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1. Introduction

We continue our series of 3 papers, started by [6]. In this paper we analyze
the mathematics appearing in Good Will Hunting. In Section 2 we explain the
central mathematical problem of the movie. It will be clearly seen, that both the
problem and the solution is well-considered and purposeful. The solution is com-
plex, but the result can be presented both in a brief or in a complicated way. In
Section 3 we consider very briefly what is written on the board when professor
Lambeau addressed the mass of students in the lecture hall. In Section 4 we in-
vestigate the second problem, consisting of two parts, written on the board, and
reveal that the solution for the second part is not complete in the film. Finally, we
finish in Section 5 by investigating the problem Will Hunting and professor Lam-
beau solve together in Lambeau’s office. Throughout the paper we carefully show
what preliminary knowledge a mathematics student needs for understanding the
different ideas. Then, we review what courses at the Hungarian Universities ELTE
(Eötvös Loránd University), DE (University of Debrecen) and SzTE (University of
Szeged) cover these prerequisites, and how the different exercises of the show can
be integrated into these classes. We hope that the reader will entertain himself
reading this note as much as we entertained ourselves figuring out the details of the
different solutions of these problems.

2. Pathfinding in graphs

The following problem occurred first in the movie. It was written on the left
hand side of the board as follows.

Figure 1. The graph G

Problem 1. G is the graph on the vertex set V = { 1, 2, 3, 4 } and with edges (1, 2),
(1, 4), (2, 3), (2, 3), (2, 4) ((2, 3) is a double edge). Find:

(1) The adjacency matrix A.
(2) The matrix giving the number of 3 step walks.
(3) The generating function for walks from i→ j.
(4) The generating function for walks from 1→ 3.

Will Hunting’s solution. Will Hunting wrote his solution on the right hand side of
the board, as follows.
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Sol. 1.

A =


0 1 0 1
1 0 2 1
0 2 0 0
1 1 0 0

 .

Sol. 2.

A3 =


2 7 2 3
7 2 12 7
2 12 0 2
3 7 2 2

 .

Sol. 3.

Γω (pi → pj , z) =

∞∑
n=0

ωn (i→ j) zn =
det (1ij − zAij)

det (1− zA)
.

Sol. 4.∣∣∣∣∣∣
−z 0 −z
1 −2z −z
−z 0 1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣

1 −z 0 −z
−z 1 −2z −z
0 −2z 1 0
−z −z 0 1

∣∣∣∣∣∣∣∣
−1

=

=
2z3 + 2z2

4z4 − 2z3 − 7z2 + 1
= 2z2 + 2z3 + 14z4 + 18z5 + 94z6 + . . . .

�

In this section we analyze and explain the mathematical impact and the solu-
tion of this problem from the perspective of a mathematician and a student with
high enough mathematical background.

The proper solution cannot be explained in a few words since it uses a fair
amount of the following university classes.

• Linear algebra: elementary theory of matrices, powers of matrices, Jordan
normal-form.

• Analysis: convergence in normed vector spaces, power series, convergence
of power series.

• Combinatorics: generating function, counting, recurrence formulae.
• Graph theory: adjacency matrix, paths, powers of the adjacency matrix.

2.1. The solution for a mathematician. Let us consider first the impression
of a mathematician. Although considered to be experienced professors of algebra
and discrete mathematics, teaching both linear algebra and discrete mathematics
on almost all university levels, none of the authors was aware of this issue about
the generating functions for the number of paths before investigating the problem
from the movie. They figured out a possible solution for this problem on their own,
using the guidance of Will’s answers on the board. The solution from their point
of view can be interpreted in the following way.

The problem is about finding the number of walks from a vertex i to a vertex
j in a graph G. From now on we use the graph theoretical notions from [8]. Let G
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be a graph with vertex set V = { 1, 2, 3, 4 } and edge set E = {(1, 2), (1, 4), (2, 4),
(2, 3), (2, 3)}, where (2, 3), is a double edge (see Figure 1).

The first exercise is to find the adjacency matrix of this graph, and Sol. 1
is clearly correct. The second exercise was to provide a matrix which gives the
number of 3 step walks. This matrix is A3, and it is presented in Sol. 2.

The third question needs a bit more consideration. We know how to compute
the number of paths of given length, we understand the notion of generating func-
tion of an infinite sequence, but this particular generating function is not one we
usually teach. The board from the movie gives us some hint.

Let ωn (i→ j) denote the number of walks of length n from vertex i to vertex
j. As An encodes the number of n step walks from a point to another, ωn (i→ j) is
the ij entry [An]

j
i of the matrix An. The generating function is an analytic function

defined by its power series fi,j(z) =
∑∞

n=0 ωn (i→ j) · zn, that is the coefficient of
zn is the number of n step walks from i to j.

It does not take much of a leap to consider the matrix power series F (z) =∑∞
n=0A

n · zn. Or maybe it does. This is the key point to the solution of the
problem. First, we sketch the solution, then make every step precise. Considering
F (z) as a formal sum, we have [F (z)]ji = fi,j(z). To motivate the solution from the
other direction: if we already know that we have to consider a matrix put together
from the fi,j(z) power series, then splitting up the matrix by the powers of z we
obtain that

∑∞
n=0A

n ·zn encodes the generating functions. Now,
∑∞

n=0A
n ·zn can

be calculated using the usual argument about geometric power series. That is

(1)
∞∑

n=0

An · zn =

∞∑
n=0

(A · z)n =
1

1−Az
= (1−Az)−1 = (I −Az)−1 ,

using that the sum of a geometric series is
∑
xn = 1/(1 − x). The entries of the

inverse matrix are the desired generating functions, each being a rational function
of z.

Now, these arguments should be made precise in order to satisfy the needs of
not only a physicist but a mathematician, as well. One way would be to define
the power series ring R[[z]] over an arbitrary (not necessarily commutative) ring
R (see e.g. [4, 11]). Then one could prove that there exists a natural isomorphism
between the ring Rn×n[[z]] (the ring of power series over the n by n matrices) and
the ring R[[z]]n×n (the ring of n by n matrices of power series). After this, proving
that every step of (1) holds comes down to simply calculating that the equations

(I −Az) ·

( ∞∑
n=0

An · zn
)

= I =

( ∞∑
n=0

An · zn
)
· (I −Az)

hold in the power series ring Rn×n[[z]].
Even though the argument on formal power series is mathematically correct

and can be applied here, proving that the steps of (1) are valid is usually achieved
using analytical methods. That is, one argues that the series in (1) is convergent
someplace and that the sum is really (I −Az)−1. Let µ be the eigenvalue of A
having the highest absolute value. From the theory of functional operations and
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linear algebra it follows that the series
∑∞

n=0(A · z)n is convergent if |z| < 1/ |µ|.
Then the standard arguments

∞∑
n=0

An · zn = lim
k→∞

k∑
n=0

An · zn = lim
k→∞

k∑
n=0

(Az)
n

= lim
k→∞

(
I − (Az)

k+1
)
· (I −Az)−1 = (I −Az)−1

give us the formula needed.
Finally, the last exercise is to calculate the generating function for ωn (1→ 3).

This is simply calculating the inverse of the matrix (I −Az) by e.g. Cramer’s rule,
and then take the entry in the first row and third column. This entry is a rational
function, the corresponding generating function is the Taylor series of this rational
function.

2.2. The solution for a student in mathematics. At ELTE discrete mathe-
matics is taught on two levels, standard and advanced. The advanced course covers
adjacency matrices and their properties, the standard course does not. At DE and
at SzTE the class called ‘Combinatorics’ covers adjacency matrices and their prop-
erties. Nevertheless, the notion of adjacency matrix can easily be explained even
for high school students (see e.g. the third of this series of papers [7]): present the
matrix A, where [A]ji is the number of edges from vertex i to vertex j.

Now, let ωn (i→ j) denote the number of n step walks from vertex i to ver-
tex j. Note, that the number of 1 step walks from vertex i to j is the element
[A]ji , that is [A]ji = ω1 (i→ j). It can be proved by mathematical induction that
An encodes the number of n step walks from a point to another. Indeed, an
n + 1 step walk from i to j consists of an n step walk from i to k (for some ver-
tex k) and then a 1 step walk from k to j. To compute the number of n + 1
step walks, we need to add the product of these two numbers for all vertices k.
That is ωn+1 (i→ j) =

∑n
k=1 ωn (i→ k)ω1 (k → j). By the induction hypoth-

esis ωn (i→ k) is the ik entry of the matrix An, and ω1 (k → j) = [A]jk, thus
ωn+1 (i→ j) =

∑n
k=1 ωn (i→ k)ω1 (k → j) is the ij entry of An+1 by matrix mul-

tiplication. For the particular graph G, the matrix giving the number of 3 step
walks is A3, which can be easily verified to be the same matrix as to what Will
wrote on the board. This argument is understandable for any student who finished
an introductory linear algebra course (2nd semester at ELTE and DE, 1st semester
at SzTE).

The third exercise was to provide the generating function for walks from i to
j. The concept of the generating function can be explained to students not familiar
with the usual theory of power series and analytic functions. This is the way, for
example in [4], where it is a formal, infinite expression, and is taught at ELTE in the
2nd semester, at DE in the 1st semester and at SzTE in the 3rd semester. In this
case, however, one would need power series over a noncommutative ring (namely,
over the matrix ring Rn×n), which is not discussed at any undergraduate course
at any of the three universities. Thus we base our theory of generating functions
on analysis. The generating function is an analytic function defined by its power
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series
∑∞

n=0 ωn (i→ j) · zn, that is the coefficient of zn is the number of n step
walks from i to j. The theory of generating functions uses only the theory of power
series from analysis, and therefore it can be explained to any student having that
knowledge.

For notions and theorems in calculus we refer to [9], for the generating function
method and its uses in Combinatorics can be found in [1]. We have already observed
via solving the previous exercise that ωn (i→ j) is the ij entry of the matrix An.
As the problem asks to find all generating functions at the same time, it might
suggest to arrange them in a matrix. Then, it does not take much of a leap to
consider the matrix power series

∑∞
n=0A

n · zn. Nevertheless, the theory of matrix
power series is not part of the analysis classes, hence needs some explanation.

How can one define the convergence of a matrix-series? The closest notion
is the convergence in normed vector spaces, e.g. in Rn. This is covered at ELTE
in Analysis 3, at DE and at SzTE in Multiple variable analysis. If we consider
the n by n matrices simply as an n2 dimensional vector space, then it becomes
a normed space, for example, with the standard Euclidean distance. Being finite
dimensional, any two norms are equivalent over this space. Hence, we are allowed
to use the pointwise convergence saying that a series of matrices is convergent if
and only if each entry involves a convergent series in the usual sense in R. Hence,
for our purposes it is enough to consider this matrix power series as putting the
n2-many usual power series in a table of n rows and n columns. Moreover, by
the above arguments we can proceed with all computations formally using the
usual matrix addition and multiplication. Thus, every generating function fi,j(z) is
convergent (in some neighborhood of 0) if and only if the matrix series

∑∞
n=0A

n ·zn
is convergent (in some neighborhood of 0). We investigate the latter one. By the
usual argument about geometric power series, we have

(2)
∞∑

n=0

An · zn = lim
k→∞

k∑
n=0

An · zn = lim
k→∞

k∑
n=0

(Az)
n

= lim
k→∞

(
I − (Az)

k+1
)
· (I −Az)−1 = (I −Az)−1 .

One still has to make sure that every equation of (2) holds, and every step
makes sense. That is, one needs to determine the set of numbers z for which
limk→∞

(
I − (Az)

k+1
)

= I, and for which the matrix I − Az is invertible. The
latter question can be decided easily: I − Az is invertible if and only if zλ 6= 1 for
any eigenvalue λ of A. Let µ be the eigenvalue of A having the highest absolute
value. Then I −Az is invertible for |z| < 1/ |µ|.

Now, consider the limit limk→∞ (Az)
k. Let J be the normal form of A, that is

there exists an invertible matrix Q such that J = Q−1AQ consists of only Jordan
blocks. Then A = QJQ−1 and thus (Az)

k
= QJkQ−1zk. If A is an n by n matrix,

then the entries of Jk are bounded by kn |µ|k. In fact, as A is symmetric, J is
diagonal and thus the entries of Jk are bounded by |µ|k. The elements of Q and
Q−1 are constants. Thus limk→∞ (Az)

k
= limk→∞QJkQ−1zk = 0 for |z| < 1/ |µ|,
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and hence limk→∞

(
I − (Az)

k+1
)

= I in the same neighborhood. This technique
is taught at ELTE in Algebra 2, at DE in Linear algebra 2, at SzTE in Linear
algebra.

Finally, we need to compute the inverse of I − Az = I − zA. The usual
Gaussian elimination method is of little help here, as z is a variable in the en-
tries of I − zA, and it is hard to compute with it. But the inverse of a matrix
can be calculated by Cramer’s rule, using the adjugate matrix, which is taught
in any introductory linear algebra course (Algebra 2 at ELTE, Linear algebra 1
at DE, Linear algebra at SzTE). For a matrix M , let Mij denote the matrix
obtained from M by omitting the ith column and jth row. Then the adjugate
matrix of M is the matrix N whose ij entry is (−1)

i+j
detMij . By Cramer’s

rule if M is invertible, then M−1 = N/detM . That is, the ij entry of M−1 is
(−1)

i+j
detMij/detM . Applying it to the third exercise in the movie for the ma-

trix M = I − zA, we obtain that the generating function of walks from i to j is the
fraction (−1)

i+j
det (Iij − zAij) /det (I − zA). This is almost the same as Will’s

solution, except for the (−1)
i+j factor at the beginning. Sometimes the notation

det (Iij − zAij) covers the (−1)
i+j factor by itself, but it may as well be an over-

sight from the creators of the movie. Another difference is that Will denoted the
identity matrix by 1 rather than by I.

In the fourth exercise, we are to determine the generating function for walks
from 1 to 3. Having obtained the general formula in the previous step of the
problem, it is not hard to substitute i = 1 and j = 3:

∞∑
n=0

ωn (1→ 3) zn = (−1)
1+3

det (I13 − zA13) /det (I − zA)

=

∣∣∣∣∣∣
−z 0 −z
1 −2z −z
−z 0 1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣

1 −z 0 −z
−z 1 −2z −z
0 −2z 1 0
−z −z 0 1

∣∣∣∣∣∣∣∣
−1

=
2z3 + 2z2

4z4 − 2z3 − 7z2 + 1
.

Any student finished an introductory linear algebra course (Algebra 2 at ELTE,
Linear algebra 1 at DE, Linear algebra at SzTE) should not have a problem to arrive
at this formula after some guidance from the teacher. The personal experience of
the second author is that the students do not usually find the formula on their own,
but deduce it with no problems after they know Cramer’s rule should be applied.
Here, −1 is a root of both the nominator and the denominator, hence we can reduce
the fraction by z + 1:

∞∑
n=0

ωn (1→ 3) zn =
2z3 + 2z2

4z4 − 2z3 − 7z2 + 1

=
(z + 1) 2z2

(z + 1) (4z3 − 6z2 − z + 1)
=

2z2

4z3 − 6z2 − z + 1
.
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To obtain the coefficients of the power series, we need to compute the Taylor
series of this function. Taylor series are covered by Analysis 2 at ELTE, Dif-
ferentiation at DE and at SzTE. We apply the well known formula from calcu-
lus f (z) =

∑∞
n=0

f(n)(0)
n! zn, where f (n) (0) is the nth derivative of f at 0 and

n! = 1 · 2 · · · · · n is the product of positive integers from 1 to n (and 0! = 1 by
definition). Here, f (z) = 2z2/

(
4z3 − 6z2 − z + 1

)
, thus we need to determine its

derivatives at 0. Let h (z) = 2z2, g (z) = 4z3−6z2−z+1, then f (z) = h (z) /g (z).
Will gave the coefficients of the first six terms, which can be obtained by computing
the first six derivatives of f . As f is a fraction of two polynomials, it can be quite
tedious to do the derivations by hand. Therefore we are going to use an easy trick
to reduce the computational time. As h/g = f , we have h = fg and h(k) = (fg)(k).
It is easy to determine the derivatives by inductively applying the product rule
for derivatives. Now, h′(z) = 4z, h′′(z) = 4, h′′′(z) = 0, g′(z) = 12z2 − 12z − 1,
g′′(z) = 24z−12, g′′′(z) = 24, g(4)(z) = 0. Then we have h(0) = h′(0) = h′′′(0) = 0,
h′′(0) = 4, g(0) = 1, g′(0) = −1, g′′(0) = −12, g′′′(0) = 24. We obtain a system of
linear equations to solve for the derivatives of f in 0:

h(0) = f(0)g(0) =⇒ f(0) = 0,

h(1)(0) = f (1)(0)g(0) + f(0)g(1)(0) =⇒ f (1)(0) = 0,

h(2)(0) = f (2)(0)g(0) + 2f (1)(0)g(1)(0)

+ f(0)g(2)(0) =⇒ f (2)(0) = 4,

h(3)(0) = f (3)(0)g(0) + 3f (2)(0)g(1)(0)

+ 3f (1)(0)g(2)(0) + f(0)g(3)(0) =⇒ f (3)(0) = 12,

h(4)(0) = f (4)(0)g(0) + 4f (3)(0)g(1)(0)

+ 6f (2)(0)g(2)(0) + 4f (1)(0)g(3)(0)

+ f(0)g(4)(0) =⇒ f (4)(0) = 336,

h(5)(0) = f (5)(0)g(0) + 5f (4)(0)g(1)(0)

+ 10f (3)(0)g(2)(0) + 10f (2)(0)g(3)(0)

+ 5f (1)(0)g(4)(0) + f(0)g(5)(0) =⇒ f (5)(0) = 2160,

h(6)(0) = f (6)(0)g(0) + 6f (5)(0)g(1)(0)

+ 15f (4)(0)g(2)(0) + 21f (3)(0)g(3)(0)

+ 15f (2)(0)g(4)(0) + 6f (1)(0)g(5)(0)

+ f(0)g(6)(0) =⇒ f (6)(0) = 67680.

After dividing these numbers by the appropriate factorials we obtain
∞∑

n=0

ωn (1→ 3) zn = 2z2 + 2z3 + 14z4 + 18z5 + 94z6 + . . . ,

which is, again, what Will wrote on the board.
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We finish the section by summarizing the required courses at each university
for the four exercises in Table 1.

Table 1. Required classes for the exercises on the board

ex. ELTE (semester) DE (semester) SzTE (semester)
(1) Discr. math. 1 (1) Combinatorics (1) Combinatorics (3)
(2) Algebra 2 (2) Linear algebra 1 (2) Linear algebra (1)

Discr. math. 2 (2) Combinatorics (1) Combinatorics (3)
(3) Algebra 2 (2) Linear algebra 2 (3) Linear algebra (1)

Analysis 3 (3) Mult. var. analysis (4) Mult. var. analysis (3)
(4) Algebra 2 (2) Linear Algebra 1 (2) Linear algebra (1)

Analysis 2 (2) Differentiation (3) Differentiation (2)

3. Eigenvalues, eigenvectors

When Gerald Lambeau comes into the main lecture hall full of students hoping
to reveal the identity of the mystery person solving the first problem, we see in the
background that two problems are written and solved on the main board. Both of
these problems come from linear algebra, they are about determining eigenvalues
and eigenvectors of a particular matrix. These are taught in the course Algebra 2
(semester 2) at ELTE, in Linear algebra 2 (semester 3) at DE and in Linear algebra
(semester 1) at SzTE.

It is explained on the left hand side of the board how the eigenvalues of the
matrix

A =

1 1 0
1 1 −2
2 1 0


should be computed. This matrix has one real (not rational) and two complex
eigenvalues. One can obtain these eigenvalues by solving a third degree equation.
Since none of these eigenvalues are nice, this particular exercise may be more suit-
able to explain Cardano’s formula on the solution of a third degree equation, which
is taught in the course Algebra 1 (semester 1) at ELTE, in Introduction to algebra
and number theory (semester 2) at DE and in Classical algebra (semester 2) at
SzTE.

The second problem written on the board of the main lecture hall is again an
eigenvalue problem for the matrix

A =

2k −k −k
k 2k −k
k k 2k

 .

In the movie, above this matrix one can see on the board that 0 and 3k are two
eigenvalues, and 3k is an eigenvalue with multiplicity two (called degenerate eigen-
value on the board). We can read the particular eigenvectors corresponding to
these eigenvalues, as well. However, neither 0 nor 3k are eigenvalues of the matrix
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A (except in the case k = 0). Therefore we believe, that the creators of the movie
may have made a mistake here and wanted to put the symmetric matrix

B =

2k −k −k
−k 2k −k
−k −k 2k


on the board instead. One can easily determine that the three eigenvalues of B are
0, 3k, 3k. The eigenvector corresponding to the eigenvalue 0 is1

1
1

 ,

and the two-dimensional eigenspace is generated by the vectors 1
−1
0

 ,

 1
0
−1

 .

4. Trees

The second problem on the hallway board was written specifically to challenge
the person who solved the first problem. It consists of two exercises:

Problem 2. (1) How many trees are there with n labeled vertices?
(2) Draw all the homeomorphically irreducible trees with n = 10.

Will gives the answer nn−2 to the first question and draws eight graphs to
answer the second question.

The result of the first question is known as Cayley’s formula [3] but has been
discovered first in 1860 by Borchardt [2]. There are several different ways to prove
it, maybe one of the most well-known proofs is the one due to Prüfer [10], assigning
a so-called Prüfer code to every tree. Cayley’s theorem with this proof is taught
in Discrete mathematics 1 (semester 1) at ELTE, in Combinatorics (semester 1) at
DE and in Combinatorics (semester 3) at SzTE.

Now, we move on to the second problem about homeomorphically irreducible
trees. A tree is homeomorphically irreducible (or sometimes called series-reduced) if
it has no vertex of degree two. The first results about homeomorphically irreducible
trees are due to Harary and Prins [5]. For example they list all such trees having at
most 12 vertices, and in particular list those having exactly 10 vertices. Even though
homeomorphically irreducible trees are not part of any undergraduate course at any
of the three universities, by using elementary graph theoretical results, one can find
all homeomorphically irreducible trees having 10 vertices. It is interesting that the
creators’ of the movie made a mistake: Will draws 8 trees on the board, while there
exist 10 homeomorphically irreducible trees with 10 vertices.

Let us label the vertices by 1, . . . , 10, their degrees by d1, . . . , d10. Assume that
the degrees are in decreasing order. Now, the sum of the degrees is 18 as the tree
has 9 edges. If there are l leaves and 10− l non-leaves, then the sum of the degrees
(18) is at least l + 3 · (10− l) = 30 − 2l, thus l ≥ 6. If there are 9 leaves and 1
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non-leaf, then we obtain the star: 1 is connected to every other vertex. If there are
8 leaves then d1+d2 = 10, and d1 ≥ d2 ≥ 3. Thus d1 = 7 and d2 = 3, or d1 = 6 and
d2 = 4, or d1 = d2 = 5. All three of them gives one homeomorphically irreducible
tree, where 1 and 2 are connected and the leaves are connected to them according
to their degrees. If there are 7 leaves, then d1 +d2 +d3 = 11, and d1 ≥ d2 ≥ d3 ≥ 3.
Thus either d1 = d2 = 4 and d3 = 3, or d1 = 5 and d2 = d3 = 3. The first case
produces two trees: one where the two degree 4 nodes are connected and one where
they are not connected. The second case produces two trees, as well: one where the
two degree 3 nodes are not connected and one where they are connected. The latter
tree is missing from the board in the movie, which must be the creators’ mistake.
Finally, if there are 6 leaves, then d1 + d2 + d3 + d4 = 12, d1 ≥ d2 ≥ d3 ≥ d4 ≥ 3,
hence d1 = d2 = d3 = d4 = 3. This produces two more trees: one where there exists
a degree 3 node with no leaves attached to it, and one where no such node exists.
This latter graph is, again, missing from the board, which is another mistake in
the movie. Altogether there are 10 (rather than 8) homeomorphically irreducible
trees with 10 nodes (see Figures 2 and 3). If the reader is further interested in
homeomorphically irreducible trees, they can consult e.g. [1].

Figure 2. The 8 homeomorphically irreducible trees on the board

Figure 3. The 2 missing homeomorphically irreducible trees from
the board

5. Chromatic polynomial

The problem we see being solved by Gerald Lambeau and Will Hunting to-
gether is to determine the chromatic polynomial of the 3-Sun graph, i.e. of the
graph having vertices a, b, c, d, e, f and edges ab, ac, ad, ae, bc, bd, bf , ce, cf .
This is a planar graph which looks like a triangle with connecting the midpoints of
the sides (Figure 4).
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Figure 4. The 3-Sun graph

The chromatic polynomial of a graph G is a function pG (k), which gives the
number of well-colorings of G by k different colors. A coloring of the vertices is
called a well-coloring if adjacent vertices are colored by a different color. It is
a computationally hard problem to determine the smallest number of colors for
which there exists a well-coloring of a graph with that many colors. Obviously
the chromatic number is the smallest positive integer which is not the root of the
chromatic polynomial. Thus it is computationally hard to determine the chromatic
polynomial for a graph in general, as well. For particular graphs it can be easy
to determine this polynomial, e.g. the chromatic polynomial of the complete graph
having n vertices is k (k − 1) . . . (k − n+ 1) or the chromatic polynomial for the
empty graph is simply kn.

The chromatic number is taught at every introductory discrete mathematics or
combinatorics course. That is, it is covered in discrete mathematics 1 (semester 1)
at ELTE, in Combinatorics (semester 1) at DE and in Combinatorics (semester 3)
at SzTE. Although the chromatic polynomial can be introduced in an elementary
way, it is only part of the course taught at DE. In the following we introduce how
one could build up a lecture on this exercise.

It is already interesting that this particular function pG (k) is indeed a poly-
nomial. Its degree is at most n if G has n vertices. It can be shown as follows. A
well-coloring creates a partition of the vertices of the graph by the color classes,
and each color class is an independent set in the graph. As G is finite, there are
finitely many ways to partition it as the union of independent sets. Thus the num-
ber of colorings can be computed by calculating the number of colorings giving a
particular partitioning and then summing these numbers for all possible partitions.
Let P be a partitioning with d independent sets. Then the first independent set can
be colored by k colors, the next set by (k − 1) colors, etc. The last independent
set can be colored by (k − d+ 1) colors, and thus the number of colorings by k
colors determining the partition P is k (k − 1) . . . (k − d+ 1). This is a degree d
polynomial in k, where d ≤ n.

Now, we determine the chromatic polynomial of the Sun graph G in the movie.
Recall that the graph G consists of vertices a, b, c, d, e, f and edges ab, ac, ad, ae,
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bc, bd, bf , ce, cf (see Figure 4). Let us count the number of well-colorings by k
colors. We can color the vertex a by k colors, which leaves (k − 1) colors to choose
from to color the vertex b. Then, we will have (k − 2) colors to choose from to color
the vertex c. Finally, the remaining three vertices (d, e and f) can all be colored
independently by (k − 2) colors, as they have only two neighbors which are colored
already by two different colors. Thus pG (k) = k (k − 1) (k − 2)

4, as Will Hunting
and Gerald Lambeau deduced together. Nevertheless, they obtained this result in
a different way. They may have obtained this result from the following lemma.

Lemma 1. If G and H are two graphs intersecting in a complete graph then

pG∪H (k) =
pG (k) pH (k)

pG∩H (k)
.

Proof. Let us color first G∩H. Now, G∩H is a complete graph, thus all its vertices
must be of different color. Fix a well-coloring of G∩H, and let qG (k) be the number
of well-colorings of G extending this particular coloring of G ∩ H. Observe, that
for another well-coloring of G ∩H, it can be extended in qG (k)-many ways into a
well-coloring of G, as well. Thus we have pG (k) = pG∩H (k) · qG (k). Similarly, let
qH (k) be the number of well-colorings of H extending a fixed coloring of G ∩ H.
Then pH (k) = pG∩H (k) · qH (k). Now, pG∪H (k) can be calculated by counting
how many ways can a well-coloring of G ∩ H be extended into a well-coloring of
G ∪H. As G \ (G ∩H) and H \ (G ∩H) are independent, we have

pG∪H (k) = pG∩H (k) · qG (k) · qH (k)

=
pG∩H (k) · qG (k) · pG∩H (k) · qH (k)

pG∩H (k)
=
pG (k) · pH (k)

pG∩H (k)
.

�

By induction on the number of graphs, one can immediately prove

Corollary 2. If G1, G2, . . . , Gd are graphs such that any two intersects in the
very same complete graph, then

pG1∪G2∪···∪Gd
(k) =

pG1
(k) pG2

(k) . . . pGd
(k)

pG1∩G2∩···∩Gd
(k)

d−1 .

Now choose G1 to be the subgraph spanned by the vertices a, b, c, d, G2 to
be the subgraph spanned by the vertices a, b, c, e, and G3 to be the subgraph
spanned by the vertices a, b, c, f . Consider the graph G1. Here, the vertex a can
be colored by k colors, the vertex b can be colored by k− 1 colors, and c and d can
be colored independently by any of the remaining k−2 colors. The same reasoning
works for the graphs G2 and G3. Thus pGi (k) = k (k − 1) (k − 2)

2. The chromatic
polynomial of the complete graphs of three vertices is k (k − 1) (k − 2), and thus
by Corollary 2 we have

pG (k) = pG1∪G2∪G3
(k) =

pG1
(k) pG2

(k) pG3
(k)

pG1∩G2∩G3
(k)

2 =
k3 (k − 1)

3
(k − 2)

6

k2 (k − 1)
2

(k − 2)
2 .
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This formula is now exactly the same as in the movie. For further reading on
chromatic polynomials we suggest the reader to take a look at [8, ex. 9.36–9.49].
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