here are simply those of the shift dynamical system
{A; S} defined earlier.

We now show that there is a completely deterministic dynamical system
acting on a higher dimensional space, whose projection into the original space
X, yields the “random dynamics” we have just described. Our random
dynamics are seen as the shadow of deterministic dynamics. To achieve this we
turn the IFS into a totally disconnected system by introducing an additional
variable. To keep the notation succinct we restrict the following discussion to
IFS’s of two maps.

Definition 2. The lifted IFS associated with a hyperbolic IFS { X; w;, w,} is
the hyperbolic IFS {X X ¥; w;, w,} where ¥ is the code space on two
symbols {1,2}, and
Wy(x,0) =(w(x),10) forall(x,0) € X X ¥;
Wy(x,0) = (w(x),20) forall(x,0) € X XX.
What is the nature of the attractor 4 € X x ¥ of the lifted IFS? Clearly
A = {(¢(0),0): 0 € ¥}, the graph of the code space map ¢; and

={xeX:(x,0)€d forsomeseXL} =¢(L).

In other words the projection of the attractor of the lifted IFS into the original
space X is simply the attractor 4 of the original IFS. The projection of A into
¥ is ¥. Recall that ¥ is equivalent to a classical Cantor set. This tells us that
the attractor of the lifted IFS is totally disconnected, since the proje.ction map
from A into ¥ is one-to-one on Y.

Lemma 1. Let { X; wy, w,} be a hyperbolic IFS with attractor A. Let the two
transformations w,: A —> A and w,: A — A be invertible. Then the associated
lifted IFS is hyperbolic and totally disconnected.

Definition 3. Let { X; wy, w,} be a hyperbolic IFS. Let the two transforma-
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tions w,: A —» A and w,: 4 — A be invertible. Let 4 denote the attractor of
the associated lifted IFS. Then the shift dynamical system { 4; S} associated
with the lifted IFS is called the lifted shift dynamical system associated with the
IFS. |

Notice that

S~(x,o)=(w(,:1(x),T(o)) forall (x,0) € 4,

where T(0,0,0,0,...) = 0,0,0,05. .. for all 0 = 6,0,050,... € L.

Theorem 1. (The Shadow Theorem.) Let { X; w;, w,} be a hyperbolic IFS of
invertible transformations w, and w, and atiractor A. Let {x,}5_, be any orbit
of the associated random shift dynamical system {A; S). Then there is an orbit
{X,Y%_, of the lifted dynamical system (A; S such that the first component of
X, isx, for all n.

We leave the proofs of Lemma 1 and Theorem 1 as exercises. It is fun
however, and instructive, to look in a couple of different geometrical ways at
what is going on here.

Examples

6.9. Consider the IFS {C; wy(z), wy(2), wy(2), wa(z)} where, in complex
notation,

wi(z) = (0.5)(cos45° — V~1sind5°)z + (0.4 — 0.2/-1),

wy(z) = (0.5)(cos45° + V~1 sind5°)z — (0.4 + 0.2/ 1),

wi(z) = (0.5)z + V=1(03),

wy(z) = (0.5)z — v~1(0.3).
A sketch of its attractor is included in Figure 4.6.4. It looks like a maple
leaf.
The leaf is made of four overlapping leaflets, which we think of as
separate entities, at different heights “above” the attractor. In turn, we
think of each leaflet as consisting of four smaller leaflets, again at
different heights. One quickly gets the idea: one ends up with a set of
heights distributed on a Cantor set in such a way that the shadow of the
whole collection of infinitesimal leaflets is the leaf attractor in the C
plane. The Cantor set is essentially 2. The lifted attractor is totally
disconnected; and it supports deterministic shifts dynamics, as il-

lustrated in Figure 4.6.5.
6.10. Consider the overlapping hyperbolic IFS {R; x, 2x + %}. We can lift
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A Figure 4.6.4
The lift of the overlapping
< leaf attractor is totally
disconnected. Determin-
Xy istic shift dynamics be-
Cantor set of come possible. See also
SEEN infinitesimal Figure 4.6.5.
FROM leaflets
;lT)EE grouped
THE Z in fours
SET ]
IS Each “leaflet”
TOTALLY is a microcosm
DISCONNECTED %, of the whole
4 leaflet stack
/ THE SHADOW OF THE CANTOR SET
1S A LEAF, THE ATTRACTOR OF AN IFS.
A Figure 4.6.5
A picture of the Shadow
Theorem. Deterministic
/ dynamics on a totally dis-

connected dust has a
DETERMINISTIC shadow which is dancing

SHIFT DYNAMICS random shift dynamics on
ON THE a leaf attractor.

LIFTED

LEAF

RANDOM .
SHIFT DYNAMICS
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this to the hyperbolic IFS {R?% w;(x), w,(x)} where

The attractor A of this lifted system is shown in Figure 4.6.6, which also
shows an orbit of the associated shift dynamical system. The shadow of
this orbit is an apparently random orbit of the original system. The
Shadow Theorem asserts that any orbit {x,}_, of a random shift
dynamical system associated with the IFS (R; x, 7x + %} is the projec-
tion, or shadow, of some orbit for the shift dynamical system associated
with the lifted IFS.

As a compelling illustration of the Shadow Theorem, consider the IFS
(R; 3x,3x + 3}. Let us look at the orbits {x,}:_, of the “shift”

n=0
dynamical system which is specified in the left-hand graph of Figure

6.11.

Figure 4.6.6

The Shadow Theorem as-
serts that the random shift
dynamical system orbit on
the overlapping attractor
A is the shadow of a de-

terministic orbit on A.

OVERLAPPING
REGION

!
!
1
I
!

A looks like
a Classical

Cantor Set
when seen
from the
side.
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4.6.2. In this case we always choose S(x) = w, '(x) in the overlapping
region. What orbits { X, }2., of the lifted system, described in example
6.10, are these orbits the shadow of? Look again at Figure 4.6.6! Define
the top of A as

op = { (%, y)eA:(x,z)€ed=z<y,  and x€[0,1]}.
Notice that S: A,op - A,op It is easy to see that there is a one-to-one
correspondence between orbits of the lifted system {Atop’ S} and orbits

of the original system specified through the left-hand graph of Figure
4.6.2. Indeed,

“{(%y, %)), isan orbit of the lifted system, and (xo, y,) € 4
8
“{x,}7_, isanorbit of the left-hand graph of Figure 4.6.2.”

top

6.12. Draw some pictures to illustrate the Shadow Theorem in the case of the
just-touching IFS {[0,1]; 3x, 3x + %).

6.13. Illustrate the Shadow Theorem using the overlapping IFS {[0,1}; — 3x +
%, 3x + §). Can you find an orbit of period two whose lift has minimal
period four? Do there exist periodic orbits whose lifts are not periodic?

6.14. Prove Lemma 4.6.1.

6.15. Prove Theorem 4.6.1.

47 THE MEANINGFULNESS OF INACCURATELY COMPUTED ORBITS IS ESTABLISHED
BY MEANS OF A SHADOWING THEOREM.

Let { X; w, w,,..., wy} be a hyperbolic IFS of contractivity of 0 < s < 1. Let
A denote the attractor of the IFS, and assume that w,: 4 — 4 is invertible for
each n =1 2,... N. If the IFS is totally disconnected let {4; S} denote the
associated shift dynamical system; otherwise let { 4; S} denote the associated
random shift dynamical system. Consider the following model for the inaccu-
rate calculation of an orbit of a point x, € A. This model will surely describe
the reader’s experiences in computing shift dynamics directly on pictures of
fractals. Moreover it is a reasonable model for the occurrence of numerical
errors when machine computation is used to compute an orbit.

Let an exact orbit of the point x, € 4 be denoted by {x,}¥., where
x, = 8°"(x,) for each n. Let an approximate orbit of the point x, € 4 be
denoted by { X, }i°., where X; = x,. Then we suppose that at each step there is
made an error of at most 8 for some 0 < 8§ < o0; that is,

d(%,,.,S(%,)) <6, forn=01,2,...
We proceed to analyse this model. It is clear that the inaccurate orbit
(X, )%, will usually start out by diverging from the exact orbit {x, }2°., at an
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exponential rate. It may well occur “accidentally” that d(x,, X,) is small for
various large values of n, due to the compactness of A. But typically, if
d(x,, X,) is small enough then d(x,,, ¥,, ), will again grow exponentially
with increasing j. To be precise, suppose d(X;, S(X,)) = 8 and that we make
no furthew errors. Suppose also that for some integer M, and some integers
0,0,,...,0, € {1,2,..., N} we have
%, and x, € w, (4), forn=0,1,2,... M.
Moreover, suppose that
X, 1= wa_nl(x,,) and %, , = wu:l()'c'"), forn=12,..., M.
Then we have
d(x,,1,%,,1) 25", forn=0,12,... M
For some integer J > M it is likely to be the case that

= -1 I P =
X;oq =W, (x;) and %, =w;'(%;), forsome o, # d;.

Then, without further assumptions, we cannot say anything more about the
correlation between the exact orbit and the approximate orbit. Of course, we
always have the error bound
d(x,, %,) < diam(A) = Max{d(x,y): x€ A, y € A},
forall n=1,2,3,....

y Sy

"

Do the above comments make the situation hopeless? Are all of the
calculations of shift dynamics which we have done in this chapter without
point because they are so hopelessly riddled with errors? No! The following
wonderful theorem tells us that, however many errors we make, there is an
exact orbit which lies at every step within a small distance of our errorful one.
This orbit shadows the errorful orbit. Here we use the word “shadows” in the
sense of a secret agent who shadows a spy. The agent is always just out of
sight, not too far away, usually not too close, but forever he follows the spy.

Theorem 1. [The Shadowing Theorem] Ler { X; w;, w,,..., wy} be a hyper-
bolic IFS of contractivity s, where 0 < s < 1. Let A denote the artractor of the
IFS and suppose that each of the transformations w,: A — A is invertible. Let
{A; S} denote the associated shift dynamical system in the case that the IFS is
totally disconnected, otherwise let { A; S} denote the associated random shift
dynamical system. Let {X, }_, C A be an approximate orbit of S, such that
d(%,.1,5(%,)) <8 forallm=0,1,2,3,...
for some fixed constant 8 with 0 < 8 < diam(A). Then there is an exact orbit
{x, = S°"(xq))o. for some x, € A, such that
s

d(xrt+1’xn+1) < (1—5‘) fora]l_n=0,1,2,....
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Proof. As usual we exploit code space! For n=1,23,..., let o, €
{1,2,..., N} be chosen so that w, ', w,. !, w, ..., is the actual sequence of
inverse maps used to compute S(%;), S(X,), S(X,),... . Let ¢: ¥ — 4 denote

the code space map associated with the IFS. Then define
Xo = $(0,0,05...).
Then we compare the exact orbit of the point x,,
{ Xy = SO"(XO) = ¢(Un+lon+2 . ")}:C=0

with the errorful orbit { X, }5_,.
Let M be a large positive integer. Then, since x,, and S(X,,_,) both
belong to 4, we have

d(S(xy-1), S(%py-1)) < diam(4) < co.
Since S(x,,_;) and S(X%,,_,) are both computed with the same inverse map
w, ! it follows that

’ d(xpy_1, Xy_ 1) < sdiam( 4).
Hence
d(S(XM—Z)’ S(;‘Mvz)) = d( XpM-1> S()?M—z))
<d(xpy_1sZy_y) +d(Fy-1. S(Fy-2))
<0 + sdiam( 4);
and repeating the argument used above we now find
d( Xy 2, Xpr_o) < 5(0 + sdiam( 4))
Repeating the same argument k times we arrive at
d(Xp_s s Zpg i) <50 + 570 + -+ +55710 + s* diam( 4).
Hence for any positive integer M and any integer n such that 0 < n < M we
have

d(x,,%,) <s0+s% + .- +s¥7719 + sM " diam( 4).
Now take the limit of both sides of this equation as M — oo to obtain
d(x,,%,) <sO(1+s+s*+.-.) = (1s_0s) , forallm=1,2,... .
This completes the proof.
Exercises & Examples .

7.1. Let us apply the Shadowing Theorem to an orbit on the Sierpinski
triangle, using the random shift dynamical system associated with the IFS

{Cidz,3z+ 3,32+ %)}
Since the system is just-touching, we must assign values to the shift
transformation applied to the just-touching points. We do this by defining
S(x, + ix,) = 2x, mod1 + i(2x, mod1).
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We consider the orbit of the point %, = (0.2147, 0.0353). We compute the
first eleven points on the exact orbit of this point, and compare it to the
results obtained when a deliberate error § = 0.0001 is introduced at each
step. We obtain:

ERRORFUL EXACT
%, = (0.2147,0.0353) §°0(%,) = (0.2147,0.0353)
X, = (0.4295,0.0705) S°Y(%,) = (0.4294,0.0706)
%, = (0.8591,0.1409) §°%(%,) = (0.8588 0.1412)
%, = (0.7183,0.2817) §°3(%,) = (0.7176,0.2824)
%, = (0.4365,0.5635) S°4(%,) = (0.4352,0.5648)
%5 = (0.8731,0.1269) 5°5(%,) = (0.8704,0.1296)
X¢ = (0.7463,0.2537) S°6(%,) = (0.7408,0.2592)
%, = (0.4927,0.5073) S°(%,) = (0.4816,0.5184)
Xy = (0.9855,0.0145) S°8(%,) = (0.9632,0.0368)
Xy = (0.9711,0.0289) S°%(%,) = (0.9264,0.0736)
%10 = (0.9423,0.0577) §°0(%,) = (0.8528,0.1472)

Notice how the orbit with errors diverges from the exact orbit of X;. Nonethe-
less, the Shadowing Theorem asserts that there is an exact orbit {x,} such
that

1
d(x,,%,) < 7 2 (0.0001) = 0.0001,
-3
where d(-, ) denotes the Manhattan metric. This really seems unlikely: but it
must be true! Here’s an example of such a shadowing orbit, also computed
exactly.

EXACT SHADOWING ORBIT x, = 5°"(x,) d(x,, %,) < 0.0001
x, = (0.21478740234375, 0.03521259765625) 0.00009
x, = (0.4295748046875, 0.0704251953125) 0.00008
x, = (0.8591496093750, 0.1408503906250) 0.00005
x, = (0.7182992187500, 0.2817007812500) 0.000001
x, = (0.4365984375000, 0.5634015625000) 0.0001
x5 = (0.8731968750000, 0.1268031250000) 0.0001
xs = (0.7463937500000, 0.2536062500000) 0.0001
x, = (0.4927875000000, 0.5072125000000) 0.00009
x5 = (0.9855750000000, 0.0144250000000) 0.00008
xy = (0.9711500000000, 0.0288500000000) 0.00005
X1 = (0.9423000000000, 0.0577000000000) 0.000000

Figure 4.7.1 illustrates the idea.



4.7 The Meaningfulness of Inaccurately Computed Orbits

TRUE ORBIT OF X —>—— Figure 4.7.1
. The Shadowing Theorem
COMPUTED ORBIT OF Xg—%—— tells us there is an exact
1 { orbit which is closer to

All errors are less than 0.03 {%,} than 0.03 for all n.

True orbit of )”(0 already

&h&h &h&h by BAD, B far from the computed orbit

o B B
b Bopy Bob Boby
(0]

7.2. Consider the shift dynamical system {¥; T} on the code space of two

symbols {1,2}. Show that the sequence of points { X, } given by

%o =212, and %, =12  foralln=1,2,3,....
is an errorful orbit for the system. Illustrate the divergence of 7°"%; from
%,. Find a shadowing orbit {x,}>_,; and verify the error estimate

n*

provided by the Shadowing Theorem.

7.3. Illustrate the Shadowing Theorem by constructing an erroneous orbit,

and an orbit which shadows it, for the shift dynamical system
{[0,1}; 5x, 1x + 3}.

7.4. Compute an orbit for a random shift dynamical system associated with

the overlapping IFS {[0,1]; 3x, 3x + 1}.

7.5. An orbit of the shift dynamical system associated with the IFS+

(360 40+ (16) ()

is computed to accuracy 0.0005. How close a shadowing orbit does there
exist? Use the Manhattan metric.

7.6. In Figure 4.7.2 an orbit of the random shift dynamical system associated

with the overlapping IFS {[0, 1], w,(x), w,(x)} is computed by drawing a
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Figure 4.7.2

An exact orbit shadows
the orbit “computed > by
“drawing,” in this web
diagram fer a random
shift dynamical system.

Y=W;1(X)

Figure 4.7.3

Only the Shadow knows.

Inside the “orbit tube”
there is an exact orbit
{x, Yoo of the random
shift dynamical system
associated with the IFS.

Y=w;l(x)

v=w;l(x)
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web diagram. The computer in this case consists of a pencil and a drafting
table. Estimate the errors in the drawing and then deduce how closely an
exact orbit shadows the plotted one. You will need to estimate the
contractivity of the IFS. Also draw a tube around the plotted orbit, within
which an exact orbit lies.

7.7. Figure 4.7.3 shows an orbit {x,} of the random shift dynamical system
associated with the IFS {[0, 1}; w;(x), w,(x)}. It was obtained by defining
S(x) = w, }(x) for x € w(A) N wy(A). A contractivity factor for the
IFS is readily estimated from the drawing to be 2. Hence if the web
diagram is accurate to within 1 mm at each iteration, that is

d(‘x~n+1 ’ S(X~")) <1 mm,
then there is an exact orbit {x, = §°"(x,)}5-, such that

3
d(x,, %) < % =1.5 mm.

Thus there is an actual orbit which remains within the shaded tube shown
in Figure 4.7.3.
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4.8 CHAOTIC DYNAMICS ON FRACTALS

The shift dynamical system {A4; S} associated with a totally disconnected
hyperbolic IFS is equivalent to the shift dynamical system {¥, T}, where ¥ is
the code space associated with the IFS. As we have seen, this equivalence
means that the two systems have a number of properties in common; for
example, the two systems have the same number of cycles of minimal period
seven. A particularly important property which they share is that they are both
“chaotic” dynamical systems, a concept which we explain in this section. First,
however, we want to emphasize that the two systems are deeply different from
the point of view of the interplay of their dynamics with the geometry of the
underlying spaces.

Consider the case of an IFS of three transformations. Let ¥ denote the
code space of the three symbols {1,2,3}, and look at the orbit of the point
o € ¥ given by

¢=12311121321222331323311111211312112212313113
21332112122132212222232312322333113123133213
22323331332333111111121113112111221123113111
32113312111212121312211222122312311232123313
1113121212............ FOREVER.

This orbit {7°" }%_, may be plotted on a Cantor set of three symbols, as

sketched in Figure 4.8.1. This can be compared with the orbit {S°"(¢(0))}7~,
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Figure 4.8.1
The start of a chaotic orbit
on a Ternary Cantor Set.

of the shift dynamical system { 4, S'} associated with an IFS of three maps, as
plotted in Figure 4.8.2. Figure 4.8.3 shows an equivalent orbit, but this time
for the just-touching IFS {[0,1]; 1x, $x + %, ix + %}, and it is displayed using
a web diagram.

In each case the “same” dynamics look entirely different. The qualities of
beauty and harmony present in the observed orbits are different. This is not
surprising: the equivalence of the dynamical systems is a topological equiv-
alence. It does not provide much information about the interplay of the
dynamics with the geometries of the spaces on which they act. This interplay is
an open area for research. For example, what are the special conserved
properties of two metrically equivalent dynamical systems? Can you quantify
the grace and delicacy of a dancing orbit on a fractal?

Figure 4.8.2

The start of an orbit of a
deterministic shift dy-
namical system. This
orbit is chaotic. It will
visit the part of the at-
tractor inside each of
these little circles in-
finitely many times.

I'lt visit you again and again!
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1 Figure 4.8.3

Equivalent orbit to the one

y=3X Y=3X-1 in Figures 4.8.1 and

v 4.8.2, this time plotted

A using a web diagram. The

starting point has address
2 12311121321222331. .. .
gy A This manifestation of an

5 orbit which goes arbi-

6 trarily close to any point,

takes place on a just-

o touching attractor.
1 Y=3X-2

1"

y

This said, we turn our attention back to an important collection of
properties which are shared by all shift dynamical systems. For simplicity we
formalize the discussion for the case of the shift dynamical system {4, S}
associated with a totally disconnected hyperbolic IFS.

Definition 1. Let (X, d) be a metric space. A subset B C X is said to be
dense in X if the closure of B equals X. A sequence { x, }5_, of points in X is
said to be dense in X if, for each point a € X, there is a subsequence
{x,, Yi-o which converges to a. In particular, an orbit {x, };"_, of a dynamical

system { X, f } is said to be dense in X if the sequence { x, }_, is dense in X.

By now you will have had some experience with using the Random
Iteration Algorithm, Program 3.8.2, for computing images of the attractor 4 of
IFS in R2 If you run the algorithm starting from a point x, € A4, then all of
the computed points lie on A. Apparently, the sequences of points which we
plot are examples of sequences which are dense in the metric space (4, d).

The property of being dense is invariant under homeomorphism: if B is
dense in a metric space (X, d) and if §: X — Y is a homeomorphism, then
6(B) is dense in Y. If {X; f} and {Y; g} are equivalent dynamical systems
under 8; and if {x,} is an orbit of f which is dense in X, then {f(x,)} is an
orbit of g which is dense in Y.
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Definition 2. A dynamical system { X, f} is transitive if, whenever % and ¥~
are open subsets of the metric space (X, d), there exists a finite integer n such
that
UNf(V) + B

The dynamical system {[0,1}; f(x) = Min{2x,2 — 2x}} is topologically
transitive. To verify this just let  and ¥~ be any pair of open intervals in the
metric space ([0, 1}, Euclidean). Clearly each application of the transformation
increases the length of the interval ¥~ in such a way that it eventually over-
laps %.

Definition 3. The dynamical system {X; f} is sensitive to initial conditions
if there exists & > 0 such that, for any x € X and any ball B(x,¢€) with
radius € > 0 there is y € B(x, €) and an integer n > 0 such that d(f°"(x),

£y > 8.

Roughly, orbits which begin close together get pushed apart by the action
of the dynamical system. For example, the dynamical system {[0, 1]; 2x mod 1}
is sensitive to initial conditions.

Exercises & Examples

8.1. Show that the rational numbers are dense in the metric space
(R, Euclidean).

8.2. Let r(n) be a counting function which counts all of the rational numbers
which lie in the interval [0,1]. Prove that the sequence of real numbers
{r(ny€[0,1}: n=1,2,3,...}, is dense in the metric space ([0,1],
Euclidean).

8.3. Consider the dynamical system {[0,1]; f(x) =2x mod1}. Find a point
Xy € [0,1] whose orbit is dense in [0, 1}.

84. Show that the dynamical system ([0, c0): f(x) = 2x} is sensitive to
initial conditions; but that the dynamical system {[0, 00): f(x) = (0.5)x)
is not.

8.5. Show that the shift dynamical system {¥; T }, where ¥ is the code space
of two symbols, is transitive and sensitive to initial conditions.

86. Let {X,f} and {Y, g} be equivalent dynamical systems. Show that
{ X, f} is transitive if and only if {¥, g} is transitive. In other words, the
property of being transitive is preserved between equivalent dynamical
systems,

Definition 4. A dynamical system { X, f } is chaotic if

(1) 1t is transitive;
(1) it is sensitive to initial conditions;
(iii) the set of periodic orbits of f is dense in- X.
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Theorem 1. The shift dynamical system associated with a totally disconnected
hyperbolic IFS of two or more transformations is chaotic.

Sketch of Proof. First one establishes that the shift dynamical system {¥; T'}
is chaotic where X is the code space of N symbols, with N > 2. One then uses
the code space map ¢: L — A4 to carry the results over to the equivalent
dynamical system { 4; S}.

Theorem 1 applies to the lifted IFS associated with a hyperbolic IFS.
Hence the lifted shift dynamical system associated with an IFS of two or more
transformations is chaotic. In turn, this implies certain characteristics to the
behaviour of the projection of a lifted shift dynamical system, namely a
random shift dynamical system.

Let us consider now why the Random Iteration Algorithm works, from an
intuitive point of view. Consider the hyperbolic IFS {R? w,, w,}. Let a € 4;
suppose that the address of a is ¢ € L, the associated code space. That is

a=¢(0).

With the aid of a random number generator a sequence of one million 1’s and
2’s, is selected. For example, suppose that the actual sequence produced is the
following one, which has been written from right to left.
21...12121121121211121112111111211211121111211212122211
By this we mean that the first number chosen is a 1, then a 1, then three 2’s,
and so on. Then the following sequence of points on the attractor is com-
puted:

a=¢(o0)

wi(a) = ¢(lo)

wew(a) =¢(1l1lo)

wyew ew(a) =¢(2110)

wyewew ew(a)=¢(22110)

wyow, eu,ow ow(a)=¢(222110)

wiew,omew,owew(a)=¢(1222110)

wyew ow,ew,owow ow(a) =¢(21222110)

wow,ow ow,omou ewew(a) =¢(121222110)

Wwyow ow,ew ew,onw,owow ow(a) =¢(2121222110)

wlowzowlowzowlowzowzowzowlowl(a) =¢(12121222110)

wiew o, ow o, owewowomowew(a)=¢(112121222110q)

wyewe - W] 0 Wy 0 Wy 0 Wy © Wy 0wy oWy oWy oW, 0w o wi(a)
=¢(21...112121222110)

We imagine that instead of plotting the points as they are computed, we
keep a list of the one million computed points. This done, we plot the points
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in the reverse order from the order in which they were computed. That
is, we begin by plotting the point ¢(21...112121222110) and we
finish by plotting the point ¢(o). What will we see? We will see a million
points on the orbit of the shift dynamical system {A4; S}, namely
{S°"($621...1121212221140))}1,%900

Now from our experience with shift dynamics and from our theoretical
knowledge and intuitions, what do we expect of such an orbit? We expect it to
be chaotic and to visit a widely distributed collection of points on the
attractor. We are looking at part of a “randomly chosen” orbit of the shift
dynamical system; and we expect it to be dense in the attractor.

For example, suppose that you are doing shift dynamics on a picture of a
totally disconnected fractal, or a fern. You should be convinced that by
making sly adjustments in the orbit at each step, as in the Shadowing
Theorem, you can most easily coerce an orbit into visiting, to within a distance
€ > 0, each point in the image. But then the Shadowing Theorem ensures that
there is an actual orbit close to our artificial one, and it too goes close to every
point on the fractal, say to within a distance 2¢ of each point on the image.
This suggests that “most” orbits of the shift dynamical system are dense in the
attractor.

Exercises & Examples

8.7. Make experiments on a picture of the attractor of a totally disconnected
hyperbolic IFS to verify the assertion in the last paragraph, that “by
making sly adjustments in an orbit... you can most easily coerce the
orbit into visiting, to within a distance ¢ > 0, each point in the image.”
Can you make some experimental estimates of how many orbits go to
within a distance € > 0, for several values of €, of every point in the
picture? One way to do this might be to work with a discretized image
and to try to count the number of available orbits.

88. Run the Random Iteration Algorithm, Program 3.8.2, to produce an
image of a fractal for example a fern without a stem as used in Figure
4.8.2. As the points are calculated and plotted, keep a list of them. Then
plot the points over again in reverse order, this time making them flash on
and off on the picture of the attractor on the screen, so that you can see
where they land. This way you will see the interplay of the geometry with
the shift dynamics on the attractor. See if the orbit is beautiful. If you
think that it is try to make your impression objective.

We want to begin to formulate the idea that “most” orbits of the shift
dynamical system associated with a totally disconnected IFS are dense in
the attractor. The following lemma counts the number of cycles of minimal
period p.
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Lemma 1. Let { A; S} be the shift dynamical system associated with a totally
disconnected hyperbolic IFS { X; w;, w,,..., wy}. Let A°(p) denote the num-
ber of distinct cycles of minimal period p, for p € {1,2,3,...}. Then

r—1
HM(p)=|N - ¥ k#(k)|/p forp=1,23,...

k=1
k divides p

Proof. 1t suffices to restrict attention to code space, and to give the main
idea, consider only the case N = 2. For p = 1, the cycles of period 1 are the
fixed points of T. The equation

To =0 gEY

implies o0 = 1111 or o = 2222. Thus A"(1) = 2. For p = 2, any point which
lies on a cycle of period 2 must be a fixed point of 7°2, namely

T°% =g,
whence o = 11, 12, ﬁ, or 22. The only cycles here which are not of minimal

period two must have minimal period one. Furthermore, there are two distinct
points on a cycle of minimal period two, so

N(2)=(22-H#(1))/2=2/2=1

One quickly gets the idea. Mathematical induction on p completes the proof
for N = 2.

For N = 2, we find, for example, #°(2) = 1, #°(3) = 2, #7(4) = 3, #(5)
=6, A(6)=9, #(T)=18, A4 (8) =30, #(9) =56, &/ (10) =99, A (11)
= 186, A"(12) = 335, A(13) = 630, A"(14) = 1161, A"(15) = 2182, A"(16)
= 4080, A#"(17) = 7710, A"(18) = 14532, A" (19) = 27594, A4"(20) = 52377.
In particular, 99.8 percent of all points lying on cycles of period 20 lie on
cycles of minimal period 20.

Here is the idea we are getting at. We know that the set of periodic cycles
are dense in the attractor of a hyperbolic IFS. It follows that we may
approximate the attractor by the set of all cycles of some finite period, say
period twelve billion. Thus we replace the attractor 4 by such an approxima-
tion A, which consists of 21200000000 b5ints Suppose we pick one of these
points at random. Then this point is extremely likely to lie on g cycle of
minimal period twelve billion. Hence the orbit of a point chosen “at random”
on the approximate attractor A4 is extremely likely to consist of twelve billion
distinct points on A.

In fact one can show that a statistically random sequence of symbols
contains every possible finite subsequence. So we expect that the set of twelve
billion distinct points on A is likely to contain at least one representative from
each part of the attractor!
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Fractal Dimension

5.1

FRACTAL DIMENSION

How big is a fractal? When are two fractals similar to one another in some
sense? What experimental measurements might we make to tell if two different
fractals may be metrically equivalent? What is it, which is the same about the
two fractals in Figure 5.1.1?

There are various numbers associated with fractals which can be used to
compare them. They are generally referred to as fractal dimensions. They are
attempts to quantify a subjective feeling which we have about how densely the
fractal occupies the metric space in which it lies. Fractal dimensions provide
an objective means for comparing fractals.

Fractal dimensions are important because they can be defined in connec-
tion with real-world data, and they can be measured approximately by means
of experiments. For example, one can measure “the fractal dimension” of the
coastline of Great Britain; its value is about 1.2. Fractal dimensions can be
attached to clouds, trees, coastlines, feathers, networks of neurons in the body,
dust in the air at an instant in time, the clothes you are wearing, the
distribution of frequencies of light reflected by a flower, the colors emitted by




5.1 Fractal Dimension

Figure 5.1.1

Do the two implied
fractals have the same
dimension?

Y44
.
,

the sun, and the wrinkled surface of the sea during a storm. These numbers
allow us to compare sets in the real world with the laboratory fractals, such as
attractors of IFS.

We restrict attention to compact subsets of metric spaces. This fits well
with the idea of modelling the real physical world by subsets of metric spaces.
Suppose that an experimentalist is studying a physical entity, and he wishes to
model this entity by means of a subset of R>. Then he can use a compact set
for his model. For example, he can assume that the distances which he
measures are Euclidean distances, and he can assume that the universe is
bounded. He can assume that any Cauchy sequence of points in his model set
converges to a point in his model set, because he cannot experimentally
invalidate this assumption. Although mathematically we can distinguish be-
tween a set and its closure, we cannot make the same distinction between their
physical counterparts. The assumption of compactness will allow the model to
be handled theoretically with relative ease.

Let (X, d) denote a complete metric space. Let 4 € 5 (X) be a nonempty
compact subset of X. Let € > 0. Let B(x, €) denote the closed ball of radius €
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and center at a point x € X. We wish to define an integer, A4”( 4, €) to be the
least number of closed balls of radius ¢ needed to cover the set 4. That is

M
A"( A, €) = smallest positive integer M such that 4 ¢ |J B(x,,¢),
n=1
for some set of distinct points {x,: n =1,2,... M} C X. How do we know

that there is such a number A47( 4, €)? Easy! The logic is this: surround every
point x € A by an open ball of radius € > 0 to provide a cover of 4 by open
sets. Because A4 is compact, this cover possesses a finite subcover, consisting of
an integer number, say M, of open balls. By taking the closure of each ball, we
obtain a cover consisting of M closed balls. Let C denote the set of covers of
A by at most M closed balls of radius ¢. Then C contains at least one element.
Let /: C— {1,2,3,..., M} be defined by f(c) = number of balls in the
cover ¢ € C. Then { f(¢): ¢ € C} is a finite set of positive integers. It follows
that it contains a least integer, A"(4, ¢).

The intuitive idea behind fractal dimension is that a set 4 has fractal
dimension D if:

N(A, €)= CeP for some positive constant C.

Here we use the notation “ = ” as follows. Let f(¢) and g(e) be real valued
functions of the positive real variable e. Then f(¢) = g(¢) means that
Lim _ o{Ln(f(€))/Ln(g(e)} = 1.

If we “solve” for D we find that
D= Ln A'(A,¢) — LnC

- Ln(1/¢)

We use the notation Ln(x) to denote the logarithm to the base e of the
positive real number x. Now notice that the term Ln C/Ln(1 /€) approaches
zero as € — 0. This leads us to the following definition.

Definition 1. Let A € 5 (X) where (X, d) is a metric space. For each ¢ > 0
let A7( A4, €) denote the smallest number of closed balls of radius € > 0 needed
to cover A4. If
. (Ln(A#'(4,€))
b= le{ La(1/e)
exists, then D is called the fractal dimension of A. We will also use the
notation D = D(A4), and will say “A4 has fractal dimension D.”

-0

Exercises & Examples
1.1. This example takes place in the metric space (R? Euclidean). Let a € X

and let 4 = {a}. A consists of a single point in the space. For each
€ >0, A (A, ¢) = 1.1t follows that D(A4) = 0.
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1.2. This example takes place in the metric space (R? Manhattan). Let A4

1.3.

denote the line segment [0, 1]. Let € > 0. Then it is quite easy to see that
AN(A,e) = —[—1/¢], where [x] denotes the integer part of the real
number x. In Figure 5.1.2 we have plotted the graph of Ln(.A"(4, ¢)) as
a function of Ln(1 /¢). Despite a rough start, it appears clear that
(La(#(4,€)) _
eL_l.’B‘{ Ln(1/¢) } =1

In fact, for0 <e <1

Ln(1/¢) - Ln(—[-1/e]) _ Ln(A'(4,¢))

Ln(1/¢) =  Ln(1/¢€) Ln(1/¢€)
Ln(l/c +1)  Ln(1 +€) + Ln(1/e)
Ln(1/€) Ln(1/¢) '

Both sides here converge to one as ¢ — 0. Hence the quantity in the
middle also converges to one. We conclude that the fractal dimension of
a closed line segment is one. We would have obtained the same result if
we had used the Euclidean metric.

Let (X, d) be a metric space. Let a,b,c € X and let 4 = {a, b, c}.
Prove that D(A) = 0.

The following two theorems simplify the process of calculating the fractal
dimension. They allow one to replace the continuous variable € by a discrete
variable.

—7  Figure 5.1.2
e Plot of Ln([1/x)]) as a
function of Ln(1/x). This
illustrates that in the
computation of the fractal
dimension one usually
; evaluates the limiting
= “slope” of a discontinu-
- ous function. In the pre-
_ - sent example this slope is
_ | one.

Ln({1/X])
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Theorem 1. Let A € 3 (X) where (X, d) is a metric space. Let €, = Cr" for

real numbers 0 < r <1 and C > 0, and integersn = 1,2,3,... . If
. [Ln(A(4,¢,))
. b= ,,Li”f.i{ In(l/e,) |’

then A has fractal dimension D.

Proof. Let the real numbers » and C, and the sequence of numbers E =
{e,, n=1,23 ..} be as defined in the statement of the theorem. Define
f(e) = Max{e, € E: ¢, < €}. Assume that € < r. Then

f(e) <e<f(e)/r and N(A,[f(€)) 2 AN(A €)= N(A,f(e)/r).
Since Ln(x) is an increasing positive function of x for x > 1, it follows that
La( A (A, f(€)/r)) - Ln(A"(4,¢))
La(1/f(9) | <\~ La(l/e)
La(A#( 4, f(¢)))

< | e (:11)
Assume that A7(A4;€) = oo as € — 0; if not then the theorem is true. The
right-hand-side of (5.1.1) obeys

[ Lo(#(4,1(e)))
L‘m{ Lo(r/f(<)) }

w{ Ln(J’”(/tf,,))}

Lm | —a(r/e,)

n

Lin | Llf(“(){%‘;(;)} >}

Ln(A#'(4,¢,))
,,_.w{ Ln(1l/€,) }

€—0

n— oo

The left-hand-side of (5.1.1) obeys

LA S/ [ DA (A1)

le{ La(i/f(e)) [~ a2m|  Ln(l/e,)
Lo(A( A€, 1))
,,LJTQ{ Lo(1/r) + Lo(1/c,_,))

. Ln( N(A,¢€ "))
,,Ll’?o{ Ln(1/c,) }
So as € — 0 both the left-hand-side and the right-hand-side of equation (5.1.1)
approach the same value, claimed in the theorem. By the Sandwich Theorem

of Calculus, the limit as ¢ — 0 of the quantity in the middle of (5.1.1) also
exists, and it equals the same value. This completes the proof of the theorem.

€—-0

Theorem 2. (The Box Counting Theorem) Let A € #(R™), where the
Euclidean metric is used. Cover R™ by closed just-touching square boxes of side
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length (1/2"), as exemplified in Figure 51.3 forn = 2 and m = 2. Let A (A)
denote the number of boxes of side length (1/2") which intersect the attractor. If

o )

Hn—oC

then A has fractal dimension D.

Proof. We observe that for m = 1,23, ...,
2 <M (A1) < N, foralln=1,2.3,. .

where k(n) is the smallest integer k satisfying k > n — 1 + 1/2log, m. The
first inequality holds because a ball of radius 1,/2” can intersect at most 2™
“on-grid” boxes of side 1,/2"~1. The second follows from the fact that a box of
side s can fit inside a ball of radius r provided r?> (s5/2)% + (s5/2)°
+ -+ +(s/2)* = m(s/2)* by the theorem of Pythagoras. Now

{Ln(JV;‘(,,))} - Lim { Ln(2t() Ln(JV,\(,,))} -

Lim | 1007 Ln(2") Ln(2t")

n— 00

since k(n)/n — 1. Since also

L
= Lim [ 2 L
n— 0o Ln(2"’1)

Theorem 5.1.1 with » = 1/2 completes the proof.

There is nothing magical about using boxes of side (1/2)” in Theorem 2.
One can equally well use boxes of side Cr”, where C > 0 and 0 < r < 1 are
fixed real numbers.

Lim {

n—0C

Ln2="4,_,
Ln(2")

Exercises & Examples
1.4. Consider the @ C R2 It is easy to see that 4 (W) =4, A,(W) = 16,
AW = 64, A, (W) = 256, and in general that 4, (W) =4" for n =
1,2,3,... (see Figure 5.1.4).
Theorem 5.1.2 implies that

D(m) = Lim{L—I}(Jn—sz"z,(,—)m} = Lim{II:—EE%%} -2

n— 0 n— 00

1.5. Consider the Sierpinski triangle & , in Figure 5.1.5, as a subset of
(R?, Euclidean).

We see that Ml(&)=3, Mz(&)=9, A@(&):n

Al £ ) =81, and in general B y=3torn=123..

177

Figure 5.1.3

Closed boxes of side
(1/2"y cover R®. Here
n = 2. See Theorem 2.
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Figure 5.1.4 1
It requires (1/2")?

boxes of side (1/2")

to cover B C R2. We
deduce, with a feeling of
relief, that the fractal
dimension of W is 2.

Which collage is this

image related 107

Figure 5.1.5

It requires 3" closed boxes
of side (1/2)" to cover
the Sierpinski triangle

& C R2. We deduce

that its fractal dimension
is Ln(3)/Ln(2).
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Theorem 5.1.2 implies that

wl £)

Ln(3” Ln(3
D( &@%) - ,,Liri{ Ln(2") } - ,,Li’i{ Lngzﬂ§} = Lngzi '

1.6. Use the Box Counting Theorem, but with boxes of side length (1 /3)”, to
calculate the fractal dimension of the classical Cantor set ¥ described in
Section 3.1.1 (example 5).

1.7. Use the Box Counting Theorem to estimate the fractal dimension of the
fractal subset of R? shown in Figure 5.1.6. You will need to take as your
first box the obvious one suggested by the figure. You should then find
that there appears to be a pattern to the sequence of numbers
N, Ny Ny enn

1.8. The same problem as 1.7, this time applied to Figure 5.1.7. By making
the right choice of Cartesian coordinate system, you will make this
problem easy.

What happens to the fractal dimension of a set if we deform it “with
bounded distortion?” The following theorem tells us that metrically equivalent
sets have the same fractal dimension. For example, the two fractals in Figure
5.1.1 have the same fractal dimension!

Figure 5.1.6

Use the Box Counting
Theorem to estimate the
fractal dimension of the
subset of (R%, Euclidean)
shown here. What other
well-known fractal has the
same fractal dimension?

179
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Figure 5.1.7

If you choose the “ first” ‘& ib %‘5"
box just right, the fractal W

dimension of this fractal w %

is easily®estimated. Count

the number N, of boxes

of side 1/2" which inter- %V % qx

sect the set, forn = %

1,2,3,... and apply the @

Box Counting Theorem. ‘@' ﬁgﬁ.

Theorem 3. Let (X, d)) and (X ,, d,) be metrically equivalent metric spaces.
Let 0: X, —» X, be a transformation which provides the equivalence of the
spaces. Let Ay, € 3(X,) have fractal dimension D. Then A, = 0(A,) has
fractal dimension D. That is

D(4y) = D(6(4)).

Proof. This proof makes use of the concepts of the Limsup and Liminf of a
function.

Since the two spaces (X, d;) and (X,, d,) are equivalent under 6, there
exist positive constants e; and e, such that

(5.1.2) eidy(0(x),0(p)) <di(x,y) <eydy(8(x),0(y))

forall x, y € X, .
Without loss of generality we assume that e; <1 < e,. Equation (5.1.2)
implies

dl(x; y)
e

d,(8(x),0(y)) < forall x, y € X, .

This implies
(5.1.3) 0(B(x,€)) © B(8(x),¢/e) forall x € X, .

Now, from the definition of A"(A4,, ¢), we know that there is a set of points
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{x15 X2,-.s x4} © X, where A= A"(A},€), such that the set of closed
balls { B(x,,€): n=1,2,..., /' (A;, €)} provides a cover of A,. It follows
that {8(B(x,,€)): n =1,2,..., &/ (A4,,¢€)} provides a cover of 4,. Equation
(5.1.3) now implies that { B(8(x ), ¢/e;)): n =1,2,..., /(A;, €)} provides a
cover of A,. Hence

N (Ay,€/e)) < N (A, ¢€).
Hence, when ¢ < 1,

Lo(A'(Ay,¢/e))) _ Lo(H (4, €))
Ln(1 /¢) - Ln(l/¢)

It follows that

. Lo(A"(A4,,¢€)) - Lim Lo( A" (A4, ,¢/e)))
(5.14) Llil.sglp{————_Ln(l/s) } L sup{ Ln(1 <) }

€e—0
. Ln(./V(Al,E)) B
< EL’S{W“} = D(A).

We now seek an inequality in the opposite direction. Equation (5.1.2)
implies that
di(07(x),01(y)) < e,dy(x,y) forallx,yeX,.
This tells us that
0~'(B(x,€)) € B(67'(x),ex) forall x € X,,
and this in turn implies
N (A, ex) < N (A, ¢€).
Hence, when € < 1,
Lo(A'(41,e))  Ln(A(4,,¢))
In(l/e) = Lo(l/e) -

It follows that

(5.1.5) D(A) = Li,g{Ln_(LJI’li((l/}_xs)f_)l}
- Lm{ )
< umpe{ S5
By combining (5.1.4) and (5.1.5) we obtain .
e ) o e )

From this it follows that

. (Ln(A(4;,6))\ _
D(4;) = }gg{w} = D(A4y).

This completes the proof.
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Exercises & Examples
1.9. Let % denote the Classical Cantor Set, living in [0, 1] and obtained by
omitting “middle thirds.” Let € denote the Cantor set which is obtained
by starting from the closed interval [0, 3] and omitting “middle thirds.”
Us® Theorem 5.1.3 to show that they have the same fractal dimension.
Verify the conclusion by means of a box counting argument.

1.10. Let 4 be a compact nonempty subset of R2. Suppose that 4 has fractal
dimension D, when evaluated using the Euclidean metric and fractal
dimension D, when evaluated using the Manhattan metric. Show that
D, = D,.

1.11. This example takes place in the metric space (R, Manhattan). Let 4,
and A, denote the attractors of the following two hyperbolic IFS:

S R EHE R AN W]}
o SI0T- M SGHa SICT- )

By finding a suitable change of coordinates, show 4, and A, have the
same fractal dimensions.

o

=R
<

(Sl

and

(]

(S

S
=

[e=)

[S15

5.2 THE THEORETICAL DETERMINATION OF THE FRACTAL DIMENSION

The following definition extends Definition 5.2.1. It provides a value for the
fractal dimension for a wider collection of sets.

Definition 1. Let (X, d) be a complete metric space. Let 4 € #(X). Let
A"(¢€) denote the minimum number of balls of radius € needed to cover A. If
- Li Lo #(&)
b %i’é‘{sup{ In(/d) © < < (09

exists, then D is called the fractal dimension of A. We will also use the
notation D = D( A), and will say “A has fractal dimension D.”

In stating this definition we have “spelled out” the Limsup. For any
function f(¢), defined for 0 < € < 1 for example, we have

Lims;xpf(z) = }irg{Sup{f(e): €€ (0,¢)}) }.

It can be proved that Definition 5.2.1 is consistent with Definition 5.1.1: if
a set has fractal dimension D according to Definition 5.1.1 then it has the
same dimension according to Definition 5.2.1. Also, all of the theorems in this
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book apply with either definition. The broader definition provides a fractal
dimension in some cases where the previous definition makes no assertion.

Theorem 1. Let m be a positive integer; and consider the metric space (R™,
Euclidean). The fractal dimension D(A) exists for all A € #(R™). Let B €
H'(R™) be such that A C B; and let D(B) denote the fractal dimension of B.
Then D(A) < D(B). In particular,

0< D(A) <m.

Proof. We prove the theorem for the case m = 2. Without loss of generality
we can suppose that 4 C W It follows that A7( 4, €) < A (W, ¢) for all € > 0.
Hence for all € such that 0 < e <1 we have
Ln(A"(A4,¢€)) Ln(A'(M,¢€))
= TLo(1/) = Ln(l/e)

It follows that

Limsup
€0

< Limsup
€—0

{ Ln(A'(A4,€)) Lo(A4"(M, €))
The Limsup on the right-hand side exists and has value 2. It follows that the
Limsup on the left-hand side exists and is bounded above by 2. Hence the
fractal dimension D(A) is defined and bounded above by 2. Also D(A) is
non-negative.

If A, B € #(R*)with 4 C B, then the fractal dimensions of 4 and B are
defined. The above argument wherein M is replaced by B shows that D(A4) <
D(B). This completes the proof.

The following theorem helps us to calculate the fractal dimension of the
union of two sets.

Theorem 2. Let m be a positive integer; and consider the metric space (R™,
Euclidean). Let A and B belong to 5#(R™). Let A be such that its fractal

dimension is given by
D(4) = Lim{—————Ln(JV(A’E))}.

€e—0 LIl( 1/E)
Let D(B) and D(A U B) denote the fractal dimensions of B and A U B
respectively. Suppose that D(B) < D(A). Then .

D(A U B) = D(4).

Proof. Assume for simplicity D(B) < D(A4). From Theorem 1 it follows that
D(A U By = D(A). We want to show that D(A4 U B) < D(A4). We begin by
observing that, for all € > 0,

N (AU B,e) <N (A,e) + A (B,¢€).

183
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It follows that

D(A U B) Limsup{ Ln(A7(4 Y B’E))}

0 Ln(1/¢)
. . Ln(./V(A,E)+./V(B,E))}
Limsu,
i La(1/c)
Ln(A(4,¢))
Ln(1/¢) }
Ln(l + A (B,e) /A (A, ¢€))
Ln(1 /¢) }
The proof is completed by showing that A"(B, €)/A"(A, €) is less than one
when e is sufficiently small. This would imply that the second limit on the right

here 1s equal to zero. The first limit on the right converges to D(4).
Notice that

A

A

Limsup
€e—-0

+ Limsup{

€0

Sup{%: €<s}

is a decreasing function of the positive variable e. It follows that

Ln( A°( B, ¢) ) < D(A)

Ln(1/¢) for all sufficiently small € > 0.
Because the limit which is explicitly stated in the theorem exists, it follows that
Ln(A'(B,€)) Ln(A(A4,¢))
Lo(l/e) ~  Ln(l/e)
This allows us to conclude that
N(B,¢€) ,€)
A(A,€)

for all sufficiently small € > 0.

<1 for all sufficiently small € > 0.
This completes the proof. Slightly more care is needed when D(A) = D(B).

Exercises & Examples

2.1. The fractal dimension of the hairy set 4 C R?, suggested in Figure 5.2.1
is 2. The contribution from the hairs to #"( A4, €) becomes exponentially
small compared to the contribution from W, as ¢ — 0.

We now give you a wonderful theorem which provides the fractal dimen-
sion of the attractor of an important class of IFS. It will allow you to estimate
fractal dimensions “on the fly,” simply from inspection of pictures of fractals,
once you get used to it.

Theorem 3. Let {R™; wy, w,,..., wy | be a hyperbolic IFS, and let A denote
its attractor. Suppose w, is a similitude of scaling factor s, for each n €
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Figure 5.2.1

Picture of a hairy box.
The fractal dimension of
the subset of R? sug-
gested here is the same as
the fractal dimension of
the box. The hairs are
overpowered.

{1,2,3,..., N}. If the IFS is totally disconnected or just-touching then the
attractor has fractal dimension D(A), which is given by unique solution of

N
Y Is,|P =1, D(A) € [0, m].

n=1

If the IFS is overlapping then D > D(A) where D is the solution of

N - —_
Y Is,|? =1, D € [0, ).

n=1

Sketch of Proof. The full proof can be found in [Bedford 1986}, [Hardin
1985], [Hutchinson 1981}, and [Reuter 1987]. The following argument gives a
valuable insight into the fractal dimension. We restrict attention to the case
where the IFS {R™; w;, wy,..., wy } is totally disconnected. We suppose that
the scaling factor s; associated with the similitude w, is nonzero for each
i€{l,2,..., N}. Let ¢ > 0. We begin by making two observations.

Observation (i). Let i€ (1,2,..., N}. Since w; is a similitude of scaling
factor s, it maps closed balls onto closed balls, according to

w(B(x,€)) = B(w(x),Is.le).
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Assume that s; # 0. Then w, is invertible, and we obtain
W (B(x,€)) = B(w}(x), ls 7).
The latter two relations allow us to establish that for all € > 0,
: N (A, €) = H(w(4),ls€);
which is equivalent to
(5.2.6) N (wi(A),€) =H(A,]s]7%).
This applies for each i € {1,2,3,..., N}.
Observation (ii). The attractor A4 of the IFS is the disjoint union
A=w(A)Uw(A4)U - Uwy(A4),
where each of the sets w,(A4) is compact. Hence we can choose the positive
number € so small that if, for some point x € R? and some integer i €
{1,2,..., N}, we have B(x,€) N w,(A4) # &, then B(x,e) N wy(4) = & for
all j€{1,2,..., N} with j# i It follows that if the number ¢ is sufficiently
small we have

N (A €) =N (w(A),€) + N (wy(A4),¢€)
+ A (wi(A),€) + - + AN (wy(4),¢).
We put our two observations together. Substitute from equation (5.2.6)
into the last equation to obtain
(52.7) N (A,€) =N (A, s %) + 4 (A, ]s:]7 %)
+ (A, Is517%) + -+ ( A4, 15yl 7).
This functional equation is true for all positive numbers ¢ which are suffic-
iently small. The proof is completed by showing formally that this implies the
assertion in the theorem.
Here we demonstrate the reasonableness of the last step. Let us make the

assumption A(A,€) ~ Ce . Then substituting into (5.2.7) we obtain the
equation:

Ce P = Clsy|% P + Clsy)|Pe™P + Cls31PeP + -« +Clsy|PeP.
From this we deduce that
L=1811% +I52l® + 153 + -+ +lsw®

This completes our sketch of the proof of Theorem 5.2.3.

Exercises & Examples

2.1. This example takes place in the metric space (R’ FEuclidean). A
Sierpinski triangle is the attractor of a just-touching IFS of three simili-
tudes, each with scaling factor 0.5. Hence the fractal dimension is the
solution D of the equation

(0.5)” + (05”7 + (05" =1




2.2,

23.

24.

25.
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from which we find

p o (/3 _ La(3)
"~ Ln(0.5)  Ln(2)°

Find a just-touching IFS of similitudes in R* whose attractor is M. Verify
that Theorem 5.2.3 yields the correct value for the fractal dimension of m.
The Classical Cantor set is the attractor of the hyperbolic IFS

(10115 wy(x) = dxsmy(x) = bx + 3},

Use Theorem 5.2.3 to calculate its fractal dimension.

The attractor of a just-touching hyperbolic IFS {R?% w,(x), i = 1,2,3,4)}
is represented in Figure 5.2.2. The affine transformations w;: R? — R? are
similitudes, and are given in tabular form in Table 5.2.1. Use Theorem
5.2.3 to calculate the fractal dimension of the attractor.

The attractor of a just-touching hyperbolic IFS {R%; w,(x), i = 1,2,3} is
represented in Figure 5.2.3. The affine transformations w,: R?> > R? are

Figure 5.2.2

The Castle fractal. This
is an example of a self-
similar fractal| and its
fractal dimension may be
calculated with the aid of
Theorem 5.2.3. The
associated IFS code is
given in Table 5.2.1.
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Table 5.2.1

IFS code for a Castle.
w a b ¢ d e f ?
1 Q5 0 0 0.5 0 0 0.25
2 0.5 0 0 0.5 2 0 0.25
3 0.4 0 0 04 0 1 0.25
4 0.5 0 0 0.5 2 1 0.25

2.6.

2.7.

2.8.

similitudes. Use the Collage Theorem to find the similitudes, and then use
Theorem 5.2.3 to calculate the fractal dimension of the attractor.

Figure 5.2.4 represents the attractor of an overlapping hyperbolic
IFS {R?% w/(x), i =1,2,3,4}. Use the Collage Theorem and Theorem
5.2.3 to obtain an upper bound to the fractal dimension of the attractor.
Calculate the fractal dimension of the subset of R? represented by Figure
5.2.5.

Consider the attractor 4 of a totally disconnected hyperbolic IFS {R7;
w,(x), i = 1,2} where the two maps w;: R” > R’ and w,: R” - R’ are
similitudes, of scaling factors s; and s, respectively. Show that 4 is also
the attractor of the totally disconnected hyperbolic IFS {R’; v,(x),
i=1,273,4} where v, =wow, v, =wow, U;=wow, and v, =
w, e w,. Show that v,(x) is a similitude, and find its scaling factor, for
i=1,2,3,4. Now apply Theorem 5.2.3 to yield two apparently different
equations for the fractal dimension of 4. Prove that these two equations
have the same solution.

Figure 5.2.3

To calculate the fractal
dimension of the subset of
R? represented here, first
apply the Collage Theo-
rem to find a correspond-
ing set of similitudes.
Then use Theorem 5.2.3.
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. a2 A A Figure 5.2.4
A S gk TR An upper bound to the
% 7‘1_ £ X f'*_‘_ £ fractal dimension of
SRl _ ’ AR attractor of an overlap-
. ping IFS, corresponding

to this picture, can be
computed with the aid of
Theorem 5.2.3.

A Figure 5.2.5
A% Calculate the fractal
dimension of the subset of
AM R? represented by this

A"ﬂ A"ﬂ image.

%%%m

% 37N

‘%"A

A‘AA‘AA‘A A"A "AA %
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5.3 THE EXPERIMENTAL DETERMINATION OF THE FRACTAL DIMENSION

In this section we consider the experimental determination of the fractal
dimensjon of sets in the physical world. We model them, as best we can, as
subsets of (R?, Euclidean) or (R, Euclidean). Then, based on the definition of
the fractal dimension, and sometimes in addition to one or other of the
preceding theorems, such as the Box Counting Theorem, we analyse the model
to provide a fractal dimension for the real-world set.

In the following examples we emphasize that when the fractal dimension of
a physical set is quoted, some indication of how it was calculated must also be
provided. There is not yet a broadly accepted unique way of associating a
fractal dimension with a set of experimental data.

Example

3.1. There is a curious cloud of dots in the woodcut in Figure 5.3.1. Let us try
to estimate its fractal dimension by direct appeal to Definition 5.1.1.

We begin by covering the cloud of points by disks of radius e for a range
of e-values from € = 3 cm down to € = 0.3 cm; and in each case we count the
number of disks needed. This provides the set of approximate values for
N'(A, €) given in Table 5.3.1. The data is redisplayed in log-log format in
Table 5.3.2. The data in Table 5.3.2 is plotted in Figure 5.3.2. A straight line

Figure 5.3.1
Covering a cloud of dots
in a woodcut by balls of
radius € > 0.
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Table 5.3.1
Minimal numbers of balls, of various radii, needed to cover a
“dust” in a woodcut.

€ N(A,€)
3cm 2
2cm 3
1.5cm 4 |
1.2 cm 6
1 cm 7
0.75 cm 10
0.5 cm 16
0.4 cm 23
03cm 31
0.015cm 267

Table 5.3.2
The data in Table 5.3.1 is tabulated in log-log form. These
values are used to obtain the fractal dimension.

In(1/¢) In(A"(A4,¢€))
-11 0.69
~0.69 1.09
—0.405 1.39
—0.182 1.79
0 1.95
0.29 2.30
0.693 2.77
0.916 313
1.204 3.43
4.2 5.59

which approximately passes through the points is drawn. The slope of this
straight line is our approximation to the fractal dimension of the cloud of
points.

The experimental number A4”( 4, 0.015 cm) is not very accurate. It is a very
rough estimate based on the size of the dots themselves, and is not included in
the plot in Figure 5.3.2. The slope of the straight line in Figure 5.3.2 gives

(5.3.8) D(A) =1.2,  over the range 0.3 cm to 3 cm,

where 4 denotes the set of points whose dimension we are approximating.

The straight line in Figure 5.3.2 was drawn “by eye.” Thus if one was to
repeat the experiment, a different value for D( 4) may be obtained. In order to
make the results consistent from experiment to experiment, the straight line
should be estimated by a least squares method.

191
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Figure 5.3.2

Log-log plot to estimate
the fractal dimension D
for the cloud of dots in
the woodtut in Figure
5.3.1. The data is in
Tables 531 and 532, “¥NA8)

069
11 Log(1/E)

In proceeding by direct appeal to Definition 5.1.1, the estimates of A"( 4, €)
need to be made very carefully. One needs to be quite sure that A"( 4, €) is
indeed the least number of balls of radius € needed. For large sets of data this
could be very time consuming.

It is clearly important to state the range of scales used: we have no idea or
definition concerning the structure of the dots in Figure 5.3.1 at higher
resolutions than, say, 0.015 cm. Moreover, regardless of how much experimen-
tal data we have, and regardless of how many scales of observation are
available to us, we will always end up estimating the slope of a straight line
corresponding to a finite range of scales. If we include the data point (0.015
cm, 267) in the above estimation we obtain

(5.3.9) D(A) =09,  over the range of scales 0.015 to 5 cm.

We comment on the difference between the estimates (5.3.8) and (5.3.9). If
we restrict ourselves to the range of scales in (5.3.8), there is little information
present in the data to distinguish the cloud of points from a very irregular
curve. However the data used to obtain (5.3.9) contains values for 4"( 4, €) for
several values of € such that the corresponding coverings of A are discon-
nected. The data is “aware” that 4 is disconnected. This lowers the experi-
mentally determined value of D.

Example

3.2. In this example we consider the physical set labelled 4 in Figure 5.3.3. 4
is ac